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Strongly coupled plasmas in a liquid phase can be characterized by a complex viscosity η(ω), which is
a function of frequency. Data from a single experiment with dusty plasma were analyzed to compare η(ω)
obtained by two fundamentally distinct methods. In a nonequilibrium method, a pair of counterpropagating laser
beams, separated by a gap, applied a sinusoidal shear to a two-dimensional liquid, and η(ω) was determined
using the constitutive relation. In an equilibrium method, there was no externally applied shear, so η(ω) could
be calculated with a generalized Green-Kubo relation. The results for these two methods are compared for
the real and imaginary parts of η(ω). For both parts, it is confirmed that the two methods yield results that
agree qualitatively in their trends with frequency, with the real part diminishing with ω and the imaginary part
increasing with ω, as expected for viscoelastic liquids. Quantitatively, the values of η(ω) obtained by the two
methods differ slightly. For the experiment that we analyze, values for the real and imaginary parts of η(ω) are
substantially greater than those reported in an earlier experiment, which we attribute to shear thinning effects in
the earlier experiment. The experiment we analyze was designed to minimize shear thinning, unlike the earlier
experiment.
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I. INTRODUCTION

Soft materials, including liquids, can exhibit viscoelastic-
ity when subjected to a time-dependent deformation [1]. For
deformations with short timescales, the material’s behavior is
mostly elastic, with a storage of energy. On the other hand, at
long timescales, the behavior is mostly viscous, with a dissi-
pation of energy in the form of heat. This viscous dissipation
of energy is connected to a microscopic rearrangement of
nearest neighbors.

The liquid phase of matter of interest for this paper is
that of a strongly coupled plasma. For a strongly coupled
plasma, relaxation processes that are typical of viscoelastic
behavior were already an established research topic when
Ichimaru wrote a landmark review paper in 1982 [2]. Vis-
coelastic behavior was subsequently studied using theories
[3–17], simulations [13,18,19], and experiments [20–25].

A strongly coupled plasma is a collection of charged par-
ticles, with an interparticle potential energy greater than their
thermal kinetic energy. This condition can be expressed as an
inequality � > 1, where the Coulomb coupling parameter is

� = Q2

4πε0awskBTk
. (1)

For liquid conditions, � is typically of order 102. In Eq. (1),
Q is the charge of an individual particle, Tk is the kinetic tem-
perature of the particles, and aws is the Wigner-Seitz radius,
which is a measure of interparticle distances. Some examples
of strongly coupled plasmas are non-neutral ion plasmas [26],
ultracold plasmas [27,28], and dusty plasmas [29].

A dusty plasma is a mixture of four components: ions, elec-
trons, neutral gas, and dust particles, which are small particles
of solid matter. For micron-sized particles, a large negative
charge of thousands of elementary charges accumulates on the
dust particle. With this large charge, it is easy to attain a large
value of �, and for this reason the dust component tends to be
strongly coupled in a dusty plasma [30–34].

Dusty plasma experiments are often performed in either
solid [35–37] or liquid states [24,25,38–43]. In experiments,
liquids can be prepared by first forming a crystal and then
melting it using laser heating [41,44,45], which exploits ra-
diation pressure forces [46,47]. The laser heating, along with
heating due to ion flow, provides an energy input to the dust
component, which is balanced by frictional cooling on the
neutral gas. The microscopic motion of the dust particles can
mimic that of atoms in a liquid under thermal equilibrium
[41,44], even though the collection of particles is not truly in
equilibrium because of the external energy input by lasers and
ions and the external cooling by neutral gas. Many of these
liquidlike dusty plasma experiments were performed with a
two-dimensional dust cloud, electrically levitated by a strong
vertical electrical field and confined at the boundaries by a
weaker horizontal field.

Numerical simulations of strongly coupled dusty plas-
mas are often performed using molecular-dynamics methods,
tracking individual particles that are assumed to interact by a
shielded Coulomb repulsive potential [48]. These simulations
often show good agreement with experiments [49] although
they are greatly simplified, neglecting effects present in exper-
iments, such as ion heating and gradients arising from external
confinement.
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A common description of viscoelastic properties, for all
kinds of substances, is a frequency-dependent complex vis-
cosity [1,50–52]

η(ω) = η′(ω) − iη′′(ω), (2)

where the real part η′(ω) represents the viscous response
of the substance and the imaginary part η′′(ω) represents
the elastic response. The variable ω captures the timescale.
In the zero-frequency limit, there is the familiar static
viscosity η0 ≡ η′(0). As an alternative to Eq. (2), viscoelas-
ticity is described by some authors [1,51,53] by a complex
modulus G(ω).

Two common methods for obtaining the complex viscosity
of a liquid are what we will call the nonequilibrium and
equilibrium methods.

The nonequilibrium method is based on a constitutive re-
lation [54], which is a ratio of the flux of momentum, the
shear stress Pxy, and the gradient of flow velocity, the shear
rate γ . This method requires an external source to sustain the
macroscopic gradient in velocity, which makes this physical
system intrinsically nonequilibrium. For soft materials, other
than dusty plasmas, rheometers are used to measure the com-
plex viscosity using the nonequilibrium method by applying
an external stress at a specified frequency [1,53,55,56].

The equilibrium method is based on a generalized Green-
Kubo relation [57–60]. The complex viscosity is obtained by
using the microscopic fluctuations of particle positions, veloc-
ities, and potentials to obtain the shear stress Pxy. Integrating
the shear-stress autocorrelation yields η(ω). This method as-
sumes thermal conditions, with no macroscopic gradients,
and for that reason we term it an equilibrium method. The
equilibrium method is most commonly used for simulations
that capture the microscopic motion of individual particles,
which is possible in only a few kinds of experiments, such as
dusty plasmas.

