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Superdiffusion of two-dimensional Yukawa liquids due to a perpendicular magnetic field
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Stochastic transport of a two-dimensional (2D) dusty plasma liquid with a perpendicular magnetic field is
studied. Superdiffusion is found to occur especially at higher magnetic fields with β of order unity. Here,
β = ωc/ωpd is the ratio of the cyclotron and plasma frequencies for dust particles. The mean-square displacement
MSD = 4Dαt

α is found to have an exponent α > 1, indicating superdiffusion, with α increasing monotonically
to 1.1 as β increases to unity. The 2D Langevin molecular dynamics simulation used here also reveals that another
indicator of random particle motion, the velocity autocorrelation function, has a dominant peak frequency ωpeak

that empirically obeys ω2
peak = ω2

c + ω2
pd/4.
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I. INTRODUCTION

Transport of charged particles under magnetic fields is
important in studying plasma physics processes such as ion
transport in tokamaks [1] and the solar wind into Earth’s
magnetosphere [2]. An external magnetic field complicates
the motion of all charged particles, as compared with the
case without a magnetic field, so that their transport due to
collisions is changed fundamentally. Kinetic theory including
the effects of cyclotron motion [3] is needed to study the
collisional transport of plasmas with magnetic fields. Dusty
plasmas provide an experimental and theoretical platform to
study fundamental transport concepts.

Dusty plasma [4–8] is a four-component mixture of ions,
electrons, gas atoms, and electrically charged micron-sized
dust particles. These dust particles are negatively charged, and
their mutual repulsion is often described by the Yukawa or
Debye-Hückel potential [9],

φ(r) = Q2exp(−r/λD)/4πε0r, (1)

where Q is the particle charge and λD is the screening length
due to electrons and ions. Due to their high particle charge,
dust particles are strongly coupled, so that a collection of
dust particles exhibits properties of liquids or solids. The size
of dust particles allows directly imaging them and tracking
their motion, so that collisional transport phenomena can be
observed experimentally at the level of individual particles.
Experiments can be performed either with a single horizontal
layer of dust, i.e., two-dimensional (2D), or with dust that fills
a volume (3D). For the case of a 2D dusty plasma, which we
will study, the electrons and ions fill a 3D volume, while the
dust is constrained by strong dc electric fields to move only on
a single plane [10].
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Superdiffusion is a type of anomalous transport where
particle displacements exhibit a scaling with time that is
greater than for normal diffusion. When the time dependence
of mean-square displacement of a particle is fit to the form

MSD(t) = 4Dαtα (2)

over times long enough for multiple collisions to occur, the
signatures of normal diffusion and superdiffusion are α = 1
and α > 1, respectively. The coefficient Dα is not truly a
diffusion coefficient if α > 1, but nevertheless it is useful for
quantifying the magnitude of random particle displacements.

For 2D systems, anomalous transport including superdiffu-
sion has often been reported, for various unmagnetized systems
including dusty plasmas. Indications of this kind of anomalous
transport, attributed to low dimensionality, are often found in
nonconverging integrals for the random motion [11–15]. In a
magnetized system, however, the trajectories of charged parti-
cles are fundamentally changed from those in an unmagnetized
system, so it is an open question whether collisional particle
motion is described as diffusion or superdiffusion. In this paper
we seek to answer this question.

Previous work has been reported for unmagnetized 2D dusty
plasmas to assess whether α > 1. This previous work includes
experiments [16,17] and theoretical simulations [18–20].
Other transport coefficients that have been studied experimen-
tally for 2D dusty plasmas include shear viscosity [10,21,22]
and thermal conductivity [23–26]. Simulations have also
been reported for shear viscosity [27,28], longitudinal vis-
cosity [29], and thermal conductivity [15,30,31].

