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Green-Kubo relation for viscosity tested using experimental data
for a two-dimensional dusty plasma
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The theoretical Green-Kubo relation for viscosity is tested using experimentally obtained data. In a dusty
plasma experiment, micron-sized dust particles are introduced into a partially ionized argon plasma, where
they become negatively charged. They are electrically levitated to form a single-layer Wigner crystal, which is
subsequently melted using laser heating. In the liquid phase, these dust particles experience interparticle electric
repulsion, laser heating, and friction from the ambient neutral argon gas, and they can be considered to be in
a nonequilibrium steady state. Direct measurements of the positions and velocities of individual dust particles
are then used to obtain a time series for an off-diagonal element of the stress tensor and its time autocorrelation
function. This calculation also requires the interparticle potential, which was not measured experimentally but
was obtained using a Debye-Hückel-type model with experimentally determined parameters. Integrating the
autocorrelation function over time yields the viscosity for shearing motion among dust particles. The viscosity
so obtained is found to agree with results from a previous experiment using a hydrodynamical Navier-Stokes
equation. This comparison serves as a test of the Green-Kubo relation for viscosity. Our result is also compared
to the predictions of several simulations.
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I. INTRODUCTION

There are various two-dimensional (2D) physical systems
that allow for direct observation of individual particle dynam-
ics. These systems include colloidal suspensions [1], granular
materials [2], electrons on a liquid helium surface in a Wigner
lattice [3], ions confined magnetically in a Penning trap [4],
and single-layer dusty plasmas [5–8]. In these systems, the
relevant particles collide with their neighbors frequently, so
that momentum and energy are transported from one place to
another. (In all these 2D physical systems, motion is not purely
2D, but usually includes some limited out-of-plane motion, so
that the systems are often described as quasi-2D.)

Shear viscosity, η, is a transport coefficient that character-
izes the momentum flux perpendicular to a velocity gradient.
Sustaining the velocity gradient requires the application of a
shear stress, which corresponds to an off-diagonal element
of a stress tensor. The hydrodynamical definition of shear
viscosity is the ratio of this off-diagonal element and the
velocity gradient [9]. As a measure of dissipation, viscosity
is useful, for example, in describing the damping of shear
waves [10–12].

The Green-Kubo relation for viscosity, as described in
Sec. II, enables a calculation of viscosity using as its input
a time-series record of the motion of individual particles
[13–15]. The relation is based on fluctuations, not a macro-
scopic velocity gradient. Until now, the Green-Kubo relation
for viscosity has been widely used with an input of data
from molecular dynamics (MD) simulations (see, for example,
[16]), but not with data from experiments.
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Viscosity is most commonly determined in experiments
using a macroscopic velocity gradient. For example, in a
rheometer [17], a stress is applied by a moving boundary,
causing the liquid to flow with a velocity gradient, so that
the viscosity can be determined using its hydrodynamical
definition. Another experimental approach, which is used
with experimental data from colloidal suspensions and other
soft materials without macroscopic velocity gradients, is the
measurement of the mean-square displacement (MSD) of in-
dividual particles and the assumption that the Stokes-Einstein
relation is valid, allowing then a calculation of viscosity from
the measured MSD [18,19], as discussed in Sec. II. All of
these experimental methods are different from the use of the
Green-Kubo relation.

It has been questioned whether transport coefficients exist
in 2D systems. Molecular dynamics simulations suggested that
the diffusion, viscosity, and thermal conductivity coefficients
would not exist in a 2D system of hard disks [20]. This result
led to theoretical investigations that indicated the time integral
in the Green-Kubo relations diverges and the corresponding
transport coefficients in 2D systems are nonexisting [21]. We
will discuss this issue of convergence in Sec. IV E.

In this paper, we test the Green-Kubo relation with an input
of experimental data from a quasi-2D dusty plasma. The dust
particles in a dusty plasma, unlike hard disks, have a relatively
long-range interparticle interaction.

Our results and conclusions in this paper are intended to
have a usefulness that extends beyond the area of dusty plas-
mas. Accordingly, we have attempted to make our presentation
accessible to scientists who are not specialists in that area. The
experimental data used in this paper are from an experiment
by Feng et al. [8]. We will introduce the concepts of dusty
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plasmas, along with some key aspects of the experiment, below
as well as in Sec. III. Further details of the experiment can be
found in [8].

