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The development of nonlinearity is observed in a naturally occurring planar dust-density wave. As
it propagates through a dusty plasma, the wave grows and harmonics are generated. The amplitudes,
wave numbers, and growth rates are measured for the fundamental and its harmonics. The energy
in the harmonic modes exhibits a strong exponential increase with diminishing gas pressure, until it
levels off at lower gas pressures. The wave numbers and growth rates for the harmonics are near
integer multiples of those for the fundamental. © 2011 American Institute of Physics.
�doi:10.1063/1.3544938�

I. INTRODUCTION

Dust-acoustic waves, also termed dust-density waves,
are low-frequency compressional waves that propagate in
dusty plasma.1 �Dusty plasma is a collection of small
charged dust particles in a plasma background of electrons,
ions, and neutral gas.� The dust-density wave �DDW� is
analogous to the ion-acoustic wave. In the DDW, the heavy
dust particles provide the wave’s inertia. During compression
and rarefraction of the dust particles, charge separation from
the background electrons and ions contributes to a restoring
electric field. The electric forces can be large because the
dust particles have a large negative charge. Because the dust
particles are so heavy, the DDW frequency is very low. Thus,
the wave can be observed in the laboratory using video
imaging.2

A DDW is often self-excited naturally in dusty plasma
due to an instability driven by ion flow.3,4 This has been
observed in several experiments, both in the laboratory5–14

and under microgravity conditions.15,16 In laboratory experi-
ments dust particles are often levitated in the plasma sheath,
where ion flows can be strong enough to couple their energy
to dust particles and drive the wave.3

The DDW can be driven to large amplitudes, where a
variety of nonlinear effects have been observed. Shocks have
been shown to develop as a DDW steepens,17,18 and a con-
fluence of shocks has been observed.19 Nonlinear wave-
particle interaction12,20,21 and wave breaking24 have been ob-
served in experiments that allow identification of individual
particles. Turbulence,22 spatial frequency clustering,23 and
wave harmonics20,24 have also been reported. These experi-
ments were mostly performed under conditions where dissi-
pation could not stop the wave from growing to large ampli-
tudes.

The DDW is damped by collisions between dust par-
ticles and neutral gas, which is always present in dusty
plasma experiments. At high gas pressures, the dust-neutral
collision rate �dn is so large that the wave is not observed,
while at low gas pressures, gas damping is less effective and
the DDW can grow to large amplitudes.4 At a critical gas
pressure, the instability and gas damping balance, which de-
termines a threshold for wave excitation.4,9,12,25,26 At gas
pressures of about 1 Torr �1 atm=760 Torr�, the time scale

for gas damping of dust motion �dn
−1 is comparable to a

typical wave period. For a spherical dust particle of radius
rd and mass density �d, the dust-neutral collision rate is
�dn=�8kBTgmg�ng /�drd, where mg is the mass of a gas atom,
Tg and ng are the gas temperature and number density, and �
is a constant of order unity that must be measured.27 Because
�dn is proportional to ng, it is also proportional to gas pres-
sure. In the experiment reported here, we reduce the effect of
gas damping by decreasing the gas pressure.

While most experimenters agree that dust-neutral colli-
sions are responsible for DDW damping under typical labo-
ratory conditions, other damping mechanisms have also been
proposed. One of these is wave damping due to a fluctuating
dust particle charge.28–30

Here, we report the observations of the development of
nonlinearity in a coherent self-excited DDW. As we gradu-
ally reduce gas pressure p �i.e., gas damping�, we at first
observe a small amplitude wave. As we reduce p further the
wave amplitude increases and nonlinearity develops. We
quantify nonlinearity by detecting harmonics. We measure
the amplitude, wave number, and growth rate of each har-
monic using a phase-sensitive detection.26 We find three con-
ditions: at high gas pressures p the harmonics cannot be dis-
tinguished from noise; at intermediate p the harmonic
energies emerge from the noise and increase exponentially as
p decreases; and finally at lower p the harmonic energies
level off. We find that the values of the wave numbers kr and
growth rates ki for the second harmonic �frequency 2f� are
double those for the fundamental �frequency f�. Similarly, kr

and ki for the third harmonic �3f� are triple those for the
fundamental.