Our paper is motivated by the recent attention given to dusty
plasma behavior under magnetic field [32–40]. This attention is
driven by experiments, which have only recently begun. There
are at least three magnetized dusty plasma devices [41–43],
which now, or soon will be, producing experimental data. The
prospects for these experiments have motivated simulations,
including [44–47], to study waves for 2D Yukawa liquids
and solids under a magnetic field. In this literature, the
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FIG. 1. (Color online) Particle trajectories in the x-y plane for different constant perpendicular magnetic-field strengths, β = ωc/ωpd = 0
(a), 0.5 (b), and 1.0 (c). The random walk without a magnetic field changes its character, becoming more circular and wandering less as the
magnetic field increases in (b) and (c). Color represents time, and only ≈10% of the simulated region and ≈0.03% of the simulation duration
are shown here. Our simulation conditions are 	 = 200 and κ = 2.

magnetic-field strength is quantified by a ratio of the cyclotron
and plasma frequencies for dust particles, β = ωc/ωpd . For
transport coefficients in magnetized strongly coupled plasmas,
at the time we began writing this paper the literature included
only studies for 3D systems, such as [48] and one paper on a
2D Coulomb liquid [49].

As we were finishing this paper, we learned of another
work, for diffusion in 2D Yukawa liquids, by Ott, Löwen,
and Bonitz [50]. Using a frictionless MD simulation, they
determined the MSD for a wide range of time and β.
Not claiming that it represented a diffusion coefficient, they
reported a coefficient Dα evaluated at a particular time. Our
results complement those of [50]. We investigate whether
motion is superdiffusive, and we characterize a peak in the
spectrum of the velocity autocorrelation function (VACF),
which is another measure of random motion. Our simulation
was not frictionless; we use a 2D Langevin MD simulation
that includes the effects of gas friction, which are present in
experiments.

We find that 2D motion of dust particles in a perpendicular
magnetic field is superdiffusive when β ≈ 1. We also find that
the VACF has a spectrum that is dominated by a large peak
due to a combination of cyclotron motion and bouncing of
particles within the cage defined by their neighbors. We find
an empirical expression for the frequency of this peak.

II. CHARACTERIZING RANDOM MOTION

We now review the measures of random motion that we
use: the MSD (mean-square displacement) and VACF (velocity
autocorrelation function).

A. MSD and superdiffusion

Mean-squared displacement (MSD) characterizes self-
diffusion [51]. It is defined as MSD(t) = 〈|ri(t) − ri(0)|2〉,
where ri(t) is the position of particle i at time of t . Here, 〈 〉
denotes the ensemble average over all particles and different
initial times [52].

The MSD is a time series that reveals how random particle
motion has different regimes, according to the time scale. For
strongly coupled systems such as liquids, when the time is
very short a particle moves mainly inside the cage formed by
its nearest neighbors, which is called caged motion [53], the
particle motion is termed “ballistic” [18], and the MSD scales
∝t2. At longer times, when several collisions have occurred, a
particle can escape its cage and displace with a random walk
described as self-diffusion. For these longer times, if the MSD
time series is a straight line in a log-log plot, it is described by a
power law, Eq. (2). In this equation, the factor of 4 comes from
the two dimensionality of our studied system; for 3D systems it
would be 6. Normal diffusion is characterized by α = 1, while
superdiffusion and subdiffusion are characterized by α > 1
and α < 1, respectively. Both superdiffusion and subdiffusion
are also called anomalous diffusion.

A criterion is needed to judge whether motion is superdiffu-
sive. Since data from simulations and experiments will never
yield a value that is exactly 1, some authors apply a more
stringent criterion of α � 1.1 for superdiffusion [18], instead
of α > 1. Another practical consideration is the time duration
of the MSD data. Indications have been reported [19] that after
a longer time interval, superdiffusive motion in a 2D Yukawa
liquid vanishes, becoming diffusive with α = 1 at long times.
Thus it is desirable to assess the value of α for various time
intervals, and to assess whether it trends to unity at long times,
as we shall do in this paper.

