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Energy transport in a shear flow of particles in a two-dimensional dusty plasma
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A shear flow of particles in a laser-driven two-dimensional (2D) dusty plasma is observed in a study of
viscous heating and thermal conduction. Video imaging and particle tracking yields particle velocity data,
which we convert into continuum data, presented as three spatial profiles: mean particle velocity (i.e., flow
velocity), mean-square particle velocity, and mean-square fluctuations of particle velocity. These profiles and
their derivatives allow a spatially resolved determination of each term in the energy and momentum continuity
equations, which we use for two purposes. First, by balancing these terms so that their sum (i.e., residual) is
minimized while varying viscosity η and thermal conductivity κ as free parameters, we simultaneously obtain
values for η and κ in the same experiment. Second, by comparing the viscous heating and thermal conduction
terms, we obtain a spatially resolved characterization of the viscous heating.
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I. INTRODUCTION

Flows of most liquid substances are usually studied by
modeling the liquid as a continuum, but there are some
substances that allow the study of flows at the kinetic level,
i.e., at the level of the individual constituent particles. As
examples, we can mention chute flows in granular materials [1]
and capillary flows in colloids [2]. The solid particles in
these soft materials are large enough that their motion can
be tracked by video microscopy, allowing experimenters to
record their positions and velocities. Like granular materials
and colloids, dusty plasmas also allow direct observation of
individual particle motion.

Dusty plasma [3–7] is a four-component mixture consisting
of micron-size particles of solid matter, neutral gas atoms, free
electrons, and free positive ions. These particles of solid matter,
which are referred to as “dust particles,” gain a large negative
charge Q, which is about −104 elementary charges under
typical laboratory conditions. The motion of the dust particles
is dominated by electric forces, corresponding to the local
electric field E = Econf + Ed , where Econf is due to confining
potentials and Ed is due to Coulomb collisions with other dust
particles.

Due to their high charges, Coulomb collisions among dust
particles have a dominant effect. The interaction force QEd

among dust particles is so strong that the dust particles do
not move easily past one another but instead self-organize and
form a structure that is analogous to that of atoms in a solid or
liquid [8–15]. In other words, the collection of dust particles
is said to be a strongly coupled plasma [16]. In a strongly
coupled plasma, the pressure p is due mainly to interparticle
electric forces, with only a small contribution from thermal
motion [17].

Even when it has a solid structure, a collection of dust
particles is still very soft, as characterized by a sound speed
on the order of 1 cm/s [18,19]. As a result, a dusty plasma in a
solid phase is very easily deformed by small disturbances, and
it can be made to flow. Flows can be generated, for example,
by applying shear using a laser beam that exerts a spatially
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localized radiation force [19–27]. In such an experiment,
the Reynolds number is usually very low, typically Re ≈ 10,
indicating that the flow is laminar [23].

This paper provides further analysis and details of the
experiment that was reported in Ref. [28]. We now list some
of the major points of these two papers, to indicate how they
are related and how they differ. In this paper, we present: (1) a
detailed treatment of the continuity equations for both momen-
tum and energy, (2) our method of simultaneously determining
two transport coefficients (viscosity and thermal conductivity),
(3) values of these two coefficients, and (4) spatially resolved
profiles of the terms of the energy equation, including the terms
for viscous heating and thermal conduction, as determined by
experimental measurements. In Ref. [28], we reported: (1)
a discovery of peaks in a spatially resolved measurement
of kinetic temperature, (2) a demonstration that these peaks
are due to viscous heating in a region of a highly sheared
flow velocity, and (3) a quantification of the role of viscous
heating, in competition with thermal conduction, by reporting a
dimensionless number of fluid mechanics called the Brinkman
number [29], which we found to have an unusually large
value due to the extreme properties of dusty plasma as
compared to other substances. The values of viscosity and
thermal conduction found in this paper are used as inputs
for the calculations of dimensionless numbers in Ref. [28].
The identification of viscous heating as the cause of the
temperature peaks reported in Ref. [28] is supported by the
spatially resolved measurements reported here.