For liquidlike dusty plasmas, the two methods described
above have been used in previous studies of viscoelastic prop-
erties. Experiments were performed in two-dimensional liquid
dusty plasmas by Hartmann et al. [24], who only used the
nonequilibrium method, and Feng et al. [25], who only used
the equilibrium method. Simulations have been reported by
Kovács et al. [61], using only the nonequilibrium method for
a 2D liquid, and by Donkó et al. [18], using both methods
in a 3D liquid. For the Kovács et al. 2D simulations, the
effects of shear thinning on the frequency-dependent com-
plex viscosity were characterized as well. For the Donkó
et al. 3D simulations, the two methods were compared, and
found to agree within a few percent, under conditions that
were as alike as practical. The simulation results of Kovács
et al. and Donkó et al. motivate our experimental effort to
make a comparison between both methods for calculating
the frequency-dependent complex viscosity, while minimiz-
ing shear thinning effects. For the static viscosity η0, on the
other hand, the experiment of Haralson and Goree [42] com-
pared the two methods, using separate runs with and without
external shear in the same experiment. Their results for η0,
for the two methods, were generally comparable, but with a
quantitative difference of about 60%.

In this paper, we analyze data from our previously reported
experiment [43] to obtain a frequency-dependent complex

viscosity. Here we perform a different analysis of these data.
The physical concept studied in Ref. [43] was the hydrody-
namics phenomenon of a Stokes layer, which is a macroscopic
flow pattern. Here, instead of a flow pattern, our focus is a
material property, the complex viscosity η(ω). Our study of
η(ω) involves not only macroscopic measurements but also
microscopic measurements of the shear stress. We analyze
separate runs from the experiment, with and without external
shear, to obtain η(ω) using the nonequilibrium and equilib-
rium methods, respectively. The shear was provided by a pair
of laser beams separate from those used for heating the cloud
and sustaining liquid conditions.

We make a quantitative comparison between our nonequi-
librium method results and those reported for an earlier
experiment by Hartmann et al [24]. We find that there is a
significant difference between our complex viscosity values
and those obtained by Hartmann et al., which we attribute to
shear thinning effects in the earlier experiment.

We find that the equilibrium and nonequilibrium methods
agree qualitatively in the 2D experiment we analyze [43],
but their quantitative difference is greater than for the 3D
simulations of Donkó et al. [18]. Some possible reasons for
this discrepancy between experiments and simulations are
discussed as well.

Aside from our results for the time-dependent phenomenon
of viscoelasticity, we also obtain results for static viscosity,
which are consistent with the previous experiment of Haralson
and Goree [42].

II. PHYSICAL QUANTITIES FOR THE 2D
DUSTY PLASMA LIQUID

Relevant formulas for obtaining the shear stress and shear
rate are listed here. We begin with the length and timescales
used to normalize our results into dimensionless quantities.
Then we list the notation and formulas for velocities, shear
rate γ , and shear stress Pxy, which will all be used in Sec. III
to obtain the frequency-dependent complex viscosity.

A. Normalization

Two length scales of interest are the Wigner-Seitz radius
and the screening length. The Wigner-Seitz radius aws =
(πn)−1/2 characterizes the interparticle spacing in a liquid
with particle areal density n. The screening length λD de-
scribes the shielding of a dust particle’s electric charge due
to the space charge of ions and electrons near the dust parti-
cle. Combining these two length scales yields the screening
parameter κ = aws/λD.

The microscopic timescale for collective particle motion is
characterized by the nominal 2D dust plasma frequency ωpd =
(Q2/2πε0md a3

ws)1/2. Here, md is the mass of a dust particle.
A characteristic value of viscosity can be defined by di-

mensional analysis as the product ρa2
wsωpd. This value will be

used for normalizing our results. Here, ρ = nmd is the areal
mass density of the dust particle cloud.

B. Velocities

We present here our notation for velocities in both the par-
ticle and hydrodynamic paradigms. In the particle paradigm,
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for a particle i with position ri(t ) = (xi(t ), yi(t )), we have the
time-resolved velocity vi(ri, t ) = (vix(ri, t ), viy(ri, t )). Both
these vector quantities can be obtained experimentally using
particle tracking velocimetry. The particle velocity vi(t ) is
then used for obtaining other velocity quantities, which we
list next.

For the hydrodynamic paradigm, we convert the particle-
level velocity data to hydrodynamic data through spatial
averaging, which is done using bins. The symmetry of the
flow in the experiment of Ref. [43] allows us to average over
the particles within a rectangular bin that is narrow in the y
direction but spans the entire width of the region of interest
(ROI) in the ignorable x direction. This binning, denoted by
brackets 〈〉i,x, yields the hydrodynamic velocity

ux(y, t ) = 〈vix(ri, t )〉i,x, (3)

which is resolved in both y and t .
Another hydrodynamic measure, which is averaged over

both y and t as well as x, is the global velocity of the entire dust
cloud, U = (Ux,Uy) = 〈vi(ri, t )〉i,x,y. The overbar indicates
an average over time, while the brackets 〈〉i,x,y indicate an
average over all particles within the entire spatial extent, in
both the x and y directions.

For a particle, the fluctuating component of its velocity is
ṽi(ri, t ) = vi(ri, t ) − U. Sometimes referred to as a particu-
lar velocity, ṽi(ri, t ) is essentially just the particle velocity
in another inertial frame of reference. For the shear stress
calculation, ṽi will be an input, in Sec. II C.

The shear rate is the gradient of the hydrodynamic flow
velocity ux(y, t ):

γ (y, t ) = ∂ux(y, t )

∂y
. (4)

This shear rate is resolved both in time t and the spatial
direction y. Its time average is denoted γ (y). These measures
of the shear rate will be used to obtain the viscosities using
the nonequilibrium method.

C. Calculation of shear stress

To obtain the complex viscosity using either the equi-
librium or nonequilibrium method, the shear stress Pxy is
required. Often described as the off-diagonal element of the
stress tensor, the shear stress for a 2D collection of particles is
[59]

Pxy(t ) = 1

A

[∑
i

md ṽix ṽiy − 1

2

∑
i

∑
j �=i

xi jyi j

ri j

∂�(ri j )

∂ri j

]
. (5)

Here A is the area of the region to be analyzed, ri j (t ) =
ri(t ) − r j (t ) is the distance between a pair of particles i and j,
and ri j (t ) has an x-component xi j (t ) and a y-component yi j (t ).
We note that this shear stress has the dimensions of a flux of
momentum.

The inputs for calculating the shear stress include, for each
particle i, the time series for the positions (xi(t ), yi(t )) and ve-
locities (vix(ri, t ), viy(ri, t )). These can be measured directly
in an experiment.