B. Velocity autocorrelation function

Like the MSD, the VACF measures the temporal develop-
ment of particles that are tracked individually, as they collide
with others, but it is the fluctuating velocity rather than position
that is used. The VACF is defined [54] as the time series
〈vi(t) · vi(0)〉, where 〈 〉 also denotes the ensemble average
over all particles and different initial times. If there are no
magnetic fields, so that the particles move only because of their
own inertia and collisions, the VACF will exhibit a damped
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FIG. 2. (Color online) Mean-squared displacement MSD for dif-
ferent magnetic fields, in the unit of ωpdt (a), or fct (b). At long
times 100 < ωpdt < 1000, well after the ballistic portion, we can fit
the MSD time series to Eq. (2). As β increases, the MSD curves are
lower and lower, indicating that the wandering motion of particles
is suppressed by magnetic field, and Dα decreases. Oscillations at
shorter times are due to cyclotron motion of individual particles, as is
best seen in (b), where time is normalized by 1/fc. Dips in the MSD
time series occur around one cyclotron period, two periods, and so
on. Here, the MSD is normalized using the Wigner-Seitz radius a.
Our simulation conditions are 	 = 200 and κ = 2.

oscillation, for strongly coupled systems such as a solid or
liquid. The oscillation reflects the caging motion [53] of a
particle due to the interaction with its nearest neighbors. In
strongly coupled systems, diffusive motion arises from the
gradual escape of a particle from a cage (the so-called decaging
motion) so that a particle becomes displaced. For normal
diffusion, the VACF can be used to calculate the diffusion

coefficient [55–57]. We will use the VACF for another purpose
because we will find that the motion is superdiffusive. In
particular, we will use it to compute the vibrational density
of states, which is the modulus of the Fourier transform of the
VACF time series, plotted as a function of ω [54,58,59]. This
vibration density of states will reveal any preferred frequency
for particle motion.

In this paper we add a magnetic field, and we expect that
the time series for the VACF will oscillate, due not only to
random interparticle interactions but also to cyclotron motion
of individual particles. We expect that both kinds of oscillatory
motion will be revealed in the vibrational density of states.

III. SIMULATION METHOD

We performed Langevin MD simulations, with additional
Lorentz forces acting on dust particles due to the external
perpendicular magnetic field. For each particle i, we integrate
the Langevin equation

mr̈i = Qṙi × B − ∇�φi,j − νmṙi + ζi(t), (3)

with a Lorentz force Qṙi × B, frictional drag [60] −νmṙi ,
and a random force ζi(t). The random force ζi(t) is assumed
to have a Gaussian distribution with a zero mean, according
to the fluctuation-dissipation theorem [61,62]. For the binary
interaction potential φi,j we use the Yukawa repulsion, Eq. (1).
Note that when there is a strong magnetic field, the dynamics
of electrons and ions that account for the shielding may be
completely changed [41], so that the interparticle interaction
of 2D dusty plasmas may be more complicated. In this paper,
we assume that the interparticle interaction is still the Yukawa
interaction, as the zeroth-order approximation.

We consider a uniform magnetic field in the z direction
perpendicular to the x-y plane in which the particles are
constrained to move. We use the Langevin integrator of
Gunsteren and Berendsen [62]. Time scales are normalized by
the nominal plasma frequency, ωpd = (Q2/2πε0ma3)1/2 [63],
which is also a time scale for interparticle collisions, in a
system that is strongly coupled. Here, m is the particle mass
and a ≡ (nπ )−1/2 is the Wigner-Seitz radius [63] for an areal
number density n. The magnetic field is characterized using
the dimensionless parameter of β = ωc/ωpd , where ωc is the
cyclotron frequency of the dust particle. The time scale for
gas frictional damping [64] is chosen as ν = 0.027ωpd to
mimic typical experimental conditions [61], while the time
scale for cyclotron motion is variable, by choosing β. We vary
β from 0 to 1, where the upper end of this range corresponds
to an extremely strong magnetic field [65]. For example, for
a typical 2D dusty plasma experiment of [10,66] with eight
micron diameter particles, β = 1 corresponds to a magnetic
field of B = 1.3 × 104 T. Note that under stronger magnetic
fields, plasma sources relying on capacitively coupled radiofre-
quency power can have some inhomogeneities. For example,
filaments or enhanced ionization that are aligned parallel to the
magnetic-field lines were observed in [41]. This nonuniformity
of the plasma was observed to affect microparticle motion
by causing an inhomogeneous pattern formation [41]. We
assume a spatially uniform plasma in our simulations, so
that comparing our results to experiment must await a future
experiment with conditions that are more uniform than in [41].
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It is reasonable to anticipate such results because there are
new facilities coming online that have the flexibility to alter
the operation and design of their plasma source. We integrate
Eq. (3) using a time step of 0.037ω−1