In the experiment, the dust particles are electrically levitated
and confined by the electric field in a sheath above a horizontal
lower electrode in a radio-frequency (rf) plasma, forming a
single layer of dust particles [Fig. 1(a)]. The dust particles
can move easily within their layer, but very little in the
perpendicular direction, so that their motion is mainly two
dimensional (2D). They interact with each other through a
shielded Coulomb (Yukawa) potential, due to the screening
provided by the surrounding free electrons and ions [30]. As
the dust particles move, they also experience frictional drag
since individual dust particles in general move at velocities
different from those of the molecules of the neutral gas. This
friction can be modeled as Epstein drag [22] and characterized
by the gas damping rate νgas.
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FIG. 1. (Color online) (a) Side-view sketch of the apparatus, not
to scale. A single layer of dust particles of charge Q and mass md are
levitated against gravity by a vertical dc electric field. There is also a
weaker radial dc electric field Econf , which prevents the dust particles
from escaping in the horizontal direction. Further details of the cham-
ber are shown in Ref. [34]. The two laser beams are rastered in the y

direction so that they have a finite expanse, and they are offset in the
y direction as shown in (b). (b) Top-view sketch of laser-driven flows
in the 2D dusty plasma. In the region of interest, the flow is straight,
with curvature of the flow limited to the extremities of the dust layer.
A video image of the dust particles within the region of interest is
also shown. The region of interest is divided into 89 bins of width
0.26 mm so that particle data can be converted to continuum data.

Using experimental measurements of their positions and
velocities, the dust particles can, of course, be described in a
particle paradigm. They can also be described by a continuum
paradigm by averaging the particle data on a spatial grid. In
transport theory, momentum and energy transport equations
are expressed in a continuum paradigm, while transport
coefficients such as viscosity and thermal conductivity are
derived using the particle paradigm because these transport
coefficients are due to collisions among individual particles.
In our experiment, we average the data for particles, such
as velocities, to obtain the spatial profiles for the continuum
quantities, such as flow velocity. In the continuum paradigm,
a substance obeys continuity equations that express the con-
servation of mass, momentum, and energy. These continuity
equations, which are also known as Navier-Stokes equations,
characterize the transport of mass, momentum, and energy. In
a multiphase or multicomponent substance, these equations

can be written separately for each component. The component
of interest in this paper is dust.

In Sec. II, we review the continuity equations for dusty
plasmas. In Secs. III and IV, we provide details of our
experiment and data analysis method. We designed our
experiment to have significant flow velocity and significant
gradients in the flow velocity, i.e., velocity shear. In Sec. V, we
simplify the continuity equations using the spatial symmetries
and steady conditions of the experiment and including the
effects of external forces. We will use our experimental data
as inputs in these simplified continuity equations in Secs. VI
and VII.

II. CONTINUITY EQUATIONS FOR DUSTY PLASMAS

We now review the continuity equations for mass, momen-
tum, and energy for dusty plasmas. We will then discuss the
significance of some of the terms for our experiments.

The equation of mass continuity, i.e., conservation of
mass, is

∂ρ

∂t
+ ∇ · (ρv) = 0. (1)

In this paper, the mass density ρ and the fluid velocity v
describe the dust continuum.

The momentum equation [31,32] is

∂v
∂t

+ v · ∇v = ρcEconf

ρ
− ∇p

ρ
+ η

ρ
∇2v

+
[

ζ

ρ
+ η

3ρ

]
∇(∇ · v) + fext, (2)

Here, ρc, η, and ζ are the charge density, shear viscosity, and
bulk viscosity, respectively; and η/ρ is called the kinematic
viscosity. In this paper, these parameters describe the dust
continuum. Equation (2) describes the force per unit mass,
i.e., acceleration, for the continuum. The confining field Econf

and pressure p have been discussed in Sec. I. The last term
in Eq. (2) is due to the momentum contribution from forces
such as gas friction, laser manipulation, ion drag, and any
other forces that are external to the layer of dust particles, as
discussed in Sec. IV. The other terms on the right-hand side of
Eq. (2) correspond to viscous dissipation, which arises from
Coulomb collisions amongst the charged dust particles. The
viscous term (η/ρ)∇2v was studied in a previous dusty plasma
experiment [23].

For our experiment, we can consider Eq. (2) for two
conditions, with and without the application of the external
force fext. Without the external force, the fluid velocity v is
zero so that Eq. (2) is reduced to ρcEconf/ρ − ∇p/ρ = 0,
meaning that the confining electric force is in balance with
the pressure (which mainly arises from interparticle electric
forces). With the external force, the external confining force
remains as it was without fext; moreover, the pressure p will
be affected only weakly because the density is unchanged (as
we will show later) so that the interparticle electric forces that
dominate the pressure will also be unchanged. Therefore, in
using Eq. (2), we will assume that the first two terms on the
right-hand side always cancel everywhere.
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The internal energy equation, as it is expressed commonly
in fluid dynamics [31,32], is

T

(
∂s

∂t
+ v · ∇s

)
= � + κ

ρ
∇2T + Pext. (3)

Here, s is the entropy per unit mass, κ is the thermal
conductivity, and T is the thermodynamic temperature of
the dust continuum. The last term, Pext, is due to the energy
contribution from any external forces, fext.