Also required in Eq. (5) are the interparticle potential
energies �(ri j ), for each pair of particles i j. When using

experimental data, it is necessary to calculate the potential en-
ergies assuming a model, which for a dusty plasma is typically
the Yukawa electrical potential [18,24,25,41]:

�(ri j (t )) = Q2

4πε0

e−ri j (t )/λD

ri j (t )
. (6)

This model assumes that that electrons and ions provide
isotropic shielding around a particle; it neglects the effects of
ion wakes, ion-neutral collisions [81], and three-body inter-
actions. The most commonly cited experiment for supporting
the use of Eq. (6) is that of Konopka et al. [48].

Using Eq. (6), we can calculate the shear stress Eq. (5) with
only an input of the measured particle positions and velocities:

Pxy(t ) = md

A

[∑
i

ṽix ṽiy + a3
wsω

2
pd

4

∑
i

∑
j �=i

×xi jyi j

r2
i j

e−ri j/λD

(
1

ri j
+ 1

λD

)]
. (7)

In Eq. (7), area A is different for each method for obtaining
the complex viscosity. For the equilibrium method, the shear
stress is calculated for the entire analysis region, yielding
a shear stress Pxy(t ) that is resolved only in time. For the
nonequilibrium method, the ROI is split into bins. The shear
stress is then obtained for each bin corresponding to a different
value of y, so we obtain a shear stress Pxy(y, t ) that is resolved
in both time and the y direction.

For a time series of infinite length, Pxy(t ) should have a
time-average value of zero. However, we use a finite time se-
ries of data, which has some variations arising from the finite
number of particles analyzed as well as from measurement
error. Thus, the time average will, in general, have a small
nonzero value, denoted Pxy.

We subtract that time average value before calculating a
viscosity using the shear stress data. This subtraction is done
as

P̃xy(y, t ) = Pxy(y, t ) − Pxy(y) (8)

for the nonequilibrium method, and

P̃xy(t ) = Pxy(t ) − Pxy (9)

for the equilibrium method.
In calculating the shear stress using Eqs. (7)–(9), there is

no limit to the value ri j (t ) can take; however, in experiments
and simulations, the particles are observed only in a finite
observation region. Thus, the general practice is to truncate
the potential at a maximum distance, termed a cutoff radius
rcut, when computing the shear stress [18,25,39,41,42].

III. CHARACTERIZING THE FREQUENCY-DEPENDENT
COMPLEX VISCOSITY

Here, we review two standard methods for characterizing
the complex viscosity of a fluid: nonequilibrium and equilib-
rium. The nonequilibrium method centers on the constitutive
relation when there is a macroscopic gradient present. That
gradient must be sustained by an external source. The equilib-
rium method, on the other hand, does not involve macroscopic
gradients but instead extracts the complex viscosity from a
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time series of microscopic fluctuations. A thermal equilibrium
at temperature Tk is assumed for the equilibrium method, al-
though we will actually apply the method under experimental
conditions that only mimic thermal equilibrium.

To characterize the frequency dependence of the viscosity,
we will use the symbol ω in both methods. However, we
should note that ω has different meanings: In the nonequi-
librium method, ω is prescribed by the experimenter who
imposes an externally applied sinusoidal shear at that fre-
quency, while in the equilibrium method ω is merely a
Fourier-transform variable.

A. Nonequilibrium method

Transport coefficients are, in general, defined by a con-
stitutive relation, i.e., a ratio of a flux and a gradient. Both
the flux and the gradient that drives that flux are macroscopic
quantities.

For the static viscosity, the constitutive relation is

η0
neq(y) = −Pxy(y)

γ (y)
, (10)

where the subscript neq indicates the nonequilibrium method
and the overbars again indicate a time-averaged quantity. The
viscosity as defined by Eq. (10) is the ratio of a time-averaged
flux and a time-averaged gradient. Here the relevant flux is the
flux of momentum, the shear stress Pxy, and the corresponding
gradient is the velocity gradient, the shear rate γ . As defined
in Eqs. (7) and (4), respectively, these quantities on the right-
hand side are functions of y. If this result η0

neq(y) is relatively
uniform with respect to the nonignorable coordinate y, i.e.,
uniform over the gradient region as in Ref. [41], then we can
spatially average to yield

η0
neq = 〈

η0
neq(y)

〉
y, (11)

which is the value of static viscosity that we will report for the
nonequilibrium method.

To obtain the complex viscosity, which characterizes the
time-dependent collective motion of particles, as explained by
Ref. [54], we will calculate the viscosity as the ratio of two
quantities in the frequency domain,

ηneq(y, ω) = −Pxy(y, ω)

γ (y, ω)
, (12)

and not as the ratio of the two corresponding quantities
P̃xy(y, t ) and γ (y, t ) in the time domain. Nevertheless, we re-
quire the time-dependent expressions for P̃xy(y, t ) and γ (y, t )
so we can Fourier-transform them to yield Pxy(y, ω) and
γ (y, ω). These two frequency-dependent quantities have both
real and imaginary parts, and we will retain both to yield the
full complex viscosity.

In analogy with Eq. (11), we will spatially average
ηneq(y, ω) over the ROI to yield

ηneq(ω) = 〈ηneq(y, ω)〉y, (13)

which is the value of complex viscosity that we will report for
the nonequilibrium method

B. Equilibrium method

A more theoretical method of obtaining transport coeffi-
cients is the Green-Kubo relation. This calculation method is
based on microscopic rather than macroscopic particle mo-
tions. It assumes thermal equilibrium conditions, without a
macroscopic gradient, meaning without hydrodynamic shear.
The Green-Kubo relation yields the viscosity as the time-
integral of the autocorrelation function of the shear stress.

For the static viscosity, this relation is

η0
eq = A

kBTk

∫ ∞

0
Cη(t )dt, (14)

where the subscript eq indicates the equilibrium method. The
result is meaningful only if the integral converges, which re-
quires [62] that the autocorrelation function Cη(t ) decay more
rapidly that 1/t .