pd , which we checked to be
small enough for both the collisional and cyclotron motion.

The simulation parameters are chosen so that the collection
of dust particles will behave as a liquid, according to the phase
diagram of [67]. To describe the dust particle charge, kinetic
temperature T , and areal number density, we use the dimen-
sionless quantities 	 = Q2/(4πε0akBT ) and κ ≡ a/λD . We
choose 	 = 200 and κ = 2 as typical liquid conditions that
are experimentally attainable using dusty plasmas.

We emphasize that for these parameters, in the absence of
a magnetic field, it has been shown [19] that motion is nearly
that of normal diffusion, with α ≈ 1. We will determine how
this conclusion changes as a magnetic field is added.

Another dimensionless parameter for magnetized dusty
plasmas is the inverse Hall parameter for the dust Rc = ωc/ν.
When this ratio is much greater than unity, dust particles can
complete circular orbits before the trajectory is disturbed by
collisions with neutral gas, which occur at a rate ν [43].
For the gas conditions simulated in our Langevin equation,
Rc = β/0.027.

Our simulation size is N = 1024 particles constrained to
planar motion in a rectangle of dimensions 65.5a × 56.7a.
As in [20,48], we use periodic boundary conditions. We
truncate the Yukawa potential at radii beyond 22.9a with a
switching function to give a smooth cutoff between 22.9a

and 24.8a to avoid an unphysical sudden force change when
a particle moves a small distance [29]. All simulation runs
start from a random configuration of 1024 particles, then
run 105 steps to reach the steady conditions before starting
recording data. After that, particle trajectories of the next 107

steps are saved for data analysis. Note that the total time
duration of 107 × 0.037ω−1

pd = 3.7 × 105ω−1
pd corresponds to

≈3.4 h for a typical value of ωpd = 30 s−1 in 2D dusty plasma
experiments [10,66], much longer than experimental runs.
Representative trajectories are shown in Fig. 1. We verified that
our simulations are free of any nonuniformity such as a flow
or a localized peak in number density or kinetic temperature.

IV. RESULTS

A. Superdiffusion

The calculated MSD time series for different β values are
presented in Fig. 2. As expected, displacements are reduced
with an increasing magnetic field, i.e., an increasing β. After
the initial ballistic portion, the MSD time series has its diffusive
portion at longer times. For fitting the MSD data to determine
α, we will use the range of 100 < ωpdt < 1000, which is for
times later than the ballistic portion. We present the MSD
curves two ways, normalized by the plasma frequency ωpd

and fc (where fc = βωpd/2π is the cyclotron frequency) in
Figs. 2(a) and 2(b), respectively. In the latter we see that the
oscillations in the MSD occur at the cyclotron frequency and its
harmonics, indicating the dominant role of cyclotron motion
at that time scale.