A dusty plasma is a four-component mixture consisting of
micron-size particles of solid matter, a gas of neutral atoms,
free electrons, and free positive ions. We will refer in this
paper to the particles of solid matter as “dust particles.” In
experiments, the gas is often argon, and so are the ions. The
electrons and positive ions are present because of electric
fields, provided by a power supply, which lead to a weak
ionization of the neutral argon gas. Because of the much larger
mobility of the electrons, as compared to the ions, many more
electrons are collected on the dust particles, so that a dust
particle develops a large negative electric charge, comparable
to thousands of elementary charges [22]. The electrons and
ions that surround a negatively charged dust particle are
rearranged, resulting in a screening layer with a surplus of
positive ions that surrounds the dust particle. Because of the
complicated interactions among its four components, a dusty
plasma is sometimes termed a “complex plasma” [23]. While
the gas, electrons, and ions fill a 3D vacuum chamber, the
dust particles do not. They are levitated against the downward
force of gravity by a strong vertical electric field. In the
experiment [8], enough dust particles were introduced to fill
a single horizontal layer, but not enough to begin filling a
second layer. The dust particles were not in contact with any
solid boundary, but they suffer a friction due to the surrounding
neutral argon gas. In this paper, we will always consider the
gas atoms as a whole to be a continuum, but we will consider
the dust particles as individual entities.

The experiment [8] can be described as quasi-2D. The dust
particles, although they are three-dimensional, are arranged in
two dimensions. It was verified, using video observations, that
the dust particle motion in the vertical direction was extremely
limited, as compared to that in the horizontal direction, so that
dust particles moved past one another only as a result of their
horizontal motion.

The neutral argon gas is rarefied in the experiment [8].
At a density five orders of magnitude less than in a standard
atmosphere, collisions among gas atoms have a long mean
free path, on the order of 1 cm. The effect of these collisions
on the dust particles is much diminished because the dust
particles occupy only a thin 2D layer, so that a gas atom that
collides with a dust particle is likely to be knocked out of the
layer of the dust particles [24]. Thus, no significant transfer
of momentum between two dust particles can occur due to
the first one colliding with a gas atom that then collides with
the second dust particle. The only interaction between dust
particles and gas that we must consider is the frictional drag
force Ff on the dust particle, which is proportional to the
relative velocity between the dust particle and the gas as a
whole. In [8], the gas flow was negligibly slow.

Since it is only the motion of the dust particles that will be
of interest here, we will simplify our description of the four-
component mixture. The dust particles are assumed to interact
among themselves with a screened Coulomb repulsion, as
discussed in Sec. IV. The role of the electrons and ions is
then only to modify the interparticle potential and provide
the screening. Thus, in our simplified description of the four-
component mixture, we consider only a binary mixture: first,

moving charged dust particles whose interaction potential is a
screened Coulomb repulsion, and second, a stationary neutral
gas that exerts a frictional drag on moving dust particles.

This reduction of a four-component mixture to a binary
mixture, in which all the properties of the electrons and ions
are contained in the screening, has been used previously
in theoretical descriptions of dusty plasmas, for example
in the analysis of wave propagation [25]. When using this
binary-mixture description, one could consider a charged
dust particle as a “dressed particle” [26] consisting of a
micron-sized solid core that is negatively charged and a larger
surrounding screening region that is positively charged. The
center of this dressed particle corresponds to what is observed
experimentally by video microscopy.

In the experiment [8], the repulsion between dust particles
was so strong that the dust particles self-organized in a solidlike
arrangement called a Wigner crystal [27]. In order to study a
liquid and its viscosity, this solid was melted by increasing the
kinetic energy of the dust particles, which was done by using
the laser-heating method [28].

When we refer in this paper to viscosity, it is only the
motion of the dust particles that we directly take into account.
In our simplified description of a dusty plasma, treating it as a
binary mixture of dust particles and gas, we do not consider the
momentum carried by electrons and ions. Moreover, a transfer
of momentum between two dust particles does not occur due
to the first dust particle colliding with a gas atom that then
collides with the second, as discussed above. Thus, in our
simplified binary-mixture description, the viscosity describes
motion of only dust particles [29].

Previously, viscosity was studied in other dusty plasma
experiments by applying a macroscopic shear stress using
laser manipulation [30–33] to generate a macroscopic velocity
gradient, and using a hydrodynamical approach to calculate the
viscosity based on the measured velocity profile of the dust
particles. In the test reported in this paper, we will compare
the hydrodynamical result of [31] to the viscosity determined
using a theoretical Green-Kubo relation with an input of data
from the experiment of [8], which was performed without a
macroscopic velocity gradient.

In Sec. II, the Green-Kubo relation for viscosity is reviewed.
In Sec. III, we provide further details of the experiment [8].
In Sec. IV, we introduce how we use the Green-Kubo relation
with an input of experimental data. In Sec. V, we report our MD
simulations of the experiment [8]. We determine the viscosity
in Sec. VI, and in Sec. VII this result using the Green-Kubo
relation is compared to the results of a previous experiment
using a hydrodynamical method [31]. In Sec. VII, we also
provide a comparison to the results of previous computer
simulations [24,34,35].