The stress autocorrelation function (SACF) is

Cη(t ) = 〈P̃xy(t )P̃xy(0)〉, (15)

where P̃xy(t ) is defined in Eqs. (7) and (9).
To obtain the complex viscosity, the generalized Green-

Kubo relation is [18,25,57,59,60]

ηeq(ω) = A

kBTk

∫ ∞

0
Cη(t )eiωt dt . (16)

Equations (14)–(16) are intended for general use with liquids
in the absence of macroscopic gradients. In principle, they can
be used with many kinds of interparticle potential energies
�(ri j ) depending on the substance.

In practice, using the generalized Green-Kubo relation with
an input of experimental data requires the use of a finite area
as well as a finite time series, in obtaining the data for Cη(t ).
We next describe the details of how we use the finite area and
time.

The finite area for our equilibrium-method analysis is
shown in Fig. 1(b). As in Ref. [39], we divide the cam-
era’s field of view into inner and outer rectangles. The inner
rectangle is where the shear stress Pxy(t ) will be obtained,
and this will require the potential energies within the inner
rectangle. Those potential energies are the result not only of
charges located within the inner rectangle, but outside it as
well. Thus, potential energies �(ri j ) will be calculated for
a particle i within the inner rectangle, while particle j can
be located anywhere in the inner or outer rectangles. The
inner rectangle’s dimensions are determined by our choice of
the potential cutoff radius rcut; in particular, the width of the
border between the rectangles is chosen to be equal to rcut.

The finite time that is available when evaluating the integral
in Eqs. (14) and (16) requires attention because, in theory, the
integral is over an infinite time [18,25,39,42]. For simulation
data, which have fluctuations that are nearly the same as
for microscopic thermal fluctuations, one common practice
is to evaluate the integral up to a maximum time that is the
first zero crossing of the SACF [25,63]. Experimental data,
however, can contain noise greater than nonthermal fluctua-
tions [25,39,42], so the SACF oscillates noisily at long times.
For choosing an integration limit in this situation, three ap-
proaches have been used in literature [25,39,42], and we will
follow that of Ref. [42], which is based on the rms noise level
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FIG. 1. Images from the top-view camera for liquid runs (a) with
and (b) without an externally applied shear. The camera’s field of
view of 24 × 32 mm, shown here, was centered in the dust particle
cloud, which had a diameter of 64 mm. In (a), the broad arrows indi-
cate the position and width of the two shear laser beams, which could
be sinusoidally modulated at an externally controlled frequency ω.
These beams were the source for the externally driven shear that
made possible the use of the nonequilibrium method of analysis. The
2-mm gap between the shear beams was also the region of interest
(ROI) for analyzing the hydrodynamic flow at the applied frequency
ω. In (b), the analysis region for the equilibrium method was the inner
rectangle defined by a gray border that has a thickness equal to rcut.
No shear beams were used for the runs analyzed with the equilibrium
method. The position and thickness of the arrows in (a), as well as
the width of the gray border in panel (b), are drawn to scale

for the SACF at long time. The integration limit for Eqs. (14)
and (16) is thus taken as the time when the SACF has decayed
to a value equal to the rms noise level, plus an increment of
1%.

IV. EXPERIMENT

In this paper, we carry out a different analysis of data from
our previously reported experiment [43]. In Ref. [43], the data
were analyzed to characterize a hydrodynamic phenomenon,
the Stokes layer. Here, we analyze the data differently to
characterize the complex viscosity η(ω).

The experiment is summarized below. A fuller description
is provided in Ref. [43].

A. Apparatus

The experiment was performed in a partially ionized argon
gas at 6 mTorr. The chamber included a horizontal lower
electrode, which was driven by capacitively coupled radio
frequency power, while all other surfaces were grounded.

After igniting the plasma, polymer particles were intro-
duced. These were melamine formaldehyde microspheres
[64] with a radius rd = 4.415 μm and a mass of md = 5.45 ×
10−13 kg. A dispenser at the top of the chamber was agitated
so particles fell into the plasma below. As they fell, they
became charged and then levitated as a cloud at the upper edge
of the sheath located above the horizontal lower electrode. By
agitating the dispenser to an extent that allowed about 5700
particles to fall, it was assured that the cloud had only a single
layer, which initially self-organized in a crystalline structure.

In the experiment of Ref. [43], the crystal was melted and
liquid conditions were sustained, which is essential for our
study of the viscoelastic properties of a liquid. To maintain
these conditions, laser heating was used, with two laser beams
swept in arcs so the radiation pressure force would give parti-
cles nearly random impulses of momentum.

The spatial uniformity of the heating was improved by
sweeping the heating beams over the entire dust cloud [45].
This is different from relying on localized beams for heating
as in Refs. [24,65,66].

To use the nonequilibrium method, a sinusoidal shear
was added for certain runs. To apply a shear, a laser sys-
tem was used, independent from the setup for laser heating.
Two counterpropagating parallel laser beams were shaped
as 2-mm-wide horizontal strips, as shown in Fig. 1(a). The
radiation-pressure force from these two shear beams imparted
a localized momentum to the particles within the beams.
These beams were spaced with a 2-mm gap between the edges
of the beams, so shear was applied externally within the beams
but not within the gap. The flow pattern of dust particles,
produced by the shear beams, was like that shown in Fig. 2
of Ref. [41]. As in Ref. [41], we aimed our camera downward
at the center of the dust particle cloud, where the flow pattern
was straight. Thus, we imaged a flow that mimicked the ge-
ometry of a traditional Couette flow, in which shear stress is
applied by moving two planar boundaries of a sample liquid.
In the experiment of Ref. [43], the boundaries of the sample
were replaced by the two shear beams. More information
regarding the width of the beams and the gap between them is
provided in the Supplemental Material [67].

The shear-laser setup allowed applying shear either
steadily as in Ref. [41] or with a modulation that was sinu-
soidal in time. This modulation was achieved by varying the
intensity of the two laser beams sinusoidally, using a combi-
nation of a half-wave plate that was rotated at a controlled
frequency, followed by a linear polarizer that was fixed in
place.