As our first main result, we present the exponent α in
Fig. 3(a). For these 	 and κ conditions, we find that a 2D
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FIG. 3. (Color online) (a) Indication of superdiffusion. The ex-
ponent α is >1, especially for strong magnetic fields β ≈ 1. These
data are the results of fitting the MSD time series in Fig. 2 to the
exponential scaling of Eq. (2) in the indicated time ranges. This result
α > 1 for a 2D Yukawa liquid is different from that of Ranganathan
et al. who reported normal diffusion, α = 1, for a 2D Coulomb
liquid [49]. As the time range for the fitting is longer, we can see
a clear trend that the exponent α is smaller. In (b), as β increases
from 0 to 1, the coefficient Dα decreases monotonically more than
70% as β increases, which means that the magnetic field greatly
suppresses the wandering of particles. Note that the scatter of our
data for each β value corresponds to the error bar. Fits of our Dα

data for the time range of 100 < ωpdt < 1000 only to our empirical
expressions Eq. (4) and Eq. (5) derived by Ranganathan et al. [49]
are shown as solid and dashed lines, respectively.

Yukawa liquid exhibits superdiffusion α = 1.1 for a large
magnetic field β = 1, and weak superdiffusion 1 < α < 1.1
for weaker magnetic fields. Without a magnetic field, β = 0,
we find nearly normal diffusion, α ≈ 1, as was reported for
previous unmagnetized simulations [19]. Figure 3(a) shows
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that there is a monotonic trend for α to increase with β,
i.e., for superdiffusion to become stronger as the magnetic
field is increased. This result is different from the claim of
Ranganathan et al. who simulated a 2D Coulomb liquid and
reported normal diffusion [49].

We find that the fitting exponent α depends slightly on the
time range chosen for fitting. We chose four different fitting
time ranges to detect how sensitive of the fitting exponent α

is related to the time. From Fig. 3(a), as the time range for the
fitting is longer, a clear trend that the exponent α is smaller
can be easily detected. In a previous study of superdiffusion
in 2D Yukawa liquids [19], Ott and Bonitz also found that the
exponent α changes as they chose different time ranges to fit.

As we noted in the Introduction, the trajectories of random
particle motion in a liquid are completely different in the
presence of a magnetic field, so that before we conducted our
simulations, there was no particular reason to expect motion
to be either normal diffusion or superdiffusion. Our results
in Fig. 3 make it clear that adding a magnetic field does
cause superdiffusion. The motion is nearly normal diffusion
in the absence of magnetic field, but then it becomes weakly
superdiffusive as a magnetic field is added with a small value
of β, with the superdiffusion becoming stronger and reaching
α = 1.1 at a high magnetic field of β = 1. This superdiffusive
tendency is not as powerful as in some cases, such as the
unmagnetized simulation of [18] where α = 1.3 was reported.
While the superdiffusive tendency found here is less profound,
there is no doubt that it is present for the time intervals that
we studied: our results in Fig. 3 show very little scatter, and
our fitting of the MSD curves in Fig. 2 that yielded the data in
Fig. 3 had an exceptionally high coefficient of determination.
Thus we are confident in our empirical finding that motion is
superdiffusive when magnetic field is added to a 2D strongly
coupled plasma, when modeled as a Yukawa liquid in the
presence of gas collisions, as in our simulation. We offer some
discussion of this empirical finding in Sec. IV C.

We also characterize the coefficient Dα in Fig. 3(b). As
in [50], we can see that Dα decreases monotonically as
β increases, meaning that the perpendicular magnetic field
suppresses the self-diffusion of particles in 2D Yukawa liquids.
We fit the data for Dα vs β for the fitting time range of
100 < ωpdt < 1000 in Fig. 3(b) to an expression

Dα = Dα0/(1 + ξβ)2. (4)

We chose the form of Eq. (4) so that it has an asymptotic
behavior that is a constant Dα0 in the absence of magnetic
field β = 0 and diminishes with the same scaling as classical
diffusion ∝1/β2 for large magnetic field. For the range of β

that we explored, this expression fits the data well, with em-
pirical coefficients Dα0 = 0.006 16a2ωpd and ξ = 1.083. This
expression fits our data somewhat better than the expression
derived from the Langevin equation by Ranganathan et al. [49],

Dα = Dα0/(1 + ξβ2). (5)

Fits to both expressions are shown in Fig. 3. We note that these
expressions, Eqs. (4) and (5), each have two free parameters
(Dα0 and ξ ) and a tendency toward classical diffusion, which
is different from the three-parameter fit used in [50] which
tends toward Bohm diffusion, Dα ∝ 1/β for strong magnetic

fields. We did not extend our simulation to large enough β to
test whether classical or Bohm diffusion better describes the
transport because experiments might not be feasible at such a
high magnetic field.

