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1. Introduction

Without externally applied force, pressure is an intrinsic phys-
ical quantity of a fluid. From equations of state [1] of gases, for 
example, the ideal gas law [2] and the van der Waals equation [3], 
pressure is a function of the temperature and volume, and maybe 
other physical quantities. The expressions of pressure for liquids 
are more complicated, due to much more complex equations of 
state [4] of liquids. As calculation power has increased, more 
computer simulations have been used to obtain accurate expres-
sions of pressure for various forms of matter [5, 6].

In this paper, we use molecular dynamical (MD) simu-
lations to study the pressure of two-dimensional (2D) 
Yukawa liquids. The Yukawa (or Debye–Hückel) poten-
tial, also called the screened Coulomb potential [7], has the 
form of a Coulomb potential with an exponential decay, 

( ) ( / )/φ λ π= − εr Q r rexp 42
D 0 , where λD is the Debye screening 

length and Q is the particle charge. It has been found to 
describe particle interactions for example in dusty plasmas 
[8] and colloids [9]. The exponential decay in the interparticle 
interaction comes from the shielding effects of two kinds of 
free charges, like electrons and positive ions for dusty plasmas 
[10], or negative and positive ions for colloids [9].

A dusty plasma [11–15] is a four-component mixture, 
where three components fill the entirety of a 3D volume; these 
are the electrons, ions, and neutral gas. The fourth component 

of charged dust particles, however, experiences very different 
confining forces than the electrons and ions so that dust parti-
cles occupy a much smaller volume. Gravity plays an impor-
tant role in the confinement of these massive dust particles, 
but not for ions and electrons under laboratory conditions. 
Within the entire 3D laboratory volume, there are huge num-
bers of electrons and ions, but very few dust particles, which 
can sediment due to gravity so that they become isolated in 
a single horizontal layer (monolayer), also called a 2D dusty 
plasma [10, 16–23]. Because of their high particle charge3 Q 
and low charge-to-mass ratio, these dust particles are strongly 
coupled, so that a collection of dust particles exhibits proper-
ties of solids or liquids. Here we will focus on the liquid state. 
Over the past twenty years, experimenters using monolayer 
dusty plasmas have studied liquid phenomena such as trans-
port [17] and waves [19]. Experimenters also found that the 
interparticle potential, in a monolayer dusty plasma, is nearly 
a repulsive Yukawa [8] for particles located in a plane perpend-
icular to ion flow. This experimental result is the justification 
for using the Yukawa potential in 2D dusty plasma simulations 
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such as [24–27]. However, the interaction can differ from a 
Yukawa potential for multi-layer or three-dimensional dust 
clouds [28], where some particles are located in the wakes 
of other particles, due to the ion flow. For 2D dusty plasmas, 
the dust-particle-component has a pressure of its own, unre-
lated to the pressure of the electrons and ions, due to the weak 
2D spatial occupation of dust particles as compared with the 
massive 3D occupation of electrons and ions. Within this 2D 
plane, the mutual repulsion of dust particles is the source of 
the potential contribution of the pressure of the monolayer 
dust component. Here, we are concerned with the pressure of 
the dust component, in such a monolayer dusty plasma.

In analogy to the experiments, where only the dust parti-
cles are observed, simulations such as [29–42] are often per-
formed with a simplification that only the dust particle motion 
is tracked. In this simplification, the physics of the electrons 
and ions is represented as the microscopic screening length, 
while the physics of the gas molecules is represented by a 
prescribed kinetic temperature of the dust particles. For 2D 
Yukawa liquids, previous simulations using this simplification 
include [29–38], which were all for uniform conditions. These 
simulations assume that particles are constrained to move on 
a 2D plane; this assumption is justified by observations in 
monolayer dusty plasma experiments, such as in [10], where 
particles have negligible out-of-plane motion and the plane 
never buckles. This one-component simulation approach has 
been validated experimentally for phenomena such as phonon 
spectra [43–45] that do not involve charge separation of the 
electrons and ions. It is important to note, however, that this 
one-component approach would not be appropriate for cer-
tain non-uniform conditions, such as a dust-acoustic wave in a 
three-dimensional dust cloud, in which the electrons and ions 
move oppositely in response to a nonuniformity. The validity 
of the present paper, where we use a one component Yukawa 
model, is therefore limited to uniform conditions in a mono-
layer dusty plasma, but not dust acoustic waves for example.