As a key point, an effort was made to minimize shear thin-
ning, which is the reduction in viscosity due to a large shear
rate. To achieve a relatively low shear rate, we operated the
shear beams at relatively low intensities. This choice was fea-
sible because instead of relying on these shear beams for the
additional purpose of heating and melting the crystal, which
requires a great intensity, we used a separate pair of beams for
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heating. To confirm that shear thinning was avoided, we note
that the shear rate γ (y, t ) in the experiment was always less
than 0.15vth/aws. For comparison, the shear-thinning thresh-
old for γ is 0.2vth/aws, as determined by Donkó et al. [68].
Thus, by operating below this threshold, shear thinning was
minimized.

B. Procedure

Four kinds of runs were performed, all in a single day.
Crystal runs were performed without any laser manipulation.
No-shear liquid runs were done with the two heating laser
beams, but without the shear laser beams. Steady-shear runs
were carried out under liquid conditions, using not only the
two heating beams but also the two shear beams, which were
operated with a steady intensity. Sinusoidal shear runs were
performed like the steady-shear runs but with a sinusoidal
variation of the shear-beam intensities. Ten runs were per-
formed with identical conditions for the sinusoidal shear runs.
The other kinds of runs were each repeated four times, spaced
throughout the day. The no-shear and shear runs provide
our data for the equilibrium and nonequilibrium methods,
respectively, of obtaining viscosity. The complete sequence of
experimental runs is provided in the Supplemental Material
[67].

The particle cloud was imaged from above, with illumi-
nation by a sheet of laser light. Using a top-view camera,
videos were recorded. After waiting for steady conditions
to be attained, the recordings were started. They lasted 42
seconds, which provided exactly an integer number of shear
beam oscillations in each recording, for example, a record-
ing included exactly 21 oscillations when the shear laser
beams were modulated at 0.5 Hz. Among other details of
the imaging, as described in Ref. [43], we mention a few of
particular interest. The 24 × 32 mm field of view included
about 2100 particles. The camera was operated at 50 or 100
frames per second for the crystal runs and other runs, respec-
tively. Video images were analyzed using particle-tracking
velocimetry [69,70], yielding particle positions (xi(t ), yi(t ))
and velocities (vix(ri, t ), viy(ri, t )).

C. Dust cloud parameters

Many parameters describing the conditions within the cam-
era’s entire field of view were obtained in Ref. [43]. Besides
the particle diameter and mass mentioned above, parameters
used in our analysis include the following.

Several parameters are applicable to all runs, with or with-
out laser manipulation. These include the areal mass density
ρ = (1.5 ± 0.1) × 10−6 kg/m2, Wigner-Seitz radius aws =
0.34 ± 0.1 mm, nominal 2D dust plasma frequency ωpd =
81.0 ± 0.4 s−1, screening length λD = 0.49 ± 0.1 mm, and
particle charge Q = (17 500 ± 500) e. These values remained
steady during the experiment and their uncertainties are small
enough to not change our conclusions, as discussed in the
Supplemental Material [67].

For runs with laser heating manipulation, the kinetic tem-
perature was Tk = (2.0 ± 0.1) × 105 K. This value, which is
based on the mean-square velocity for the entire field-of-view
of the camera, is a time average. (The rms fluctuations of the

kinetic temperature, partly due to the finite number of particles
within the field of view, were 2 × 104 K.) The Coulomb cou-
pling parameter was � = 78 ± 6. As was noted in Ref. [43],
the laser heating was sufficient to melt the crystal, and sus-
tain liquid conditions. The measured temperature mentioned
above exceeds the melting point [71] by a factor of 2.

D. Gas damping rate

A dusty plasma is a mixture of four components, including
charged dust particles and a rarefied neutral gas. Among these
components, only the dust particles are strongly coupled, so
they can collectively behave like a liquid. This liquid occu-
pies the same volume as the neutral gas. (We note that this
condition, while common for dusty plasmas, is uncommon
for other multiphase liquids, which do not commonly include
a rarefied gas phase.) The gas exerts a friction force mdνgvi
on a dust particle moving at velocity vi, where νg is the
gas damping rate. In the experiment we analyze [43], due to
the use of a low gas pressure the damping rate had a small
value νg = 0.97 s−1, which is � ωpd, indicating that the dust
particle motion was underdamped [39,72].

Despite the underdamped condition, gas friction does have
several dissipative effects on dust particle motion. One effect
is cooling of the dust particle motion, which is necessary
for the maintenance of a steady kinetic temperature, in the
presence of constant energy inputs from ion flow and laser ma-
nipulation. Another effect is a complication in the viscoelastic
combination of energy storage and energy dissipation. Gas
friction alters this combination by providing additional energy
dissipation, beyond that due to the microscopic breaking of
bonds among neighboring dust particles. A quantification of
gas friction’s effect on viscoelastic behavior was reported in
Ref. [18], where it was found that the effect was progressively
more profound for a damping level νg/ωpd > 0.01 in a three-
dimensional simulation.

E. Thermal equilibrium conditions

Thermal equilibrium conditions actually do not prevail in
laboratory dusty plasma experiments because the experiments
always require external power supplies to sustain the plasma.
Nevertheless, the random movements within a collection of
particles in a dusty plasma can mimic those of a thermal equi-
librium. Two criteria for assessing a thermal-equilibriumlike
condition are often used for assessing numerical simulations
of plasmas at a particle level. These criteria can also be used
for dusty plasma experiments with particle-level data. The
first criterion is that the velocity distribution function of the
dust particles should be nearly Maxwellian. The second crite-
rion is that the fluctuation level of the kinetic temperature, in a
finite-size system, should be nearly the same as in a theoretical
thermal equilibrium. Both these criteria were confirmed to be
satisfied in earlier two-dimensional experiments [41,44]. We
have also confirmed the criteria for the experiment we analyze
[43], as we explain next.

To quantify how the velocity distribution is nearly
Maxwellian, we fit the experimental velocity distribution to
the theoretical Tsallis distribution [73,74], which is like a
Maxwellian that is generalized to allow for enhanced tails.
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Our fit yielded the parameter q = 1.15 ± 0.01. This value
is reasonably close to q = 1, which would correspond to a
Maxwellian distribution.