B. VACF peak frequency

We can seek insight into the peculiarities of thermal
motion under the partially magnetized conditions where we
observed superdiffusion. To do this, we examine the velocity
autocorrelation function (VACF), which is closely related to
diffusion; its integral diverges for superdiffusion but converges
for diffusion. Transforming the VACF in Fig. 4 to yield
its spectrum, Fig. 5(a), our attention is drawn to the most
prominent feature: a large peak. This peak is such a dominant
feature of the VACF spectrum that it seems likely that to gain
an understanding of the thermal motion, in the presence of both
collisions and magnetic field, will require an understanding of
the peak and its tendencies as the magnetic field is changed.
Therefore, we wish to characterize the frequency of the
peak and its dependence on the parameters that characterize
collisions (ωpd ) and cyclotron motion (ωc).

In Fig. 4, we see that oscillations occur with or without
magnetic field, but they are larger in amplitude and more
persistent in time when the magnetic field is large. When
there is a magnetic field, the oscillation frequency is close
to the cyclotron frequency, as seen in Fig. 4(b) where time is
normalized by f −1

c . The decay of VACF is slower for stronger
magnetic field, which is a natural result of stronger cyclotron
motion. Inspecting both Fig. 1 and Fig. 2, we also notice that,
within a specific time range, the typical displacement of a
particle under a stronger magnetic field is smaller. It seems
that, under a stronger magnetic field, a particle needs a longer
time to escape the cage formed by its nearest neighbors, i.e., a
longer decaging time, due to stronger cyclotron motion.

The vibrational density of states [58,59] is presented in
Fig. 5(a). We calculated this as the spectral power of the VACF
by a Fourier transformation of the normalized VACF time
series. This vibrational density of states describes the collective
motion of the particles. In Fig. 5(a) we see that this spectral
power is not flat, but has a dominant peak of finite width. The
prominence of this peak indicates that the thermal motion has
a favored frequency.

As our second main result, in Fig. 5(b) we find that the peak
frequency ωpeak increases with magnetic field β according an
empirical fit

ω2
peak/ω

2
pd = 0.25 + β2, (6)

or equivalently

ω2
peak = 0.25ω2

pd + ω2
c . (7)

This expression combines two kinds of motion, collective
motion at ωpd and cyclotron motion of a single particle at
ωc. Figure 5(b) and the expression Eq. (7) illustrate how
these two kinds of motion combine, for thermal motion of
a strongly coupled plasma under magnetic field. There is a
favored frequency, which is somewhat larger than the cyclotron
frequency. We note that the coefficient of 0.25 in Eq. (7)
was determined for our conditions, 	 = 200 and κ = 2; we
have not determined whether it varies with those parameters.
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FIG. 4. (Color online) Velocity autocorrelation function, VACF,
for different magnetic fields. Time is normalized by 1/ωpd in (a) and
1/fc in (b). The oscillations decay more slowly with higher magnetic
field, as seen in (a) for increasing β. These oscillations are mainly
due to the cyclotron motion, since its frequency is nearly the same as
fc. The period of oscillation is related to the magnetic-field strength,
as seen in (b) where VACF curves for two values of β are nearly
aligned.