Typically 2D Yukawa systems are characterized using two 
dimensionless quantities: the coupling parameter Γ and the 
screening parameter κ, defined [34] as

/( )πΓ = εQ ak T42
0 B

and

/κ λ≡ a ,D

where T is the particle kinetic temperature and

( ) /π= −a n 1 2

is the Wigner–Seitz radius [35] for an areal number density 
n. The coupling parameter Γ is proportional to the inverse 
temper ature 1/T, while the screening parameter κ indicates 
the volume or number density4 of Yukawa systems, related to 

the density, or the volume (or the area for 2D systems) of one 
particle. In the one-component plasma description: Γ∼ 1 for 
a nonideal gas, Γ> 1 for a liquid, and there is a solid for Γ of 
order 102, where the solid–liquid transition depends on κ, as 
shown by simulations [30, 36] for 2D Yukawa systems. Here 
we study the liquid state.

Here we use simulations to seek a relation between the 
pressure and temperature for various ‘volumes’ of a 2D 
Yukawa liquid. Our approach is to calculate the pressure using 
the diagonal elements of the stress tensor computed from the 
positions and velocities of all the individual dust particles, as 
explained in section 2.2. This method differs from three pre-
vious calculations of pressure for 2D Yukawa liquids based on 
MD simulations: Totsuji et al [46, 47] computed the internal 
energy U from a simulation, and from that obtain the pressure; 
Hartmann et al [30] computed the pressure from the pair cor-
relation function from a simulation; Vaulina et al [48, 49] used 
a semi-empirical jumps theory.

We will propose a simple analytic expression for the pres-
sure, as the sum of a potential term and a kinetic term that 
is proportional to temperature. Coefficients for this analytic 
approximation are obtained by fitting simulation results for 
various temperatures and densities. Comparing the magnitude 
of the potential and kinetic terms, we will find that the poten-
tial term dominates for most of the parameter space studied 
here. In a recent experiment [50], it has been discovered that 
a strongly coupled monolayer dusty plasma seems to obey the 
ideal-gas equation  of state, which suggests that the kinetic 
contribution of the pressure plays an important role in some 
parameter regimes.

2. Simulation

2.1. Method

We perform equilibrium MD simulations [33] to study 2D 
Yukawa liquids dynamics. We integrate the equation  of 
motion φ= −∇Σmr̈i j ij for all simulated 1024 particles, where 
φij is the binary interparticle interaction with a Yukawa poten-
tial [8]. The Yukawa potential is truncated at distances beyond 
a cutoff radius of 24.8a, as justified in [37]. All simulated par-
ticles are constrained within a single 2D plane, in a rectan-
gular box, with a width-to-length ratio of 0.866 and periodic 
boundary conditions. We do not include any Langevin heating 
term or frictional cooling term. From test simulations, we 
have confirmed that our pressure results are independent of 
the simulated particle number from 1024 to 16 384.

As inputs, we set the parameters of κ and Γ in our simula-
tions. We specify eleven values of κ over an experimentally 
relevant range of 0.5–3.0, while keeping the areal number den-
sity n as constant for all runs. For each value of κ, as mentioned 
above, the 2D Yukawa lattice has one specific melting point 
[30, 36], which can be expressed as /Γ1 melt. In our simulation, 
we change the desired temperature over a wide range: from 
the coldest temperature at just ≈ 1% higher than this melting 
point, to the hottest at ≈ 70 times higher than this melting 
point. As justified in [37], the integration time step is chosen 
from the range between (0.0037–0.037) ω−pd

1 depending on the 

4 In 2D dusty plasma experiments, besides the shielding factor of the Yukawa 
interaction, the radial confinement would also affect the compressibility of dust 
suspension. Typically, the three-dimensional confinement can be modeled as a 
combination of the radial confinement and a vertical parabolic potential well. The 
vertical well allows out-of plane motion of dust particles. If this vertical confine-
ment is weak, the compressibility of the system could be affected by a buckling 
deformation. In our current simulation, we assume the limit of an infinitely strong 
vertical confinement, as in other 2D dusty plasma simulations such as [30, 35].

J. Phys. D: Appl. Phys. 49 (2016) 235203
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Γ value, where ( / ) /ω π= εQ ma2pd
2

0
3 1 2 [35] is the nominal 2D 

dusty plasma frequency, where m is the mass of one dust par-

ticle. The values we choose for the time step are ω−0.0037 pd
1 

for ⩽ Γ<1.0 4.0, ω−0.0093 pd
1 for ⩽ Γ<4.0 10.0, ω−0.0185 pd

1 for 

⩽ Γ<10.0 40.0, and ω−0.037 pd
1 for ⩾Γ 40.0. We verified that 

the time step is adequately small so that energy is conserved 
quite well.