The fluctuation level for the kinetic temperature was quan-
tified by analyzing a time series of Tk for the 2100 particles
within the camera’s full field of view, using the method
of Ref. [74]. We found that the experimental temperature
fluctuation exceeded the theoretical canonical temperature
fluctuation for a thermal equilibrium by a modest factor of 1.4.
This factor is consistent with previous experiments that used
laser-heating to produce two-dimensional liquids [41,44] like
that of the experiment we analyze.

F. Comparison to previous dusty plasma experiments for
obtaining the complex viscosity

Here, we compare our previous experiment [43] that we an-
alyze here to some earlier dusty plasma experiments [24,25],
where the complex viscosity was measured. There are many
similarities, including the use of a two-dimensional layer of
dust particles levitated above a lower horizontal electrode, and
some type of laser manipulation.

For the equilibrium method of analysis, the experiment of
Feng et al. [25] had no externally applied shear, so it resem-
bled the no-shear liquid runs of the experiment we analyze. A
major difference is that in Ref. [25] there were no additional
runs with external shear. Additionally, we note that video
recordings in Ref. [43] were of greater length.

For the nonequilibrium method, the experiment of Hart-
mann et al. [24] used a pair of counterpropagating laser
beams to induce shear, which was sinusoidally modulated in
time. We can point out three differences in the use of these
counterpropagating beams, as compared to the experiment
[43] that we analyze here. One difference is that the phase
of one beam compared to the other was 180ºin Ref. [24]
but 0º in the experiment we analyze. Both setups are able
to produce the time-dependent shear stress Pxy(t ) and shear
rate γ (t ) needed for the nonequilibrium analysis. Two other
differences, which are of greater importance, are described
next.

First, and most importantly, the smaller shear rate γ

used in Ref. [43] has the advantage of avoiding shear thin-
ning, although it also has the disadvantage of reducing the
signal strength, for the hydrodynamic velocity at the ap-
plied frequency. (This effect on the signal is greatest at
high frequencies, so our analysis can only be done over
a lower range of frequencies.) The greater shear rate used
in the earlier experiment of Ref. [24] was necessary be-
cause no other laser manipulation was applied for melting,
so the experimenters relied on shear-induced melting of the
crystal.

Second, the shear beams in Ref. [43] were separated by
a gap. This use of a gap promotes a greater uniformity of
shear within the analyzed ROI, which is essentially the gap
region. It also mimics a Couette flow, which has a gap be-
tween two boundaries where the shear is applied. In contrast,
when the shear is driven by two laser beams that are more
closely aligned, as in Ref. [24], the shear profile may be less
uniform, and it may less closely mimic a uniform Couette
flow.

V. OBTAINING THE COMPLEX VISCOSITY FROM THE
EXPERIMENTAL DATA

The approach we use for analyzing experimental data is
presented below. This presentation requires some detail, espe-
cially because our approach to the nonequilibrium method has
not previously been used with experimental data.

A. Nonequilibrium method

Liquid runs with an externally applied shear were used to
obtain the nonequilibrium viscosity ηneq(ω). For this method,
the ROI was the gap between the shear laser beams, as shown
in Fig. 1(a), where the shear was most uniform.

To convert the particle-level data to hydrodynamic data, we
used binning as in Ref. [41,43]. Bins had a width of 0.50 mm
in the y direction and a length that spanned the entire ROI
in the x direction. Within each bin, we obtained time series
for three hydrodynamic quantities: the hydrodynamic velocity
ux(y, t ) using Eq. (3), the shear rate γ (y, t ) using Eq. (4), and
the shear stress Pxy(y, t ) using Eq. (7). The latter required a
potential cutoff radius, which was chosen to be large enough,
6λD, so the binary force due to a particle at the cutoff radius is
≈ 10−4 smaller compared to that due to a particle at a distance
of λD.

As we explained in Sec. III A, we use a constitutive relation
to obtain a nonequilibrium viscosity calculated as the ratio of
a shear stress divided by a shear rate. These two quantities
are both obtained with spatial resolution as a function of y
by using data for shear stress and shear rate that have been
binned. We then perform a simple average over all bins in the
ROI, i.e., average over y, to yield a data point for the viscosity.
(The averaging is possible due to the uniform shear region
resulting from the Couette-flowlike configuration.) This pro-
cess of binning and averaging after dividing the shear stress
Pxy(y, t ) by the shear rate γ (y, t ) was carried out for the
frequency-dependent complex viscosity ηneq(ω) using runs
with sinusoidal modulation, as well as for the static viscosity
η0

neq using runs with steady shear.
The main difference in the analysis for ηneq(ω), as com-

pared to η0
neq, is that a discrete Fourier transform at the

modulation frequency ω was applied to the time series data for
shear rate and shear stress. For a time series x(t ), the discrete
Fourier transform is calculated as

2ω

nπ

N∑
k=1

x(tk )eiωtk �t = Reiφ, (17)

where tk is the time, �t is the step in time, n is the number
of complete half periods in x(t ), and N is the largest integer
closest to 2nπ/ω�t . This transform, for data within a bin
corresponding to a given value of y, converted the time-series
data into the frequency domain, yielding the amplitude R and
phase φ, for both the frequency-dependent shear rate

γ (y, ω) = Rγ (y, ω)eiφγ (y,ω), (18)

and the frequency-dependent shear stress

Pxy(y, ω) = RP(y, ω)eiφP (y,ω). (19)

The results of Eqs. (18) and (19) were then used as inputs
for the constitutive relation Eq. (12), yielding the spatially
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FIG. 2. Comparison of nonequilibrium experimental results.
Data from the earlier experiment of Hartmann et al. [24] are plotted
as solid symbols. Data points plotted as open triangles are from
our analysis of the authors’ recent experiment of Ref. [43]; each
data point is the mean of the results for ten runs, with an error bar
indicating the standard deviation of the mean. For normalization,
viscosity is divided by ρa2

wsωpd and frequency is divided by the
nominal 2D dust plasma frequency ωpd. While data from the two
experiments generally have the same trends, there is a significant
quantitative difference: Values for both η′(ω) and η′′(ω) are smaller
by at least a factor of 1.4 in the earlier experiment of Hartmann et al.,
which may be attributed to shear thinning in the earlier experiment.

resolved complex viscosity

ηneq(y, ω) = −RP(y, ω)

Rγ (y, ω)
ei(φP (y,ω)−φγ (y,ω)) (20)

for each bin. The resulting values of ηneq(y, ω) for each bin
were then averaged over y using Eq. (13) to yield ηneq(ω).
We further averaged over all ten runs, for each modulation
frequency ω.