We assume that the continuity equations, Eqs. (1)–(3), are
valid for the dust particles separately from other components
of dusty plasmas that occupy the same volume, such as neutral
gas atoms. The coupling between the dust particles with other
components is indicated in fext and Pext, so that the momentum
and energy of the dust particle motion is treated for the dust
particles separately from other components. Other external
forces, such as those due to laser manipulation, are also
indicated in fext and Pext.

The first term on the right-hand side of Eq. (3) is due to
viscous heating. The viscous heating term � depends on the
square of the shear, i.e., the square of the gradient of flow
velocity. A general expression for � has many terms (cf.
Eq. (3.4.5) of Ref. [31] or Eq. (49.5) of Ref. [32]), but it
can be simplified for our experiment by taking advantage of
symmetries, as explained in Sec. IV.

The second term on the right-hand side of Eq. (3) is due
to thermal conduction. It arises from a temperature gradient.
Previous experiments with 2D dusty plasmas include a study
of the thermal conduction term in Eq. (3) [33].

In this paper, most of our attention will be devoted to the
first two terms on the right-hand side of Eq. (3). Using our
experimental data, we will compare the magnitudes of these
terms. In Ref. [28], we demonstrated that viscous heating is
measurable and significant, when evaluated using only global
measures like the Brinkman number. Here, we further evaluate
viscous heating by characterizing it locally using spatially
resolved profiles for the terms in Eq. (3). We also develop
a method to simultaneously obtain values of two transport
coefficients of η and κ .

III. EXPERIMENT

Here we provide a more detailed explanation of the
experiment than in Ref. [28]. An argon plasma was generated
in a vacuum chamber at 15.5 mTorr (or 2.07 Pa), powered by
rf voltages at 13.56 MHz and 214 V peak to peak. We used
the same chamber and electrodes as in Ref. [34]. The dust
particles were 8.09-μm-diameter melamine-formaldehyde mi-
crospheres of mass md = 4.18 × 10−13 kg. The dust particles
settled in a single layer above the powered lower electrode. The
layer of dust particles had a circular boundary with a diameter
of ≈52 mm and contained ≈104 dust particles. As individual
dust particles moved about within their plane, they experienced
a frictional damping [22] with a rate νgas = 2.7 s−1 due to the
surrounding argon gas.

The particles were illuminated by a 488-nm argon laser
beam that was dispersed to provide a thin horizontal sheet of
light [Fig. 1(a)]. Using a cooled 14-bit digital camera (PCO
model 1600) viewing from above, we recorded the motion
of individual dust particles. This top-view camera imaged a

central portion of the dust layer, as sketched in Fig. 1(b). The
movie is available for viewing in the Supplemental Material
of Ref. [28]. The portion of the camera’s field of view that we
will analyze was 23.5 × 23.5 mm2, and it contained ≈2500
particles. We recorded >5000 frames at a rate of 55 frame/s,
with a resolution of 0.039 mm/pixel. Our choice of 55 frame/s
was sufficient for accurate measurement of various dynamical
quantities, including the kinetic temperature, although a
slightly higher frame rate would have been optimal [35]. In
addition to the top-view camera, we also operated a side-view
camera to verify that there was no significant out-of-plane
motion; this was due to a strong vertical confining electric
field. Thus, we will analyze the particle motion data taking
into consideration only the motion within a horizontal plane.

At first, the dust particles self-organized in their plane
to form a 2D crystalline lattice. The particle spacing,
as characterized by a Wigner-Seitz radius [36], was a =
0.26 mm, corresponding to a lattice constant b = 0.50 mm,
an areal number density n0 = 4.7 mm−2, and a mass density
ρ = nmd = 1.97 × 10−12 kg/mm2. Using the wave-spectra
method for thermal motion of particles in the undisturbed
lattice, we found the following parameters for the dust layer:
ωpd = 75 s−1, Q/e = −9700, and a/λD = 0.5, where ωpd is
the nominal 2D dusty plasma frequency [36], Q is the particle
charge, e is the elementary charge, and λD is the screening
length of the Yukawa potential.

We used laser manipulation [20–27] to generate stable flows
in the same 2D dusty plasma layer. A pair of continuous-wave
532-nm laser beams struck the layer at a 6◦ downward angle. In
this manner, we applied radiation forces that pushed particles
in the ±x directions, as shown in Fig. 1. The power of each
beam was 2.28 W as measured inside the vacuum chamber. To
generate a wider flow than in Refs. [19,23], the laser beams
were rastered in both the x and y directions in a Lissajous
pattern as in Ref. [37], with frequencies of fx = 123.607 Hz
and fy = 200 Hz. We chose these frequencies to be �ωpd/2π

to avoid exciting coherent waves. The rastered laser beams
filled a rectangular region, which crossed the entire dust layer
and beyond, as sketched in Fig. 1(b). This laser manipulation
scheme resulted in a circulating flow pattern with three stable
vortices, as sketched in Fig. 1(b). We designed the experiment
so that in the analyzed region the flow is straight in the ±x

directions, without any significant curvature. Curvature in the
flow, which is necessary for the flow pattern to close on itself
as sketched in Fig. 1(b), was limited in our experiment to the
extremities of the dust layer, where it would not affect our
observations.