II. GREEN-KUBO RELATION

To obtain transport coefficients such as diffusion, viscosity,
and thermal conductivity in a liquid, Green-Kubo relations
[13–15,34,36] are often used. Their required inputs include
time series for the positions and velocities of particles. The
simplest of these Green-Kubo relations is the one for diffusion.
It can be derived easily using the physical assumption that the
MSD for fluctuating particle displacements is proportional to
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the diffusion coefficient and the time [15]. The derivation of the
Green-Kubo relation for viscosity is less trivial, and it is based
on the fluctuating stress, not an MSD [37]. Here we review
the standard Green-Kubo relation for calculating viscosity, in
three steps, as it is used for all kinds of liquids, not just dusty
plasmas in a liquid phase.

In the first step, an off-diagonal element of the stress tensor
Pxy(t) is defined by

Pxy(t) =
N∑

i=1

⎡
⎣mvixviy − 1

2

N∑
j �=i

xij yij

rij

∂�(rij )

∂rij

⎤
⎦ , (1)

where i and j denote different particles, N is the total number
of particles of mass m, ri = (xi,yi) is the position of particle
i, xij = xi − xj , yij = yi − yj , rij = |ri − rj |, and �(rij ) is
the interparticle potential energy. Although not indicated in
Eq. (1), the positions and velocities of particles vary with
time, and this accounts for the time dependence of Pxy(t).
In the second step, an autocorrelation function of Pxy(t) is
calculated as

Cη(t) = 〈Pxy(t)Pxy(0)〉. (2)

We will refer to Cη(t) as the stress autocorrelation function
(SACF). The brackets 〈· · ·〉 denote an average over an
equilibrium ensemble, which in practice is often replaced by
an average over different initial conditions. In the third step,
the SACF is integrated over time to yield the viscosity η; for a
2D system, the result is

η = 1

AkBT

∫ ∞

0
Cη(t)dt, (3)

where A is the area of the 2D system and T is its temperature.
Equation (3) combined with Eq. (2) represent the Green-Kubo
relation for viscosity in 2D. Similar Green-Kubo relations
can be written for diffusion, thermal conductivity, and bulk
viscosity [15,36].

Viscosity η and mass density ρ have different dimensions
in 2D and 3D. The units of η are kg s−1 in 2D and kg m−1 s−1

in 3D. Correspondingly, in the denominator of Eq. (3) we have
replaced the usual volume for a 3D system with an area A for
the 2D system. In 2D, the areal mass density is ρ = nm with
units of kg m−2, where n is the areal number density. We will
report results for the kinematic viscosity η/ρ, which has the
same units in 2D and 3D.

While Green-Kubo relations have been commonly used in
computer simulations to obtain transport coefficients, their use
with experimental data is uncommon. We are aware of only
one previous calculation of any transport coefficient using the
input of experimental data in a Green-Kubo relation. Using an
input of data consisting of time series of velocities of particles
determined from time series of measured particle positions
in a dusty plasma experiment, Vaulina et al. [38,39] obtained
the diffusion coefficient, D. In their pioneering work, they
obtained D using the Green-Kubo relation for diffusion, which
is a time integration of the velocity autocorrelation function.

In principle, the approach of Vaulina et al. of using
a Green-Kubo relation to obtain the diffusion coefficient
could be extended to other transport coefficients, namely the
viscosity, thermal conductivity, and bulk viscosity. Such an
extension is nontrivial because these Green-Kubo relations

require time-series data not only for particle velocities but
also for interparticle potential. This potential generally cannot
be measured directly in dusty plasma experiments such as
[8,38,39]. In extending the approach of Vaulina et al. [38,39] to
viscosity, we overcome the lack of an experimentally measured
potential by calculating the potential using a theoretical model.
This is done using experimentally determined parameters
for the model together with measured particle positions, as
described in Sec. IV A.

Besides using the Green-Kubo relation, another way to
obtain the viscosity of fluids without a macroscopic velocity
gradient is the use of microrheology methods [18,19]. In this
approach, the MSD of individual microparticles is measured,
and the Stokes-Einstein relation is assumed to be valid [18,19].
The Stokes-Einstein relation [40] is a combination of the
Stokes law, which is a hydrodynamic treatment for viscous
flow at a low Reynolds number, and the Einstein relation,
which relates a diffusion coefficient for Brownian motion
and a frictional force. This MSD-based method has been
used in physical systems like colloidal suspensions, where a
microparticle’s motion is overdamped due to the surrounding
liquid solvent [18,19].

The Green-Kubo relation for viscosity is different from
MSD-based approaches of determining viscosity. The deriva-
tion of the Green-Kubo relation centers on the fluctuations of
the stress Pxy , and it does not rely on the validity of a diffusion
coefficient. There is evidence that the Stokes-Einstein relation
is not valid for 2D dusty plasmas [41]. Moreover, it is possible
that a physical system can have a valid viscosity coefficient
but lack a valid diffusion coefficient, for example due to
superdiffusion, as has been suggested for 2D systems such
as Yukawa liquids [36].