The temperatures T that we report are kinetic temperatures 
computed from the mean square velocity fluctuation. These 
values can differ 1% from the input target value, due to fluc-
tuations arising from the finite system size. The input target 
value for temperature is specified by a Nosé–Hoover thermo-
stat, which is only used for the initial 105 steps to reach the 
desired temperature. After that initialization, the thermostat is 
turned off and the next 105 steps are integrated under steady 
conditions, with no thermostat. The data reported in this paper 
for pressure are based on the 105 steps without the thermostat.

2.2. Pressure calculation

We obtain the pressure of the 2D Yukawa system from the 
stress tensor. Using the MD simulation data for particle posi-
tions, velocities and potentials, we calculate the diagonal ele-
ments of the stress tensor,

( )
( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∑ ∑= −

∂Φ

∂= ≠

P t mv v
x x

r

r

r

1

2
,xx

i

N

ix ix
j i

N
ij ij

ij

ij

ij1
 (1)

and similarly for Pyy(t).
When the stress field is isotropic, as in our studied system, 

both Pxx(t) and Pyy(t) fluctuate around a constant level of pV 
[51], where p is the pressure and V is the volume of system. 
For 2D systems, V is replaced by the area of the system A. We 
average Pxx(t) and Pyy(t) instantaneously, and then we average 
over time, to obtain our result for pV (We note that instead 
of time averages, one can also compute fluctuations of Pxx(t) 
and Pyy(t), which are useful for obtaining the longitudinal vis-
cosity [33].).

2.3. Units

To compare with experimental situations easily, we use dimen-
sionless quantities. Lengths are normalized by the Debye 
length λD. Energies and temperatures k TB  are normalized by 

/ π λεQ 42
0 D, i.e. the potential energy between two particles 

separated by a distance of the Debye length. We will write the 
normalized temperature as /( / )π λ= εT k T Q 4B

2
0 D .

We normalize pressure p, which has units of energy per 
area in 2D systems, two ways. Usually, we normalize pres-
sure as /[( / )/( )] ( )/π λ πλ π λ= =ε εP p Q p Q4 42

0 D D
2 2

0 D
3 2. This 

normalization is independent of the kinetic temperature. In 
choosing this as the normalization, we essentially choose as 
an energy the unshielded Coulomb potential energy of two 
particles separated by a distance λD, and then we divide 
it by the area of πλD

2 , to obtain an energy per unit area. 
Alternatively, for when we have only a single value of κ, we 
can normalize pressure using a distance a instead of λD, as in 

figure 1 in section 4.1, where the pressure is normalized by 

( / )/( / ) /π ρ ω=εQ a n a4 1 22
0

2
pd
2 .

3. Expression for pressure

We seek an analytic approximate expression for the pressure. 
Motivated by the form of equation (1) for stress, we choose 
a straightforward sum of a potential term and a kinetic term. 
The potential term is chosen as a simple multiple of the 
potential energy, /( )π= εU Q a40

2
0 , which is the Coulomb  

potential energy at a distance of the Wigner–Seitz radius a. 
The multiplier α0 is allowed to be a fit parameter. The resulting 
analytic expression for the potential term is much less compli-
cated than equation (4.9) of [46]. The kinetic term is chosen 
as a multiple β0 of the one for an ideal gas; unlike [30, 46, 
48] we will investigate whether a better fit can be obtained by 
allowing the multiplier β0 to differ from unity; we will later 
remark upon a possible physical justification for a nonzero β0.

Figure 1. Pressure of 2D Yukawa liquids for κ = 0.5. The same 
simulation data are plotted as circle symbols in the unit of constant 

/ωa 22
pd

2  in (a) or in the unit of /k T mB  (related to Γ values) in (b). 
The curves shown are fits to equation (2). These fits are done two 
ways in (a): the solid curve allows the kinetic term multiplier β0 
to be a free parameter, yielding a good fit, while the dashed curve 
assumes β0 to be unity which yields a worse fit. In (b) we show the 
solid curve fit result from (a) again with different scales, to reveal 
the linear scaling.

J. Phys. D: Appl. Phys. 49 (2016) 235203
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Thus, our conjecture is that the equation of pressure can be 
written as / / /ρ β α= +p k T m U m0 B 0 0 , which we can rewrite as

/ ( / ) /ρ α β ω= + Γp a 2.0 0
2

pd
2 (2)

We expect that the dimensionless coefficients α0 and β0 will 
depend on the physics of screening, and therefore will depend 
on density or κ.