IV. PARTICLE AND CONTINUUM PARADIGMS

We start our data analysis by analyzing data for individual
particles, i.e., by working in the particle paradigm. Using
image analysis software [38], with a method optimized as
in Ref. [39] to minimize measurement error, we identify
individual particles in each video image and calculate their
x-y coordinates. We then track a dust particle between
two consecutive frames and calculate its velocity vd as the
difference in its position divided by the time interval between
frames [35]. Now having the position and velocity of all the
particles in the analyzed region, we can study motion at the
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particle level. For example, in Sec. VI we will use data for
the individual particles to calculate the rate of their energy
dissipation due to their frictional drag with the neutral gas,
Pext.

We next convert our data for individual particles to
continuum data, i.e., we change from the particle paradigm
to the continuum paradigm. This is done by averaging particle
data within spatial regions of finite area, which we call bins.
There are 89 bins, which are all long narrow rectangles aligned
in the y direction, as shown in Fig. 1(b). Each bin contains ≈30
dust particles. We choose the shape of these bins to exploit the
symmetry of the experiment, which in the analyzed region has
an ignorable coordinate, x. The width of each bin is the same
as the Wigner-Seitz radius, a. To reduce the effect of particle
discreteness as a particle crosses the boundaries between bins,
we use the cloud-in-cell weighting method [19,40], which has
the effect of smoothing data so that a particle contributes its
mass, momentum, and energy mostly to the bin where it is
currently located and to a lesser extent to the next nearest
bin. The data are binned in this way regardless of their x

positions, since x is treated as an ignorable coordinate. We
also time-average these binned data, exploiting the steady
conditions of the experiment. This procedure (binning, cloud-
in-cell-weighting, and time averaging) yields our continuum
quantities, such as the flow velocity v(y). It also yields a kinetic
temperature

kBTkin = 1
2md |vd − v|2, (4)

which is calculated from the individual particle velocities;
this kinetic temperature is not necessarily identical to the
thermodynamic temperature T . Here, kB is the Boltzmann
constant.

We assume that it is valid to use a continuum model when
gradients are concentrated in a region as small as a few particle
spacings. In fact, it has been shown experimentally that the
momentum equation [23] and the energy equation [33] remain
useful in 2D dusty plasma experiments with gradients that are
as strong as in our experiment.

The notation we use in this paper distinguishes velocities
and other quantities according to whether they correspond to
individual particles or continuum quantities. Parameters for
individual dust particles are denoted by a subscript d, for
example vd for the velocity of an individual dust particle.
Continuum quantities in a theoretical expression are indicated
without any special notation, for example, v for the hydro-
dynamic velocities in Eqs. (1) and (2). Finally, continuum
quantities that we compute with an input of experimental data,
as described above, are indicated by a bar over the symbol, for
example, v.

V. SIMPLIFICATION OF CONTINUITY
EQUATIONS FOR DUST

Here, we present our simplification of the continuity
Eqs. (1)–(3), to describe our 2D dust layer. These simplifica-
tions involve three approximations suitable for the conditions
in our 2D layer, and a treatment of two external forces, laser
manipulation and gas friction, that are responsible for fext

and Pext. We describe these simplifications and the resulting
continuity equations next.

A. Approximations to simplify continuity equations

The first of our three approximations is ∂/∂t = 0. This
approximation is suitable for the steady overall conditions
of our experiment. Aside from the particle-level fluctuations
that one desires to average away, when adopting a continuum
model, the only time-dependent processes in the experiment
were the rastering of the laser beam at >100 Hz and the
13.56 MHz rf electric fields that powered the plasma. These
frequencies are too high for the dust particles to respond, and
the rastering of the beams is not a factor anyway because we
will only use the continuum equations outside the laser beams.

The second approximation is that ∂/∂x is negligibly small.
Due to the symmetry in our experiment design, as mentioned
in Sec. III, x is treated as an ignorable coordinate, i.e., ∂/∂x =
0. As a verification of this assumption, we observe that the
ratio (∂vx/∂x)/(∂vx/∂y) is of order 10−2, as a measure of the
slightly imperfect symmetry of our experiment. Thus, for our
experiment, we consider ∂/∂y to be of zeroth order and ∂/∂x

to be two orders of magnitude smaller, when we approximate
Eqs. (1)–(3).