Separately from our main results for ηneq(ω), obtained
using the approach described above, we also obtained the
static viscosity η0

neq. For this static viscosity, we used the same
straightforward data-analysis approach as Haralson and Goree

[41] for analyzing data from experimental runs with steadily
applied external shear.

B. Equilibrium method

Liquid runs without an externally applied shear were used
to obtain the equilibrium viscosity ηeq(ω). For this method,
the analysis region was the inner rectangle in Fig. 1(b). The
border between the inner and outer rectangles had a breadth
equal to rcut, which was again chosen to be 6λD.

The shear stress Pxy(t ) was calculated using Eq. (7), using
particle-level data as the input. This shear stress was not
spatially resolved, as it was calculated over the full analysis
region. Using the time series of the shear stress as the input for
Eq. (9), we obtained the fluctuating part of shear stress P̃xy(t ),
which in turn was used as the input for Eq. (15) to calculate
the SACF, i.e., Cη(t ). Finally, this SACF, which had a finite
duration, was the argument of the integral in the Green-Kubo
calculations using Eq. (14) for the static viscosity η0

eq and
Eq. (16) for the complex viscosity ηeq(ω).

The experimental SACF decayed not to zero, but to a noise
floor that was 6% of Cη(0). As in Ref. [42], this value guided
us in selecting an upper time limit for the integrals in Eqs. (14)
and (16). Following the prescription in Sec. III B, we chose the
upper limit as the time when Cη(t ) had decayed within 7% of
Cη(0).

VI. RESULTS

Our chief results are the experimental complex viscosities
η(ω). These results are presented in Figs. 2 and 3, as a function
of frequency ω. We draw the reader’s attention especially to
the data for ω > 0, which describe the viscoelastic properties
of the 2D liquid. At ω = 0 we also include data points, which
correspond to the static viscosity η0.

A. Comparison to earlier nonequilibrium experiment

Results from the earlier nonequilibrium experiment of
Hartmann et al. [24] can be compared directly to our nonequi-
librium results. This comparison is presented in Fig. 2, using
the same dimensionless units for the axes, so the use of parti-
cles with different mass and charge should not be a factor.

We find that our values of the frequency-dependent com-
plex viscosity are generally greater than those of Hartmann
et al. by a factor of at least 1.4. This difference appears for
both the real and imaginary parts of the complex viscosity
over the entire frequency range. The significance of these
results is discussed in Sec. VII A.

B. Comparison of nonequilibrium versus equilibrium method

Comparing nonequilibrium vversus equilibrium results, we
find the same qualitative trends for both. As ω increases, the
real part η′(ω) decreases; this decrease is expected because
the dissipative physical effects described by η′(ω) require an
extended time for microscopic rearrangements of particles.
Likewise, as ω increases, the imaginary part η′′(ω) increases,
which is expected because the energy-storage effects asso-
ciated with elasticity can survive only until the particles
rearrange.
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FIG. 3. Frequency-dependent complex viscosity: (a) real compo-
nent η′(ω) and (b) imaginary component η′′(ω). Circles represent
equilibrium-method results obtained using Eqs. (15) and (16). Scatter
of the four data points, each for one run, reflects the uncertainty.
Triangles show nonequilibrium-method results, using Eqs. (12) and
(13), as in Fig. 2. The static viscosity η0 is indicated by the data
points at ω = 0. These results are our analysis of data from the
experiment of Ref. [43].

Aside from this qualitative agreement of the two methods,
we can also compare the results quantitatively. We find that
the values of η(ω) obtained by the two methods differ slightly.
The real part η′

eq(ω) is at least 31% greater (when averaged
over four data points) as compared to the corresponding
data point for the nonequilibrium method. The imaginary
part η′′(ω) is also greater for the equilibrium method, by at
least 6%.

VII. DISCUSSION

A. Comparison to previous experiment

In Fig. 2, we compared results for η(ω) from two nonequi-
librium experiments: Ref. [43], as analyzed in the current

paper, and the earlier experiment of Hartmann et al. [24].
We found a significant quantitative difference: Values of the
frequency-dependent complex viscosity are generally greater
than those of Hartmann et al. by a factor of at least 1.4.

Most likely, these differences arise from the different con-
figurations of the experiments. As explained in Sec. IV F, the
experiment of Hartmann et al. relied on the shear laser beams
to also melt the crystal, which required a large shear. For the
highest laser intensity, which was used for runs with nonzero
frequencies, the zero-frequency shear was about 0.4vth/aws,
as compared to 0.15vth/aws for the experiment of Ref. [43]
that we analyze. These values should be compared to the
shear-thinning threshold (at zero frequency) of 0.2vth/aws, as
reported by Donko et al. [68]. A diminishment of the complex
viscosity due to high shear thinning is also demonstrated by
the 2D simulations of Kovács et al. [61]. In their simulations,
Kovács et al. found that high shear rates can significantly
decrease the amplitudes of the real and imaginary parts of the
complex viscosity for all frequencies. Thus, shear thinning
could have been a factor in reducing the values of the zero-
frequency viscosity η0 in the experiment of Hartmann et al.
Since Hartmann et al. used the same laser intensity to obtain
the frequency-dependent viscosity η(ω), it seems possible
that shear thinning may have occurred for those results as
well. The experiment of Ref. [43], on the other hand, was
designed specifically to minimize shear thinning, as discussed
in Sec. IV A.

B. Interpretation of experimental results for nonzero frequency

In Fig. 3, there is a difference of at least 31% in the
real component of the complex viscosity, for the equilibrium
vversus nonequilibrium methods. The physical cause for this
difference is not yet known, but we can discuss several possi-
bilities.

One possibility is shear thinning, but an effort was made
to minimize this effect in the experiment, as explained in
Sec. IV A. A second possibility, gas friction, is not expected
to have a significant effect when the damping rate is low
[18,39,61,72], which is the case in the experiment. A third
possibility could be the finite duration of the experimental
time series, as the Green-Kubo relations, Eqs. (14) and (16),
require integrating over an infinite time. The finite duration
of the experimental time series was found not to be a likely
source of the increased value of the complex viscosity, accord-
ing to a test we performed, as described in the Supplemental
Material [67].