III. EXPERIMENTAL INPUT

Before reviewing the experiment [8], we will discuss a few
properties of dusty plasmas and their relevant length and time
scales.

When dust particles have a charge of several thousand
elementary charges, their interparticle potential energy � can
be larger than their kinetic energy. In this case, the collection
of dust particles is said to be a “strongly coupled plasma”
[42,43]. A measure of strong coupling is the Coulomb coupling
parameter � ≡ (Q2/4πε0akBT ), where Q is the charge of the
dust particle, ε0 is the permittivity of free space, a is a typical
interparticle distance as defined below, and T is the kinetic
temperature of the dust particles. The Coulomb coupling
parameter is essentially a ratio of interparticle potential energy
and kinetic energy. A plasma is strongly coupled when � > 1,
and it can behave like a liquid or a Wigner crystal. In a dusty
plasma, the dust particles are usually strongly coupled due to
their large charge Q. The electrons and the ions have a much
smaller charge, and in most plasmas they are not strongly
coupled, unless great efforts are made to cool them to low
temperatures [4].

The length scales of a dusty plasma include the screening
length λD and the typical distance between dust particles. In
the dusty plasma literature, the typical distance between dust
particles is commonly reported either as the lattice constant
b for a Wigner crystal or as a = (nπ )−1/2 for a liquid, where
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n is the areal number density. In the literature for strongly
coupled plasmas, a is called the 2D Wigner-Seitz radius [42].
All three of these length scales, λD , b, and a, are typically on
the order of 1 mm. The diameter of a dust particle is typically
a few microns, which is much smaller than any of these length
scales, and also much smaller than the mean free path for
collisions among the rarefied argon gas atoms.

The time scales of a dusty plasma include measures of
collective motion among the dust particles and of the frictional
drag experienced by a dust particle due to the gas as a whole.
The former is quantified by the 2D plasma frequency for dust
particles, ωpd = (Q2/2πε0ma3)1/2 [42], where the subscripts
p and d refer to plasma and dust, respectively. The frictional
drag experienced by a dust particle due to the neutral argon
gas is quantified by a friction coefficient, which is commonly
defined in the literature for dusty plasmas as νf = Ff /mv,
where Ff is the gas friction force experienced by one dust
particle and mv is the momentum of the same particle. This
coefficient has the dimension of inverse time, and a typical
value for a micron-sized dust particle in a rarefied gas is νf ≈
1 s−1. If the gas is sufficiently rarefied, ωpd > νf , so that the
dust particle motion is said to be underdamped.

We now summarize some aspects of the experiment [8] that
are relevant for our analysis. The dust particles were polymer
microspheres of 8.1 μm diameter. They were levitated by a
vertical dc electric field to form a single horizontal layer, as
sketched in Fig. 1. Radial dc electric fields provided horizontal
confinement so that the dust particles filled a circular region
of diameter 52 mm.

For each experimental run, one movie of dust particle
motion was recorded. A Phantom v5.2 high-speed camera
viewed the dust particles from above. It was operated at
250 frames/s, so that data were recorded with a time interval
�t = 4 ms. The duration of a movie, 20 s, was limited by the
camera’s memory. The camera’s field-of-view (FOV) included
N ≈ 2100 dust particles. Two of the required inputs for Eq. (1),
the positions and velocities of the dust particles, were obtained
using the moment method [44] and particle tracking [45].
The interparticle distance, averaged over the camera’s FOV,
was characterized by b = 0.67 mm in the Wigner crystal and
a = 0.35 mm in the liquid.

A total of seven runs were performed. Three runs without
laser heating were made to determine the interparticle potential
energy in the Wigner crystal. Four runs were done with laser
heating to make the liquid, and they provide the data that
we will use here as the input for the Green-Kubo relation to
determine viscosity in the liquid phase.

The laser heating method [46] uses the radiation pressure
due to laser beams, which are directed toward the dust particles
by scanning mirrors [47], which we configured as in [28,48].
Laser heating increases the kinetic temperature of dust parti-
cles without changing their charge. The velocity distribution
function has been observed to be nearly Maxwellian [28].
In the experiment [8], the kinetic temperature T , calculated
from the mean-square velocity [49], was 2.5 × 104 K in the
liquid (with laser heating), and 103 K in the Wigner crystal
(without laser heating). The temperature was nearly uniform
spatially, which is desirable because viscosity varies with
temperature.