The third approximation is that vy is negligibly small, based
on our observation of the flow velocity of our 2D layer. Our
results for the calculated flow velocity of the dust layer are
shown in Fig. 2. From the velocity vx in Fig. 2(a), the flow
can be easily identified from the two peaks with broad edges.
However, the flow velocity in the y direction is two orders
of magnitude smaller than in the x direction, as shown in
Fig. 2(b).

Using the second and third approximations, and omitting
terms that are small by at least two orders of magnitude, we can
easily see that we can approximate v · ∇ = 0 and ∇ · v = 0.
The latter indicates that the dust layer can be treated as an
incompressible fluid in our experiment. Using these three
approximations in Eq. (1), we find that ∇ρ = 0. In other
words, for our approximations, the density ρ is uniform, which
is confirmed by our experimental observation of Fig. 2(c).
Because the density is so uniform, we can also assume that
plasma parameters, such as the dust charge Q, are also spatially
uniform within the analyzed region.

In addition to these approximations, we also assume that
η and κ are valid transport coefficients for our system. There
are theoretical reasons to question whether 2D systems ever
have valid transport coefficients, and this is typically tested
theoretically using long-time tails in correlation functions
[41,42]. It could be tested experimentally by repeating the
determination of η and κ for vastly different length scales
for the gradients of velocity and temperature and verifying
that they do not depend on the length scale. However, such a
test is not practical for experiments like ours, which tend to
have a limited range of diameters of dust layers that can be
prepared.

B. External forces

Now we consider external forces that contribute momentum
and energy to Eqs. (2) and (3). For our experiment, we can
mention six external forces acting on the dust layer: gas
friction, laser manipulation, electric confining force, gravity,
electric levitating force, and ion drag. Since we only study the
2D motion of dust particles within their plane, the last three
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FIG. 2. (Color online) Profiles of continuum parameters during
laser manipulation, including (a), (b) flow velocity, (c) areal number
density, and (d) a measure |φ6| of local structural order that would
be a value of 1 for a perfect crystal [19]. Disorder, as indicated by a
small value in (d), is found to be greatest where the shear is largest,
not where the flow is fastest.

forces are of no interest because they are in the perpendicular
direction, and will not affect the horizontal motion of particles
that is of interest here. The electric confining force is balanced
by the pressure inside the 2D dusty plasma lattice, ρcEconf =
∇p, as described in Sec. II. Thus, only two of the six forces
need to be considered: gas friction and laser manipulation.

Gas friction is the main dissipation mechanism in our
experiment. We can consider the effect of this friction first
at the level of a single dust particle, and then at the level
of a continuum. For the momentum equation, we note first
that at the particle level, a single dust particle moving at a
speed of vd experiences a drag acceleration of −νgasvd . At
the continuum level, the contribution of this drag to Eq. (2)
is simply the average acceleration experienced by all dust
particles in a given spatial region, −νgasv. For the energy
equation, at the particle level the rate of energy dissipation
for one dust particle is −2νgasEkin

d , which is the product of a
drag force and velocity, where Ekin

d ≡ mdv2
d/2 is the kinetic

energy of one dust particle. At the continuum level, averaging

over all the dust particles in the given spatial region, the rate
of energy loss per unit mass in Eq. (3) is −2νgasEkin/md [43].

C. Simplified continuity equations

Using the three approximations listed above and taking into
account gas friction and laser manipulation forces, the mass,
momentum, and energy continuity equations become

∇ρ = 0 (5)

η

ρ

∂2vx

∂y2
− νgasvx + fx laser = 0 (6)

� + κ

ρ

∂2

∂y2
T − 2νgasEkin/md + Plaser = 0, (7)

where

� = η

ρ

(
∂vx

∂y

)2

(8)

is the viscous heating term, after simplifications based on the
assumptions of ∂/∂x = 0, vy = 0, and ∇ · v = 0.

In this paper, we will restrict our analysis to a spatial region
where the laser force and power are zero, i.e., flaser = 0 and
Plaser = 0. In this region, the momentum and energy continuity
equations will be further simplified:

∂2vx

∂y2
− ρνgas

η
vx = 0 (9)

� + κ

ρ

∂2

∂y2
T − 2νgasEkin/md = 0. (10)

To simplify the problem, we will assume that η and κ are
independent of temperature, as discussed in Refs. [23,33].

We can comment on the meaning of these two equations.
Equation (9) indicates a balance of the sideways transfer of
momentum due to two mechanisms: viscosity arising from
interparticle electric forces and frictional loss of momentum
due to collisions with gas atoms. Equation (10) describes the
energy transferred from the viscous heating � and thermal
conduction (the second term) as being balanced by the
energy dissipated due to friction as expressed in the last term
of Eq. (10). We will use Eqs. (9) and (10) only in spatial
regions where flaser = 0 and Plaser = 0, i.e., outside the laser
beam. In the next section, we will present our calculation
of terms appearing in Eqs. (6)–(10) using the dust particles’
position and velocity data from our experiment. The terms of
interest in these equations are ∂vx/∂y, ∂2vx/∂y

2, Ekin, and
∂2(v − v)2/∂y2.