Three other possible explanations for the difference were
mentioned previously, by Haralson and Goree [42], who
reported a similar difference for the static shear viscosity.
Their explanations involve dimensionality, interactions be-
tween particles, and thermal properties of the liquid-like dust
cloud, as we elaborate below.

Low dimensionality could be a factor. The dust particles
did not fill a three-dimensional volume but instead were
mainly constrained to move on a horizontal plane. It remains
an unresolved physics question whether transport coefficients
like viscosity are strictly valid in two dimensions [62,75–78].

Interactions of particles in the experiment may be more
complicated than the binary Yukawa interaction that we as-
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sumed in calculating the shear stress. One issue is that a
binary Yukawa interaction neglects ion wake effects [79,80]
as well as possible long-distance deviations from the Yukawa
potential [81]. This should not be a factor because the same
potential was used for both methods when calculating the
complex viscosity. Another issue is the binary interaction
approximation, i.e., the omission of three-body interactions,
in calculating the complex viscosity. Indications of three-body
interactions have been reported by other experimenters [82]. It
is possible that three-body interactions might play a different
role in momentum transfer, in the presence of macroscopic
shear, as compared to the microscopic fluctuating shear that
enters the underlying theory for the equilibrium method.

Thermal properties of the liquidlike dust cloud in the
experiment are in fact more complicated than a theoretical
thermal equilibrium. As mentioned in Ref. [42], the liquidlike
collection of dust particles in the experiment only mimicked
thermal equilibrium in terms of the velocity distribution func-
tion and temperature fluctuations. The dust cloud was actually
nonequilibrium, as almost all laboratory plasmas are, because
it relied on energy inputs from external power supplies and
lasers while there was a constant energy loss to the neutral gas.
The Green-Kubo relations, Eqs. (14) and (16), are intended for
liquids under thermal equilibrium conditions.

C. Interpretation of experimental results for zero frequency

While we have directed most of our attention to our results
for nonzero frequency, we also obtained a result for zero fre-
quency, i.e., static viscosity. This result appears on the far left
of Fig. 3. Comparing the results from both methods, we find
that the static viscosity η0 was about 40% greater for the equi-
librium method as compared to the nonequilibrium method.

This outcome demonstrates a reproducibility of the earlier
result of Haralson and Goree [42]. In that paper, an experiment
was reported that used largely the same instrumentation as in
Ref. [43]. The difference was found to be about 60%, for η0

obtained by the equilibrium versus nonequilibrium methods.

D. Comparison to previous simulations

Three simulation approaches were used by Donkó et al.
[18] to obtain the complex viscosity η(ω). One was a nonequi-
librium simulation, using an externally applied shear, with
the complex viscosity calculated as in Eqs. (12) and (13).
This simulation ignored gas friction. The other simulations
used equilibrium conditions, without macroscopic shear, and
the complex viscosity was calculated as in Eq. (16). These
two equilibrium simulations differed in the description of gas
friction, which was included in only one of them.

The results of these simulations revealed the same trends as
seen in our experimental results for the variation of complex
viscosity with frequency. However, unlike the experiment we
analyze, these simulations yielded a close agreement of equi-
librium and nonequilibrium results. The agreement was within
a few percent, without a systematic tendency for one method
to yield a greater value than the other.

While we cannot fully reconcile our experimental results
with the simulation results of Donkó et al., we can note six
fundamental differences between experiment and simulation.

First, the experiment in Ref. [43] was two-dimensional while
the simulation of of Donkó et al. was three-dimensional.
Second, the interaction potential was assumed to be a binary
Yukawa interaction for the simulations of Donkó et al., unlike
the experiment, where three-body interactions are possible.
Third, the maintenance of a nearly steady temperature was
different in the experiment and simulation in the absence of
shear. Fourth, the methods of applying shear in the experi-
ment and the simulation were different for the nonequilibrium
method. Fifth, the boundaries were different in the experiment
and simulation. Sixth, gas friction played a significant role in
the experiment for both the equilibrium and nonequilibrium
methods, but was absent for both methods in the simulation
[18]. These differences are further explained in the Supple-
mental Material [67].

VIII. CONCLUSION

We studied the viscoelastic properties of a two-
dimensional dusty plasma, which was in a liquid phase
that was sustained by laser heating. Using data recorded in
the same experiment [43], two methods for calculating the
complex viscosity η(ω) were compared. The nonequilibrium
method is based on the constitutive relation, and the equilib-
rium method is based on the generalized Green-Kubo relation.

As the frequency varied, the complex viscosity obtained by
these two methods exhibits the same trends: the real part η′(ω)
decreases with ω while the imaginary part η′′(ω) increases
with ω. These trends are expected because, for a viscoelastic
substance, the dissipative effects measured by η′(ω) should be
strongest on long timescales, while the energy-storage effects
measured by η′′(ω) should be greatest at short timescales.

We compared our η(ω) from our nonequilibrium-method
analysis of the experiment of Ref. [43] to those of an earlier
experiment performed by Hartmann et al. [24]. While the
trends were the same [η′(ω) decreasing with ω but η′′(ω)
increasing with ω], there were substantial quantitative differ-
ences. We note that, unlike the earlier experiment of Hartmann
et al., the recent experiment [43] that we analyze was designed
to minimize shear thinning, and this may account for the
difference.

We also compared the two methods for calculating η(ω)
and found that, for the real part η′(ω), the equilibrium method
yielded values that were slightly larger, by at least 31%, than
did the nonequilibrium method. The same was true for the
imaginary part η′′(ω), although the percentage difference was
generally not as great. The underlying reason for this differ-
ence has not been identified yet, but some possibilities were
discussed in Sec. VII B. We also note that compared to this
outcome for a 2D experiment, there was little difference in
the results of the equilibrium and nonequilibrium methods in
previous 3D simulations [18].

Separately, we note that our results for zero frequency
shear viscosity, i.e., the static shear viscosity η0, allow us
to confirm the reproducibility of the experimental results of
Ref. [42].
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