(a)

(d)(c)

(b)
dust particles

lower electrode

mg
QE

port for
top-view camera

vacuum chamber (grounded)

port for
laser heating

lower electrode ( )powered

shield (grounded)

x

y

FIG. 1. (Color online) Configuration for the experiment [8].
(a) This diagram of the vacuum chamber is shown in an exploded
view to better show the lower electrode, which in the experiment was
located inside the chamber. A low-pressure gas of neutral argon atoms
filled the chamber. A radiofrequency voltage was applied between two
electrodes, separated by an insulator. One electrode was the powered
lower electrode, and the other consisted of the grounded vacuum
chamber and shield. The gas was partially ionized, yielding a plasma
with three components: electrons, positive argon ions, and neutral
argon atoms. The x and y axes correspond to the two orthogonal
directions used in measuring the positions and velocities of dust
particles. The side ports were used to admit laser beams, not shown
here. For heating, a pair of 532 nm laser beams were directed into the
chamber by scanning mirrors as in [28], while for illumination a
577 nm laser sheet was used with a configuration as in [47].
(b) This sketch shows a side view of the lower electrode. Polymer
microspheres were introduced by shaking them into the plasma from
above, and they moved downward due to gravity g. They gained a neg-
ative electric charge Q and were levitated upward due to a vertical dc
electric field E so that they remained in a single horizontal layer above
the lower electrode. There was also a smaller radial dc electric field,
not shown, which provided horizontal confinement. Images of the
dust particles were recorded by a video camera viewing through the
top port. Shown here are 5 mm × 5 mm portions of two images: (c) a
Wigner lattice without laser heating (lines have been drawn to indicate
the lattice structure) and (d) a liquid maintained by laser heating.
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IV. USING THE GREEN-KUBO RELATION
WITH EXPERIMENTAL INPUT DATA

Calculations of viscosity with the Green-Kubo relation,
Eqs. (1)–(3), must be adapted to use the experimental data as
input, due to four difficulties. First, the experiment [8] provided
direct measurements of xi , yi , vix , and viy , but not of the
interparticle potential energy �(rij ). Second, the camera has a
finite FOV, so that we do not have data for all dust particles in
the 2D layer. Third, the motion of dust particles may include a
local macroscopic flow, i.e., a nonzero time-average velocity.
Fourth, the data for the positions and velocities of the dust
particles are recorded as a time series of a finite duration, so
that the integral in Eq. (3) must have a finite limit. We will take
all this into account by making a number of approximations
in the Green-Kubo calculations. We will next describe these
approximations as well as discuss the validity of the results
that are obtained.

A. Interparticle potential

To solve the first difficulty, a lack of experimental measure-
ments of the interparticle potential energy �(rij ), we will use
a model for these energies when calculating the off-diagonal
element of the stress tensor Pxy . For a single-layer dusty
plasma like ours, models that have been tested successfully
include an isotropic repulsion according to the 3D Debye-
Hückel potential [50],

φ(rij ) = Q

4πε0

exp(−rij /λD)

rij

, (4)

as well as more complicated isotropic [51] and nonisotropic
interactions [52]. Here we will use the Debye-Hückel potential,
Eq. (4), where i and j are dust particles of charge Q separated
by a distance rij , and λD is the screening length due to
electrons and ions. The corresponding potential energy is
�(rij ) = Qφ(rij ). In the literature for dusty plasmas, it is
common to name Eq. (4) after Yukawa rather than Debye
and Hückel. This potential has been used in theoretical and
simulation studies of viscosity in strongly coupled plasmas;
see, for example [36,53–56].

Two parameters in Eq. (4), Q and λD , were determined in
the experiment [8] using a phonon-spectra method [57,58] in
the Wigner crystal. For the three experimental runs without
laser heating, position and velocity measurements were used
to compute the phonon spectra, which were compared to
theoretical wave dispersion relations [25] that assume Eq. (4),
yielding λD = 0.70 ± 0.14 mm and Q/e = −6000 ± 600,
where e is the elementary charge. Using these two values
along with measured particle positions and velocities, we can
calculate Pxy and then the SACF [59].

Having determined Q and λD , we can calculate the values
of other parameters. We find that the Coulomb coupling
parameter is � = 68 for the liquid of dust particles. The
dimensionless particle spacing [42] is κ ≡ a/λD = 0.5 ± 0.1.
We also calculated ωpd = 30 ± 3 s−1. We note that ωpd

is significantly larger than the gas friction coefficient νf =
2.4 s−1, indicating that dust particle motion is underdamped.

camera’s field of view (FOV)

5b

unused portion
of FOV

outer region

inner region
with 600 particlesM ≈

FIG. 2. (Color online) Sketch of the division of the camera FOV
into inner and outer regions for the experiment [8]. In Eq. (5), the
subscripts i and j refer to particles located in the inner region and
both the inner and outer regions, respectively. The circle indicates the
cutoff distance 5b for the potential. The unused portion of the camera
FOV on the right is not included in the analysis.

B. Finite field of view

To solve our second difficulty, the finite FOV of the camera
that limits us to recording data for only a portion of the dust
particles, we will cut off the interparticle potential in Eq. (4)
at large distances. In addition, we will divide the FOV into
inner and outer regions, Fig. 2. The cutoff is done at a large
interparticle distance of 5b, where the exponential in Eq. (4)
is <10−2.