II. EXPERIMENTAL DESIGN

The experiment is designed to observe the development
of nonlinearity in a naturally occurring dust-density wave. To
do so, we begin the experiment under conditions where the
dusty plasma exhibits little or no wave activity. We then use
the gas pressure as a control parameter for the ion-flow in-
stability. We use a design with an electrode and a glass box
that confines a dust cloud with a symmetry that helps sim-
plify the analysis of wave propagation.26
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A. Dust cloud confinement and imaging

A quantity of about 105 dust particles �4.8 �m diameter�
are introduced into an argon plasma. The dust particles be-
come negatively charged and are levitated in the plasma
sheath’s vertical electric field. They fill a volume in the
plasma near the bottom of a glass box.26 The box, which
rests on a rf powered electrode, has vertical walls, so that the
plasma develops a significant horizontal electric field. The
combination of vertical and horizontal electric fields confines
dust particles in a cloud. The dust cloud has a 22 mm width,
and it has many horizontal layers so that it has a 6 mm
height. The dust cloud is viewed from the side using a high-
speed camera that records a 21 s movie at 500 frames/s.

We verified that the camera has a linear response and the
dust cloud is optically thin. Therefore, the scattered light and
the image intensity are proportional to dust number density.26

The confining electric fields for our electrode and glass
box design help provide nearly one-dimensional waves. Ions
flow vertically downward, and there is little vertical or hori-
zontal variation in dust number density. As a result of this
symmetry, we will find that waves propagate downward, par-
allel to ion flow, with nearly planar horizontal wave fronts.
The planarity of the wave fronts allows straightforward mea-
surements of one-dimensional wave propagation and growth.
Because the ion flow causes the wave to grow as it propa-
gates, nonlinear effects are expected to be small at the top
of the dust cloud and increase downward. This spatial growth
of amplitudes allows us to observe the development of non-
linearities.

B. Pressure control

The DDW amplitudes, and therefore the expected non-
linear effects, vary sensitively with gas pressure p, which
leads us to design an experiment where we vary p over many
finely spaced values. Therefore, we choose to sample data as
we vary the gas pressure slowly and gradually �see Fig. 1�,
rather than record data at discrete pressure levels, as we did
previously.26

The experiment begins with a dust cloud at p
=420 mTorr, which is just below the critical gas pressure so
that wave activity is barely detectable. At this pressure, the
gas damping rate is �dn=135 s−1. A side view image of the

dust cloud under these conditions is shown in Fig. 2�a�. We
note that, in this stable dust cloud, the dust particles tend to
line up in vertical chains. This vertical alignment is due to
the downward ion flow,31 which is the same flow that can
excite the DDW.

We use a pressure control system to decrease the gas
pressure continuously, Fig. 1. The control system consists of
a capacitance manometer pressure sensor, a butterfly exhaust
valve to regulate the pumping speed, and a feedback control-
ler that adjusts the valve in order to match the pressure mea-
surement to a desired set point. In order to ramp the pressure
linearly with time, we apply a corresponding voltage wave-
form to the controller’s set point. Only the pumping speed is
adjusted in this control system; the inlet gas flow remains
constant at 5 SCCM �SCCM denotes cubic centimeter per
minute at STP�.

The requirement that must be met, in choosing the pres-
sure ramp rate, is to observe multiple wave transits under
nearly steady conditions. �A wave transit in our experiment
requires 0.15 s; this is the time required for the DDW to
propagate through the dust cloud’s vertical extent.� The most
restrictive conditions for meeting this requirement are found
in the intermediate pressure range, where wave amplitude is
most sensitive to pressure. We will find that in the interme-
diate pressure range, harmonic energies will increase by a
factor e over a pressure change of 0.24 mTorr. We choose a
ramp rate to be slow enough that there are multiple wave
transits during the time interval that the pressure changes by
0.24 mTorr. We used a ramp rate of �0.31 mTorr/s, corre-
sponding to a 0.01% decrease of pressure and damping rate
during one wave transit. The duration of our entire movie,
21 s, corresponds to 140 wave transits.
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FIG. 1. Time series measurement of gas pressure p, which is the experimen-
tal parameter used to control the instability and growth of the dust-density
wave. The pressure is constant until time t=0 when we begin to decrease
pressure at a linear rate. At the same time, we begin recording a movie,
which provides our principal data.
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FIG. 2. Side view images of the dust cloud’s central region. Bright spots are
individual dust particles. At lower gas pressures, the ion-flow instability can
cause planar compressional waves to grow in amplitude as they propagate
downward in the −ẑ direction. �a� At the highest pressure, gas damping
causes the wave to be barely detectable. ��b�–�d�� At lower gas pressures,
gas damping is less effective and the wave grows to higher amplitudes, as
indicated by the bright high-density wave fronts near the bottom of the dust
cloud. Each panel shows the same 2.95 mm�5.90 mm spatial region. The
online reader may view a portion of the movie showing both the wave’s
growth as it propagates downward and the amplitude increase as pressure
diminishes. The movie clip, which plays at reduced speed, corresponds to
the time interval between t=4 and t=12 s �enhanced online�. �URL:
http://dx.doi.org/10.1063/1.3544938.1�
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III. WAVE AMPLITUDE OBSERVATIONS