VI. PROFILES OF QUANTITIES IN THE
CONTINUITY EQUATIONS

Our results for the first and second derivatives of the flow
velocity are presented in Fig. 3. These results are calculated
using the flow velocity profile in Fig. 2(a), which we reproduce
in Fig. 3(c). The first and second derivatives in Figs. 3(a)
and 3(b) will be used in Eqs. (8) and (9), respectively. From
Fig. 3(a), we can identify four points of maximum shear, i.e.,
maximum ∂vx/∂y; these are at y = 4.1 mm, 8.3 mm, 13.6 mm,
and 17.8 mm. These points of maximum shear coincide with
other features of interest: the minimum in the structural order,
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FIG. 3. (Color online) Profiles of the first (a) and second (b)
derivatives of flow velocity. To make a comparison, the flow velocity
profile vx is also provided in (c).

Fig. 2(d), and peaks in the mean-square velocity fluctuation
profile, which we will present below. We find that disorder, as
indicated by a small value in Fig. 2(d), is greatest where the
shear is largest, not where the flow is fastest.

Comparing Figs. 3(b) and 3(c), we find that the profiles for
the flow velocity vx and its second derivative are similar, in
regions without laser manipulation, for example, in the central
region 8.3 mm < y < 13.6 mm. This similarity is expected
from the momentum equation, Eq. (9), provided that the
viscosity η is spatially uniform. We do not expect that η would
be spatially uniform since viscosity in general depends on
temperature and the temperature is highly nonuniform, as we
will show below. Nevertheless, we find that the two curves are
nearly similar, with a small discrepancy that we will quantify
below when we present data for the residual of Eq. (9).

Profiles of the mean-squared particle velocity, correspond-
ing to the kinetic energy in the energy equation, Eq. (10), are
shown in Fig. 4. This kinetic energy includes energy associated
with both the macroscopic flow and the fluctuations at the
particle level. We will use these profiles in determining Ekin in
the next section, where we will find the residual of Eq. (10).

In Fig. 5, we present our results for the mean-square velocity
fluctuation, which corresponds to the kinetic temperature as
in Eq. (4). We will use this kinetic temperature in place of
the thermodynamic temperature T in the energy equation,
Eq. (10). Unlike the kinetic energy Ekin, the kinetic temperature
only includes the energy associated with the fluctuations of
particle velocity about the flow velocity v [44].

As reported in Ref. [28], there are peaks in the kinetic
temperature profile that coincide with the position of maximum
shear. These peaks can also be seen in Figs. 5(a) and 5(b).

(a)

0

10

20

30

0

0.5

1

1.5
(b)

0 5 10 15 20
y (mm)

v 
  (

m
m

 /s
 )

x2
2

2
v 

  (
m

m
 /s

 )
y2

2
2

FIG. 4. (Color online) Profiles of the mean-squared particle
velocity shown separately for particle motion in the x (a) and y (b)
directions. These quantities correspond to the mean particle kinetic
energy Ekin, i.e., (v2

x + v2
y)/2 = Ekin/md . The thin curve in each panel

is the flow velocity profile vx ; its scale is shown in Fig. 3(c).

In Ref. [28], we attributed these peaks to viscous heating.
As an intuitive explanation of viscous heating, consider that
higher shear conditions lead to collisions of particles flowing at
different speeds, causing scattering of momentum and energy
that leads to higher random velocity fluctuations and, therefore,
higher kinetic temperature. In the next section, we provide
further verification that the temperature peaks are due to
viscous heating; we do this by confirming that three terms in
the energy equation, including viscous heating, are in balance
as indicated by their summing to zero.

VII. RESULTS FOR RESIDUALS OF THE
CONTINUITY EQUATIONS

We now examine the momentum and energy Eqs. (9) and
(10), which are written so that the right-hand side is zero. When
we use these equations with an input of experimental data,
however, the terms will not sum exactly to zero but will instead
sum to a finite residual. We calculate these residuals, and we
vary two free parameters, the viscosity η and the thermal
conductivity κ , to minimize the residuals. (Specifically, we
minimize the square residual summed over all bins in the
central region of 8.6 mm < y < 13.4 mm.) This minimization
procedure yields the best estimation for the values for η and κ ,
which will be our first chief result. We will then, as our second
chief result, be able to make a spatially resolved comparison
of the magnitude of different terms in the energy Eq. (10).