The FOV is divided into inner and outer regions because
the potential energy of a dust particle cannot be obtained
meaningfully if it is located near the edge of the FOV, due to
interactions with dust particles of unknown positions outside
the FOV. Therefore, dust particles in the outer region are used
only to calculate the potential energies � of dust particles in
the inner region. In other words, when calculating Pxy , we
limit the dust particles i to those that are located within the
inner region, and we account for their interaction with other
dust particles j located in both the inner and outer regions, as
shown in Fig. 2. The outer region has a width of 5b to allow
for a cutoff radius of 5b, and the inner region is 22.0b × 23.7b

(i.e., 14.8 × 15.9 mm2). Because of this different treatment
of dust particles in the inner and outer regions, we calculate
Pxy as

Pxy =
M∑
i=1

⎡
⎣mvixviy − 1

2

N∑
j �=i

xij yij

rij

∂�(rij )

∂rij

⎤
⎦ , (5)

where the stress Pxy is (implicitly) a function of time. All time
series data are recorded at a time interval �t = 4 ms. For the
experiment [8], M ≈ 600 dust particles are in the inner region
while N ≈ 2100 are in both regions combined. Both N and
M fluctuate slightly with time, as dust particles move across
the edges of the regions, but not enough to affect the result for
viscosity significantly.
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C. Nonzero time averages

Our third difficulty to solve is that the average velocity
inside the FOV is not zero, due to finite macroscopic flow
velocities of the dust particles, despite efforts that were made in
the experiment [8] to avoid them. When computing the stress,
the dust particle velocities are assumed to fluctuate about an
average value of zero. In fact, a nonzero average velocity
would contribute an unwanted constant value to the Pxy time
series when computed using Eq. (1) or (5), which would cause
the SACF, Cη, to decay to a nonzero value and introduce an
unphysical contribution to the calculated viscosity. To solve
this difficulty, without any approximation, we subtract from
Pxy(t) its time-average value, yielding then the fluctuating
portion P̃xy(t). We then replace Eq. (2) for the SACF by

Cη(t) = 〈P̃xy(t + t0)P̃xy(t0)〉0. (6)

Here, the brackets 〈· · ·〉0 in Eq. (6) denote an average over
various initial times t0 if the data are from a single run.

Our results for the SACF, for the four runs with laser
heating, are shown in Fig. 3. All four runs show the same
general trends, which resemble those seen in MD simulations
as in [34].

D. Integration limit

To solve the fourth difficulty, the finite time duration of
data, the viscosity η is computed with a finite upper limit in
the time integral of the SACF. In principle, the upper limit
should be infinite, as in Eq. (3), but we use

η = 1

AkBT

∫ tI

0
Cη(t)dt, (7)

and we follow the practice used in MD simulations of choosing
the integration limit tI as the time when Cη(t) crosses zero [60],
as shown in Fig. 3. Because our time series Cη(t) is noisy, we
count a zero crossing only if it results in Cη(t) remaining
negative for at least 2�t . In Eq. (7), A is the area of the inner
region.

E. Validity

For using the Green-Kubo relation to calculate viscosity
with experimental input data, we should ask whether the
approach is valid when it is used for a dusty plasma. We will
mention three questions.

First, we note that the Green-Kubo relations are, strictly
speaking, for the thermodynamic limit, where the number
of dust particles and the system size tend to infinity while
keeping the number density constant. In fact, the experiment
has only thousands of dust particles. However, we believe
that our experimental system size is large enough to use a
Green-Kubo relation, as indicated by our system-size tests in
Sec. V.

Second, we must consider the distinction between equi-
librium and nonequilibrium systems. While our laser-heated
dusty plasma is in a steady state, it is not in equilibrium.
The collection of dust particles is best described as a driven-
dissipative system [48], where the driving is mainly provided
by the laser beams, and the dissipation is provided by gas-dust
collisions as well as the dust-particle viscosity. Despite these

nonequilibrium conditions, however, the velocity distribution
function for the dust particles has been observed to be nearly
Maxwellian [28], as mentioned above. Thus, the statistics are
close to those of an equilibrium system, which motivates us to
use the Green-Kubo relation.

Third, we must ask whether long-time tails in the correlation
function prevent the convergence of its integral, as was
predicted theoretically [21] for 2D systems with hard-disk
interparticle interactions. More recently, for a 2D system with
a Debye-Hückel potential, simulations by Donkó et al. [36]
indicated that long-time tails occur in some but not all cases.
In particular, they reported that the SACF decays fast enough
that its time integral η converges for a liquid at temperatures
near the melting point, but not at absolute temperatures far
above the melting point.