In section 4.1 we will begin by testing equation (2) by com-
puting the pressure for a single value of κ = 0.5. This result 
will also help in discussing the physical nature of the terms 
in the expression of pressure. We will also find values for the 
dimensionless coefficients α0 and β0. Then, in section 4.2 we 
will prepare a more general equation of pressure by varying κ 
in our simulation; fitting those results yields a useful analytic 
expression for a more general expression of pressure.

4. Results

4.1. Pressure for κ = 0.5

For a single value of κ = 0.5, figure 1 shows our results for 
the 2D Yukawa liquid pressure. Two panels are shown, for the 
two normalizations of pressure, one is /ρ ωa 22

pd
2  mentioned 

above and the other is /ρk T mB  related to Γ values. The trend 
of the data points in figure 1(a) is that the pressure decreases 
monotonically as the coupling parameter Γ increases. In other 
words, the pressure decreases when the temperature drops, as 
expected.

We test equation  (2) by fitting to simulation data two 
ways: with the kinetic term coefficient β0 as a free para-
meter, and with β0 set to unity. These two fits are shown as 
solid and dashed curves, respectively, in figure 1(a). We find 
that equation (2) fits the obtained pressure well when β0 is a 
free parameter: for κ = 0.5 case shown here the best results 
are for α = 1.530  and β = 1.330 . The scaling has a simpler 
appearance of a straight line if we plot the data differently. 
This is done using the alternate normalization for p, /ρk T mB , 
in figure 1(b).

We now discuss the physical nature of the potential and 
kinetic terms in the equation of pressure. If we turn off the 
potential energy contributions by setting α0 to zero, so that the 
only contribution is the kinetic term, then equation (2) would 
be β∝p T0 , which resembles the ideal gas law. This is reason-
able because the ideal gas law only contains kinetic effects.

The potential term arises from the microscopic interactions 
of all the particles. We must recognize that its magnitude, as 
expressed by the coefficient α0, will depend on the micro-
scopic structure and the interactions for a specific system.

The potential term generally dominates the kinetic term 
for the pressure in a liquid. This is seen in figure 1 over the 
entire range of the temperatures (or Γ), for κ = 0.5. The ratio 
of the potential and kinetic terms is of order Γ, based on a 
simple comparison of the two terms in the fit result, 1.53 for 
the potential term plus /Γ1.33  for the kinetic term. Recall that 
Γ> 1 for a liquid (In the next section  we will broaden our 
study to include a range of κ, which is equivalent to a range of 
system volumes or areas.).

Having confirmed that our conjecture for the expression of 
the pressure, equation (2), is reasonable for one value of κ, i.e. 
one value of area, we next turn to a broader study of the equa-
tion of pressure by allowing κ or area to vary.

4.2. Pressure for a wide range of κ

We now study the pressure of the 2D Yukawa liquid over a wide 
range of parameters. In our MD simulations, we vary temper-
ature k TB  and density κ, while keeping the simulated system 
size unchanged. However, in our data analysis, we assume that 
the Debye length λD is constant for various κ values so that we 
can compare different runs easily. That is to say, our analysis 
method is equivalent to changing the Wigner–Seitz radius a or 
areal number density n by varying /κ λ≡ a D [35] while holding 
the Debye length λD constant. Thus, an isochore in our data 
will correspond to a curve of constant κ.

We will use our conjecture for the expression of pressure, 
equation (2), in the dimensionless form

[ ( / )]
( )

α β π λ
π λ

= + ε
ε

p k T Q
Q

4
4

,B 0 D
2

2

2
0 D

3 (3)

or

α β= +P T. (4)

Here, ( / )π λ= εP p Q4 2
0 D

3 2  is the normalized dimensionless 
pressure, and ( / )π λ= εT T k Q4B 0 D

2  is the normalized dimen-
sionless temperature. Note that, since normalizations in equa-
tion  (4) are different from those in equation  (2), the fitting 
coefficients are different:

κ α α= ,3
0 (5)

κ β β= .2
0 (6)

Our results for the pressure from the simulation are pre-
sented as data points in figure  2. The data are organized 
according to the value of κ, i.e. according to isochores. The 
range of κ shown is 0.5–3.0, which covers all typical dusty 
plasma experiments [13, 52]. As expected, the pressure of a 
2D Yukawa liquid increases with temperature for all simulated 
conditions.

We also indicate the phase transition in the pressure–temper-
ature space, in figure 2. The dashed curve is the phase-transition,  
based on the data from other MD simulations [30, 36] which 
were reported in the κΓ −  space; we convert those previously 
published κΓ −  melting curves to the pressure–temperature 
space by using our pressure data in figure 2.