Figure 6 shows the residual of the momentum Eq. (9).
This result is shown for η/ρ = 0.69 mm2/s, which is the best
estimation of the kinematic viscosity. The data are shown as
a spatial profile because we calculated Eq. (9) separately for
each bin, i.e., each value of y. Two peaks in Fig. 6(a), located
within the laser manipulation region, are due to the momentum
contribution from the laser. We do not use Eq. (9) with these
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FIG. 5. (Color online) Profiles of the mean-square particle ve-
locity fluctuation shown separately for particle motion in the x and
y directions, (a) and (b), respectively. These quantities combined
correspond to the kinetic temperature Tkin, Eq. (4). The profile of Tkin

were reported in Ref. [28], where we discovered peaks in the kinetic
temperature where the shear is largest. The second derivative of the
averaged mean-square particle velocity fluctuation for the motion
in the x and y directions (c) will be used to determine the second
derivative of the thermodynamic temperature in Eq. (10). The thin
curve in each panel is the flow velocity profile vx ; its scale is shown
in Fig. 3(c).

peaks because of a finite laser force flaser there. Instead we will
use the flatter region between these peaks, where flaser = 0,
as magnified in Fig. 6(b). The small residuals in this flatter
region indicate that the momentum Eq. (9) is able to accurately
account for the momentum of our 2D dust layer, and that
the minimization process in this region yields a value for the
viscosity.

Figure 7 shows the residual of the energy Eq. (10), for
κ/(cρ) = 8 mm2/s, which is the best estimation of the thermal
diffusivity. In this calculation, we used the value of η/ρ =
0.69 mm2/s from the momentum equation above, and we
varied the value of κ to minimize the residuals as described
above. Two large negative peaks in Fig. 7(a) are due to the
energy contribution from the laser manipulation Plaser, which
is not included in Eq. (10). The small values of residuals in the
flatter region between these peaks, as magnified in Fig. 7(b),
show that the energy Eq. (10) accurately describes energy
transport in our 2D dust layer, and that the minimization

-30

-20

-10

0

10

20

30

0 5 10 15 20

-30

-20

-10

0

10

20

30

8 9 10 11 12 13 14
y (mm)

)  s  
m

m( noitauqe 
mutne

mo
m eht ro f la udis er

1-
1-

(a)

10

(b)

FIG. 6. (Color online) (a) A profile of the residual of the momen-
tum Eq. (9), assuming a kinematic viscosity of η/ρ = 0.69 mm2/s.
For the central region, magnified in (b), the summation of the
squared residual reaches its minimum when η/ρ = 0.69 mm2/s; this
minimization process is how we determine η, which is one of our
main results. The thin curve in (a) is the flow velocity profile vx ; its
scale is shown in Fig. 3(c).

process in this region yields a value for the thermal diffusivity.
By achieving a small value of the residual, we have verified
that the three terms in the energy Eq. (10) are in balance. Since
one of these terms is viscous heating and another is computed
from the temperature profile which has peaks, the balance we
observe here is consistent with the conclusion of Ref. [28] that
the temperature peaks are due to viscous heating.

As the first chief result of this paper, we obtain the
kinematic viscosity value of ν = η/ρ = 0.69 mm2/s and
thermal diffusivity value of κ/(cρ) = 8 mm2/s. These values
are obtained simultaneously in a single experiment. A source
of uncertainty in these values is systematic error in νgas, for
example, due to particle size dispersion or uncertainty in
the Epstein drag coefficients [22]. This is so because our
method actually yields results for η/(ρνgas) and κ/(cρνgas).
Another source of uncertainty is our simplification that we
neglect heating sources other than laser manipulation [43];
in a test we determined that κ/(cρ) is in a range from 7.5
to 8.4 mm2/s, depending on whether these small heating
effects are accounted for. We note that our results of η/ρ and
κ/(cρ) agree with the results of previous experiments [23,33]
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FIG. 7. (Color online) (a) A profile of the residual of the energy
Eq. (10), assuming a thermal diffusivity of χ ≡ κ/cρ = 8 mm2/s.
For the central region, magnified in (b), the summation of the
squared residual reaches its minimum when κ/cρ = 8 mm2/s. This
minimization process is how we determine κ , which is another of our
main results. The thin curve in (a) is the flow velocity profile vx ; its
scale is shown in Fig. 3(c).

using the same size of dust particles and a similar value
of a/λD .

Our experiment allows us to obtain spatially resolved
quantitative measurements of three heat transfer effects:
viscous heating, thermal conduction, and dissipation due to
gas friction (i.e., cooling). These three effects appear as the
three terms on the left-hand side of Eq. (10). As the second
chief result of this paper, we plot these three terms, presented
as spatial profiles, in Fig. 8.