V. SIMULATIONS

To assess three sources of error mentioned in Sec. IV,
viz., the potential cutoff, the FOV division, and the finite
system size, we used MD simulations based on the Langevin
equation [61]. In these simulations, we numerically integrate
the Langevin equation to obtain the motion of each dust
particle. This equation gives the force acting on a dust particle
as a sum of three terms: an electric force due to all other dust
particles using Eq. (4), a mean friction Ff due to the gas as a
whole, as well as Gaussian random forces around this mean,
to model the collisions of the dust particle with the neutral gas
atoms [62,63].

Dust particle positions, velocities, and interaction energies
were recorded at each time step of 0.019ω−1

pd . We used N =
4096 particles in a 2D rectangular box with periodic boundary
conditions. In a 2D Langevin MD simulation with a Debye-
Hückel potential like ours, the equations of motion have three
dimensionless parameters: the friction coefficient νf /ωpd , the
Coulomb coupling parameter �, and the dimensionless particle
spacing κ . To mimic the experiment [8], we used νf /ωpd =
0.08, � = 68, and κ = 0.5.

To test the effect of the cutoff, we carried out simulations at
two cutoff distances to estimate the systematic error introduced
in the last term of Eq. (5). In fact, we found that for a cutoff
of 5b, which we use in this paper, the viscosity result η was
reduced by less than 5%, as compared to the result for a much
larger cutoff of 13b.

To test for errors arising from the division of the FOV, we
compared results with and without the division, using Eqs. (5)
and (1), respectively. We found the viscosity differed only
negligibly.

Finally, to test for the effects of finite system size, we
compared our Langevin MD simulation results for two sizes.
Results for the larger system size of 4096 particles are reported
in [24]. For the smaller size, to mimic the experiment [8], we
used 48 simulation runs with M = 600 particles, as in the inner
region for the experiment [8], for a duration [64] of 607ω−1

pd .
Comparing these two results for η, we find no statistically
significant system-size effects. This test, shown in Table I,
gives us confidence that the number of dust particles in [8] was
not so small as to preclude using the Green-Kubo relation.
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FIG. 3. (Color online) Stress autocorrelation function (SACF), i.e., Cη(t), and its time integration. Results are shown for four runs of
the experiment [8]. All quantities shown are normalized. The SACF is normalized as C ≡ Cη/(AkBTρa2ω2

pd ) and is drawn here at 10×
magnification. Time is given in units of ω−1

pd , that is, τ = tωpd . The integral shown by the smooth curve is used in the Green-Kubo relation,
Eq. (7), to calculate the viscosity. Choosing the integration limit tI as the time when C(τ ) crosses zero as described in Sec. IV D, the integral
yields the dimensionless viscosity, as indicated by the solid circle for each run.

VI. RESULT FOR VISCOSITY USING THE GREEN-KUBO
RELATION WITH EXPERIMENTAL DATA

We now present our result for the viscosity η using the
Green-Kubo relation, Eqs. (5)–(7). We report the kinematic
viscosity, η/ρ, to enable a convenient comparison to other
experiments and simulations.

We find η/ρ = 0.16 ± 0.02 in units of a2ωpd . The value
of the normalization factor for the experiment [8] is a2ωpd =
3.7 × 10−6 m2/s, while the areal mass density is ρ = 1.1 ×
10−6 kg/m2. The value of 0.16 is the mean of the four experi-
mental runs in the presence of laser heating, as plotted in Fig. 3.
The error estimate of ±0.02, calculated as the standard devia-
tion of the mean, indicates the run-to-run random variation.

VII. DISCUSSION

A. Test of the Green-Kubo relation

Our most significant result is a test of the Green-Kubo
relation for viscosity, using as an input experimental data. We
perform this test by comparing our result η/ρ = 0.16 ± 0.02 to
the previously reported result, from a dusty plasma experiment
[31] that used a hydrodynamical approach.

In this experiment of Nosenko and Goree, the dust particles
flowed in their quasi-2D layer with a macroscopic velocity
gradient, allowing a determination of viscosity using a Navier-
Stokes equation of motion for the local flow velocity of the
dust particles. In contrast with [31], in our analysis here we
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TABLE I. Results for the kinematic viscosity η/ρ, which is normalized here by a2ωpd to make it dimensionless. Viscosity η is reported as
the mean for multiple runs; the standard deviation σ and standard deviation of the mean σM are listed.

Calculation Data size η/ρ, units (a2ωpd )

Data source procedure M N run duration runs mean σ σM

experiment [8] Eq. (5)→(6)→(7) ≈600 ≈2100 ≈607ω−1
pd (20.2 s) 4 0.16 0.04 0.02

Langevin simulation (Sec. V) Eq. (5)→(6)→(7) 600 4096 607ω−1
pd 48 0.24 0.08 0.01

equilibrium simulation [24] Eq. (1)→(6)→(7) 4096 4096 1.86 × 104ω−1
pd 4 0.26 0.02 0.01

Langevin simulation [24] Eq. (1)→(6)→(7) 4096 4096 1.86 × 104ω−1
pd 4 0.27 0.02 0.01

consider the dust particles only as individual particles, while
in [31] data for individual particles were averaged to allow
considering the dust particles as a continuum, as is necessary
for a hydrodynamical approach. Both experiments, [8] and
[31], were performed in the same chamber, and both had
a quasi-2D layer of dust particles. The reported values of
κ were nearly the same, κ = 0.53 for [31] and 0.5 for [8].
The electrical interactions among dust particles were much
stronger than gas friction, ωpd 	 νf , in both experiments. A
difference in the experimental conditions was that the two
laser beams were manipulated differently so that in [31] they
produced a macroscopic velocity gradient, while in [8] there
was heating without a macroscopic velocity gradient.