As the main result of the paper, we find that the analytic 
approximation of the equation of pressure, equation (4), shows 
excellent agreement with the simulation, over a wide range of 
temperatures and densities. The discrepancy is generally very 
small, as seen by comparing the data points for the simula-
tion and the smooth curves for the analytic approximation in 
figure 2. The largest percentage discrepancy, as indicated by 
a gap between data points and curve on the log–log plot, is 
found in the lower left corner, for low temperature and large κ 
values, i.e. cold low density liquids.

J. Phys. D: Appl. Phys. 49 (2016) 235203
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The physics interpretation of equation (4) is that the pres-
sure of 2D Yukawa liquids is composed of two contributions. 
The potential term with the coefficient α is independent of 
temperature; it depends on density or κ because it is deter-
mined by the potential energy for particles arranged spatially 
with the microstructure of a liquid. The kinetic term with the 
coefficient βT increases linearly with temperature, much like 
the ideal gas law.

To compare the contributions from the potential and kinetic 
parts of the pressure, we plot the ratio of these two parts in 
figure 3. Generally, the kinetic term dominates at the top of 
the graph, for large values of T, while the potential term domi-
nates at the bottom. The dividing line, where the potential and 
kinetic terms are equal, is ( )/ ( )α κ β κ=T , shown as a dotted 
line.

We present the coefficients α and β and their dependence 
on κ in figure 4. We find the values of these coefficients by 
allowing them to be the two free parameters in the fit to equa-
tion (4). We see that both α for the potential term and β for the 
kinetic term decrease with κ, i.e. they decreases with area of 
one particle, or the averaged particle spacing. In other words, 
both contributions to the pressure depend on density in the 
same way, although the potential term has a much stronger 
dependence as indicated by the greater slope in figure 4.

As an analytic approximation, we find that these coeffi-
cients can be fit to the following expressions

/( / )( / )α λ= +λ− a2.29e 0.34a2.45
D

5D
2

 (7)

/( / )( / )β λ= +λ− a0.14e 1.30 .a0.37
D

2D (8)

These expressions are plotted in figure 4 as smooth curves. 
The discrepancy compared to the data points for the simula-
tion is small, for the experimentally relevant range of para-
meters that we studied here. The data plotted in figure 4 for α 
and β can be converted to α0 and β0 using equations ((5)–(6)). 
Over the range of /λa D shown in figure 4, the variation of β 
corresponds to β0 increasing from 1.325 to 1.724.

It deserves mention that our coefficient β0 has a value that 
differs from unity. This phenomenological result might be 
unexpected. The kinetic term in equation (1) has no adjustable 
multiplier, so that one might just assume that such a multi-
plier must have a value of unity, and this is indeed commonly 
assumed when using other methods as well [30, 46–49]. If 
we did not allow β0 to differ from unity, our fit would be poor 
as shown by the dashed curve in figure 1(a). We should ask 

Figure 2. Pressure of 2D Yukawa liquids for various values of 
/κ λ= a D where a is the Wigner–Seitz radius. Curves fit the 

expression of α β= +P T quite well. A curve corresponds to 
an isochore. The solid–liquid phase transition of the 2D Yukawa 
system is shown as a dashed line. We obtain the pressure data from 
our simulation, using the melting points of 2D Yukawa liquids 
(expressed in terms of Γ for different κ) from previous simulations 
[30, 36]. Solids are to the left of the dashed curve, while liquids 
(which are studied in this paper) are to the right.

Figure 3. The ratio of the kinetic contribution and the potential 
contribution to the pressure for different temperatures and densities. 
Symbols are plotted in the same style as in figure 2, for different 
κ values. A dotted line for a ratio of unity indicates where the two 
contributions are equal.

Figure 4. The coefficients α and β. The data points are from the fits 
in figure 2, while the curves are fits to equations (5) and (6).

J. Phys. D: Appl. Phys. 49 (2016) 235203
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what is the significance, then, of our phenomenological result 
that β > 10 . One possibility is that it essentially captures the 
temperature dependence of the potential term, which arises 
from the temperature variation in microscopic structure (as 
measured for example by pair correlation functions).

5. Conclusion

Using an MD simulation, we have obtained an analytic 
approximation for the pressure of a 2D Yukawa liquid, valid 
over a wide range of parameters. We did this by computing the 
pressure, and modeling it as the sum of two terms, potential 
and kinetic, where the kinetic term is proportional to temper-
ature and the potential term is independent of temperature.

The resulting equation  of pressure is equation  (4) with 
equations ((7) and (8)). In these equations, the parameters α 
for the potential term and β for the the kinetic term are func-
tions only of area, or κ when the Debye length λD is held 
constant.
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