We can also express this peak frequency using the Einstein
frequency ωE , which is the oscillation frequency that a charged
particle’s motion would have in a cage formed by all the
other particles, if all the other particles were stationary. From
Fig. 2(b) in [63], the Einstein frequency in our simulation
conditions is ωE ≈ 0.35ωpd , so that we also find that this peak
frequency can also be expressed as ω2

peak = 2ω2
E + ω2

c , which
is the same as the expression for ω1,∞ in [46]. For comparison,
in Fig. 5(b) we also show the peak frequencies obtained from
the frictionless simulation of [46].
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FIG. 5. (Color online) (a) Vibrational density of states, i.e., spec-
tral power of the normalized VACF for different magnetic fields. The
curves exhibit a dominant peak; the frequency of this peak is plotted in
(b). The peak frequency increases monotonically as β increases. The
peak frequency fits an empirical curve, ω2

peak/ω
2
pd = 0.25 + β2, i.e.,

ω2
peak = 0.25ω2

pd + ω2
c , shown as a smooth curve. This fit shows how

the peak frequency is always greater than the cyclotron frequency.
For comparison, we also plot the data from the frictionless simulation
of [46] for the peak frequency of the longitudinal waves at the wave
number of ka = 5.55.

We note that our vibrational density of states is not the only
way to characterize the frequency content of thermal motion.
Another way, which has been widely used in the literature
for strongly coupled plasmas, is the wave spectrum. For a 2D
Yukawa liquid under a magnetic field, it has been used for
example by Hou et al. [45]. To compare how our vibrational
density of states and the wave spectrum quantify the frequency
content, we present the wave spectrum in Fig. 6. We computed
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FIG. 6. (Color online) Longitudinal and transverse phonon spec-
tra of our 2D Yukawa liquid when β = 0 (a),(b), β = 0.5 (c),(d),
and β = 1 (e),(f). These spectra differ from the vibrational density
in Fig. 5 because they reflect both spatial and temporal fluctuations
as characterized by a current [45], not just the temporal fluctuations
characterized by the VACF.

it using Eqs. (2)–(4) of [45], which use as their inputs the
positions as well as velocities of particles, not just the velocities
as in the vibrational density of states. Other differences are that
the wave spectrum is resolved in both the magnitude and direc-
tion of the wave vector k. The direction refers to the particle
velocity, as compared to the arbitrarily chosen direction of
k, and it is said to be longitudinal or transverse according to
whether v is parallel or perpendicular to k, respectively. Ex-
amining the power spectra in Fig. 6, we see that the frequency
content favors a peak frequency, which depends on the strength
of the magnetic field, and the spectrum has a finite width about
this peak frequency. The peak frequency is generally slightly
higher than the cyclotron frequency, except when the magnetic
field is absent, as was the case for our vibrational density of
states. The wave number dependence, which is measured only
by the wave spectra and not the vibrational density of states,
shows how the wave becomes optical (i.e., ω does not approach
zero for zero wave number) when a magnetic field is present.
Note that our obtained phonon spectra agree well with the
experimental and simulation results in [68]. As is well known

for strongly coupled plasmas, the wave spectrum also shows
how the wave starts as a forward wave, dω/dk > 0, for small
k, but can become backward, dω/dk < 0, for larger k where
the wavelength is on the order of the particle spacing. Under
a magnetic field, there is not only the dominant oscillation at
a frequency somewhat above ωc, but also a lower-frequency
mode at ω/ωpd � 0.5. The latter mode was remarked upon by
several authors for both 2D and 3D liquids under a magnetic
field. Our Fig. 6 shows how this low-frequency mode occurs
more strongly for a transverse polarization.

C. Conceptual discussion of diffusion

Our empirical findings, superdiffusion in the presence of
a magnetic field and a VACF spectral peak that varies with
the magnetic field, both hint at the complexity of random
particle motion. This complexity arises from a combination
of two kinds of particle motion: caged motion in a liquid and
cyclotron motion in a magnetic field. To gain an appreciation
for this complexity, we review here some of the concepts for
diffusion in various physical systems, starting with some of
the simplest ones. This discussion will lead us to recognize
there is no obvious intuitive reason to expect normal diffusion,
given the complex nature of the random motion for a liquid
with magnetized particle motion.