Examining the spatial profiles for these terms in Fig. 8, we
see the most prominent features are two large peaks for the
gas dissipation term where the flow velocity vx is fastest; in
this region the energy dissipation due to gas friction reaches its
maximum. Despite the prominence of these features, however,
they are not what interest us here. Instead, we are more
interested in the regions of high shear, near the edge of the
laser manipulation. Recall that in these high shear regions, the
flow velocity gradient ∂vx/∂y is largest, and there are peaks in
the profiles of the kinetic temperature and the second derivative
of the flow velocity (Figs. 3 and 5).

In Fig. 8, our spatially resolved profiles reveal that viscous
heating and thermal conduction terms are peaked in regions
of high shear. The viscous heating term, Eq. (8), is always
positive, meaning that viscous dissipation is always a source
of heat wherever it occurs. The thermal conduction term partial
∂2T/∂y2, on the other hand, can be either positive or negative,
indicating that heat is conducted toward or away from the
point of interest, respectively. In locations where the shear is
strongest, for example, at y = 4.1 mm, the thermal conduction
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FIG. 8. (Color online) (a) Profiles of three terms in Eq. (10),
assuming the transport coefficients, η and κ , obtained above. For the
central region without laser manipulation (b), thermal conduction
is one order of magnitude larger than the viscous heating. This
is our second chief result: a spatially resolved comparison of the
different mechanisms for energy transfer in our 2D dust layer. The
thin curve in (a) is the flow velocity profile vx ; its scale is shown
in Fig. 3(c).

term is negative, indicating that heat is conducted away from
that point.

Although viscous heating has great importance in all kinds
of fluids, and it has been understood theoretically for a
very long time [45], a spatially resolved measurement of
it is uncommon. In most physical systems, viscous heating
is usually hard to measure either because the temperature
increase is overwhelmingly suppressed by rapid thermal
conduction, as we discussed in Ref. [28], or because the
thinness of the shear layer does not allow convenient in situ
temperature measurements. Most experimental observations
of temperature increases due to viscous heating are either
external or global measurements and not spatially resolved
measurements like those that we report here. Indeed, in our
literature search, we found no previous spatially resolved
experimental measurements of the viscous heating term, not
only for dusty plasma but also for any other physical system. As
we explained in Ref. [28], our ability to detect strong effects
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heating and thermal conduction terms in Eq. (10) and (b) the absolute
value of this ratio. The sign of ∂2T/∂y2 determines the sign of the
ratio in (a). A positive ratio indicates that heat is conducted toward
the position of interest. The large values of the ratio in (b) at high
shear regions indicate significant viscous heating at those locations.
For comparison, in Ref. [28] we found a Brinkman number Br = 0.5
(indicated by the arrow), which is a global measure of the flow that
provides less detailed information than the spatially resolved ratio
shown here. The thin curve in (b) is the flow velocity profile vx ; its
scale is shown in Fig. 3(c).

of viscous heating is due to the extreme properties of dusty
plasma, as compared to other substances. Our ability to make
spatially resolved measurements is due to our use of video
imaging of particle motion.

To further analyze the second chief result of this paper, the
spatial profiles of the viscous heating and thermal conduction

terms in Fig. 8(a), we plot the ratio of these two terms in
Fig. 9(a). This ratio has its largest positive and negative values
in the regions of high shear. In Fig. 9(a), negative values of this
ratio are observed to occur in the high shear regions, which
indicates that heat is conducted away from these regions. This
result is consistent with observation of kinetic temperature
peaks here. To characterize the magnitude of these two terms,
we plot in Fig. 9(b) the absolute value of this ratio. We can
see that, within regions of high shear, this ratio can be as large
as unity, or even larger. A typical value of this ratio in the
shear region is of order 0.5 for our experiment. This matches
the value of the Brinkman number, Br = 0.5, that we found in
Ref. [28] for the same experiment. The Brinkman number is
a global measure of the viscous heating, in competition with
thermal conduction.

VIII. SUMMARY

In summary, we reported further details of the laser-driven
flow experiment in a dusty plasma that was first reported in
Ref. [28]. We simplified the momentum and energy continuity
equations, exploiting the symmetry and steady conditions of
the experiment. We developed a method to obtain transport
coefficients by minimizing the residuals of continuity equa-
tions using the input of experimental data. As our first chief
result, we use this method to simultaneously determine, from
the same experiment, two transport coefficients: kinematic
viscosity and thermal diffusivity, which are based on viscosity
and thermal conductivity, respectively. As our second chief
result, we obtained spatially resolved measurements of various
terms in the energy equation. We found that, in a laser-driven
dusty plasma flow, viscous heating is significant in regions
with high shear, which is consistent with the interpretation of
Ref. [28] that the peaks in the temperature profile are due to
viscous heating.
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