Our results are all based on the movie, which reveals a
coherent self-excited dust-density wave. The wave has a
nearly planar geometry. The properties and development of
the wave are easily seen in the recorded movie, Fig. 2. The
wave propagates downward through the dust cloud in the −ẑ
direction, parallel to the ion flow. The phase speed of 40
mm/s and frequency of 25.0 Hz did not vary significantly
over the entire vertical height of the dust cloud.

Nonlinear effects are expected where wave amplitudes
are highest, which we observe in this experiment near the
bottom of the dust cloud and at lower gas pressures. Near the
bottom of the cloud, the amplitude is large because the wave
grows as it propagates downward. This spatial growth is due
to the ion-flow instability, which drives the wave. The spatial
growth is prominently indicated by the increasing amplitude
of the wave fronts near the bottom of the dust cloud in Fig.
2�d�, as compared to the top. At lower gas pressures, the
amplitude is large because gas friction is reduced. Gas fric-
tion is an energy loss mechanism that competes with the
instability.4,26 The variation of wave amplitude with gas pres-
sure can be seen by comparing the four panels of Fig. 2, and
by noting that for a given height z, the wave amplitude in-
creases as the pressure is lowered.

IV. ANALYSIS METHODS

The three main methods used to analyze our recorded
movie are calculations of space-time data, power spectra, and
a phase-sensitive amplitude detection. These are all based on
analyzing video images, where the brightness of the image is
proportional to dust number density. Details of these three
methods are presented next.

The first method is a calculation of space-time data,
which represent image intensity as functions of both vertical
position z and time t. The calculation begins with individual
video images, cropped to the spatial region shown in the
panels of Fig. 2 �5.90 mm vertical and 2.95 mm horizontal�.
Exploiting the planar nature of the waves in this region, we
average over an ignorable coordinate x, yielding data corre-
sponding to dust number density versus vertical position z.
All the required information needed to analyze a compres-
sional planar wave is incorporated into the space-time data: a
quantity representing dust number density as a function of
both position z and time t. Details of the calculation method
are described in our previous paper,26 where space-time data
�for a different experiment� are presented in a visual form as
a space-time diagram.

The second method is an identification of the frequencies
present in the wave using power spectra computed as func-
tions of vertical position z. For a given height z, a power
spectrum is computed from the space-time data using an fast
Fourier transform �FFT� of a 1024 frame ��2 s� time series.
This is repeated for 30 vertical positions z. Assembling the
power spectra for each value of z yields a plot of wave en-
ergy as a function of both frequency and height. These spa-
tially resolved plots of the power spectrum will reveal a fun-
damental frequency as well as the presence of harmonics.

The third method is a phase-sensitive amplitude
detection,26 which yields precise measures of the phase �
and amplitude A as functions of the vertical position z. For a
given height z, the phase and amplitude are detected using a
short time series from the space-time data. The detection of
phase and amplitude is based on principles analogous to
those of an electronic instrument called a lock-in-amplifier.32

Like a lock-in-amplifier, our detection requires a reference
wave at a known frequency, which we synthesize using the
frequency measured from the power spectra. We repeat the
calculations of ��z� and A�z� separately for the fundamental
frequency f and the harmonics 2f and 3f . This method re-
quires that the frequency does not vary with position z, and
that it varies slowly or not at all with time. These require-
ments are satisfied in our experiment. Phase-sensitive detec-
tion allows us to analyze shorter time series of data �0.2 s�. In
this experiment, time has a direct correspondence with gas
pressure. Further details of phase-sensitive detection are pro-
vided in a previous paper.26

Our chief results, in Sec. V, are based on measurements
of amplitude A and phase � using the phase-sensitive detec-
tion. One of our chief results will be a characterization of the
pressure dependence of nonlinearity, which we quantify us-
ing the total harmonic distortion computed from amplitudes
of the harmonics and fundamental. Another chief result is the
measurement of wave number kr, and growth rate −ki, using
a method we describe next.