Diffusion is often described as a process of random
displacements for a specified time interval. The diffusion
coefficient is estimated by dividing the square of the typical
step-size displacement by the typical time interval between
steps. Superdiffusion can happen when there is an unusual
abundance of large displacements. Lévy-flight displacements
(in certain physical systems) [69] are extreme examples of
these large displacements, and they result in severe superdif-
fusion. More subtle increases in the abundance of large
displacements will lead to a less severe superdiffusion.

For an electron or ion in a magnetized weakly coupled
plasma, there is a kind of normal diffusion called “classical
diffusion.” The intuitive estimate for the classical diffusion
coefficient is traditionally obtained by estimating the step
size as the cyclotron radius and the time interval as the
inverse Coulomb collision frequency. (There are several kinds
of Coulomb collision frequencies; the relevant one is for
perpendicular momentum deflection.)

For Brownian motion of an isolated dust particle in gas,
there is again a “step size” displacement between collisions,
and a typical time between collisions. For the Brownian
motion, the step size is the mean free path between collisions
with gas atoms, and that is the only length scale. There is also
only one time scale for the Brownian motion: the collision
frequency with gas atoms. Displacements for a given time
interval have a Gaussian distribution, and the resulting motion
is diffusive.

For an unmagnetized strongly coupled plasma, there is
again a single length scale: the spacing between particles.
(This is so unless there are modes present, which might have
a particular wavelength and add another length scale.) There
are two time scales of note: the Einstein time for oscillations
in a cage, and a decaging time for a particle, which depends
on temperature and structure. The latter time scale would lead
to the diffusion. In the 3D case random motion should be
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diffusive in the absence of hydrodynamic flows. In the 2D case,
however, there can be superdiffusion, which has been attributed
to long-time correlations arising possibly from hydrodynamic
modes, according to earlier literature for transport in 2D
systems [13].

Adding a sufficiently strong magnetic field to the strongly
coupled plasma, gyration will provide an additional time and
length scale. The additional length scale means that sometimes
a diffusive step size might correspond to the cyclotron radius
(as for classical diffusion in a weakly coupled plasma), or
sometimes it might correspond to the interparticle spacing (as
for a strongly coupled plasma without magnetic field). Or the
step size might be some mixture of the two. There is no longer
the simplicity of a single mechanism for random motion.
This complex mixing of collective motion at ωpd (without
magnetic field) and cyclotron motion at ωc (due to magnetic
field) can be seen in our result for the vibrational density of
state, Fig. 5(b). More than one mechanism is at play, so that
there is no compelling reason to expect that the step size of a
displacement will be that of normal diffusion. Thus there is no
definitive reason to expect that self-diffusion will occur with
the displacements increasing with time exactly as was the case
for only one mechanism. In other words, the complexity of
the random motion means that there is no simple reason for
us to anticipate intuitively whether motion will be diffusive
or superdiffusive. This situation leads us to rely on numerical
simulations to provide an empirical answer.

V. SUMMARY

We have performed Yukawa MD simulations to study the
diffusion and superdiffusion of 2D liquid dusty plasmas under
a uniform perpendicular magnetic field. We characterized the
stochastic motion of using the mean-squared displacement
(MSD), velocity autocorrelation function (VACF), vibrational
density of states, and phonon spectra. It is expected that
adding a magnetic field will reduce the displacements
of charged particles as they undergo collisions, and this
indeed occurs. However, we find that adding the magnetic
field also changes the scaling of those displacements with
respect to time so that the MSD scales with a greater
power of time and the motion becomes superdiffusive. The
vibrational density of states has only one dominant peak
for all simulated conditions, and this peak frequency can be
expressed as a function of ωc and ωpd . These conclusions
may be tested in future experiments with magnetized dusty
plasmas.
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