Considering the complexity of the dusty plasma and our
simplifications in describing it, we cannot expect our result
to agree with the results of [31] better than within about
a factor of 2. In fact, we find agreement within the error
bars when comparing our result η/ρ = 0.16 ± 0.02 using
the Green-Kubo relation and the range of values reported by
Nosenko and Goree in [31], Fig. 4.
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FIG. 4. (Color online) Test of the Green-Kubo relation for
viscosity. We compare our value of the kinematic viscosity, calculated
from the Green-Kubo relation, using input from the experiment [8], to
results from a hydrodynamical analysis of a previous experiment [31].
Values are made dimensionless by normalizing by a2ωpd . The x axis,
which has a logarithmic scale, is the Coulomb coupling parameter
� as defined in Sec. III. Our result, shown as a solid diamond, is
the mean for four experimental runs in Fig. 3, and the vertical error
bar indicates only the run-to-run variation, calculated as the standard
deviation of the mean. The horizontal error bar (for the result from
the Green-Kubo relation) reflects a 10% uncertainty in Q.

B. Comparison to simulations

We also compare our result from the Green-Kubo relation to
the available data for viscosity from the simulation literature,
Fig. 5. All these data are from 2D MD simulations with a
Debye-Hückel potential, and most of them use the Green-Kubo
relation, except for the nonequilibrium simulation of [35],
which used a so-called nonequilibrium simulation method
to produce a macroscopic velocity gradient. We find that
the simulations predicted values that are larger, by about a
factor of 2, than our result for the Green-Kubo relation using
experimental input.

The discrepancy between our result here and the simulation
results in Fig. 5 could arise from the differences between the
simulations and the experiment [8]. These differences include
the use of periodic boundary conditions in the simulations
to mimic an infinite system, while the dust particles in the
experiment fill a finite region due to dc radial electric fields.
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= 0.5)

FIG. 5. (Color online) Comparison of our result using the Green-
Kubo relation for viscosity with the input of data from the experiment
[8], shown as a diamond as in Fig. 4, to values from previously
reported 2D Debye-Hückel simulations [24,34,35]. The simulation
results shown for [24] are also listed in Table I. Both axes are
logarithmic.
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While all particles in the simulations are identical, those in
the experiment vary in diameter by a few percent [65], with
a similar variation in charge. Nonuniformities occur in the
simulations only as transients due to fluctuations, while the
experiment has static nonuniformities due to the dc radial
electric fields. These dc fields induce static stresses that
can lead to more structural disorder, which can result in an
easier deformation of the arrangement of dust particles and a
reduction in the stress required to generate shear flow, which
is equivalent to a reduction of the viscosity.

Another possible explanation for the discrepancy with the
simulation results is that the potential in the experiment [8] may
not be a Debye-Hückel potential, as assumed in Sec. IV A.
One alternative, instead of assuming a particular form for
the potential, could be an empirically determined potential
of mean force, calculated from an experimentally measured
pair correlation function, as has been proposed theoretically
[15,66]. An advantage of this approach is that all physical
processes that affect the potential would be included in the
empirical result [66].

VIII. CONCLUSIONS

The Green-Kubo relation for viscosity has been tested using
an input of experimental data. The value for the viscosity
determined by the Green-Kubo relation with the input of data

from an experiment [8] was compared to the value from a
previous experiment using a hydrodynamical method [31].
In both experiments, the physical system was a quasi-2D
dusty plasma, and the conditions were similar, aside from the
absence of a macroscopic velocity gradient in the experiment
[8] for the Green-Kubo result. We found that the results
agree as well as can be expected. This agreement serves as
a test of the Green-Kubo relation for viscosity of a dusty
plasma.

Additionally, we compared our result for the viscosity
determined by the Green-Kubo relation with the predic-
tions of MD simulations [24,34,35]. The results were as
consistent as expected, given the differences between the
simulations and the experiment [8] that provided our input
data.

Further tests are needed for other Green-Kubo relations.
Because the Green-Kubo relations for the various transport
coefficients are all different, a test of the Green-Kubo relation
for viscosity, as we have presented here, does not also serve
as a test of another Green-Kubo relation. In addition, tests for
other physical systems, such as the 2D systems mentioned in
Sec. I, would be useful.
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