We measure kr and −ki separately for the fundamental
and each harmonic using the spatial profiles of phase ��z�
and amplitude A�z�. We assume planar waves with a dust
number density 	eikz−i2
ft, where the real part of k=kr+ iki is
the wave number and the imaginary part corresponds to the
growth rate. We find kr as the slope of ��z�. We find the
growth rate −ki by fitting A�z� to an exponential; this pure
exponential variation requires planar wave fronts. We mea-
sure −ki only in the upper and middle spatial regions, where
the wave amplitude grows as e−kiz and is not yet saturated.

V. RESULTS

A. Fundamental frequency

The fundamental frequency of the wave is f =25.0 Hz.
This measurement is based on the power spectrum, Fig. 3.
For our experimental design, we found that f did not vary
significantly with vertical position z or gas pressure p.

B. Development of nonlinearity with diminishing
pressure

We will present several results to study the development
of a nonlinear wave as gas pressure p decreases. We begin by
observing the presence of harmonics in the power spectrum.
We will then use phase-sensitive detection to quantify how
the harmonics emerge, grow, and then level off as the gas
pressure is diminished.

The presence of harmonics is a signature of nonlinearity,
and is revealed in the power spectra �Fig. 3�. The energy in
the harmonics exhibits the same general trends as the energy
of the fundamental: all become stronger at lower gas pres-
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sures and near the bottom of the dust cloud, i.e., at small z.
At higher pressures, the wave amplitude is very small so that
only the fundamental is detectable, especially near the bot-
tom of the dust cloud, as in Fig. 3�a�.

The growth of the fundamental and harmonics is mea-
sured with a better precision and resolution by the phase-
sensitive detection. For a position near the bottom of the dust
cloud, Fig. 4�a�, we see that the fundamental amplitude A1

increases exponentially with decreasing pressure, after
emerging from noise. This exponential increase is abrupt,
with the amplitude doubling several times as the pressure is
reduced only a fraction of 1%. As p decreases further, the
exponential variation ceases and the amplitude levels off.
The harmonics exhibit the same trends as pressure decreases:
emerging from noise, then increasing exponentially, and fi-
nally leveling off at lower pressures. However, compared to

the fundamental, the harmonics emerge from noise at slightly
lower pressures, and they level off at lower amplitudes.

As a simple indicator of nonlinearity, we use the total
harmonic distortion �THD�, which is the ratio of the total
energy in the harmonics to the energy in the fundamental. In
Fig. 4�b�, we calculate the THD as �A2

2+A3
2� /A1

2, using the
amplitudes from Fig. 4�a�.

We find three conditions in the development of non-
linearities, as measured by THD. First, nonlinearity emerges
from the noise level at a pressure of about p=418.2 mTorr.
Second, the nonlinearity increases exponentially as p is re-
duced, 	e−p/po. Fitting the data in Fig. 4�b� we find a small
value for the fit constant of po=0.24 mTorr. The exponential
increase of nonlinearity does not continue indefinitely as p
decreases. In fact, it occurs only over a limited range of
pressures. Third, the THD levels off at about 45%. In other
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FIG. 3. �Color online� Power spectra plotted vs vertical position z for three
gas pressures. The fundamental frequency is f =25.0 Hz. �a� At high gas
pressures, we can detect only the fundamental and only at lower values of z.
��b�–�c�� At lower pressures, harmonics become stronger. At 417 mTorr, we
can detect all nine harmonics that are below the Nyquist frequency; only the
first four are shown. These spectra are calculated from the space-time data;
each panel corresponds to a sequence of 1024 frames, i.e., 2 s of data,
centered at the times indicated. �The zero for vertical position z is arbitrarily
chosen to be just below the bottom of the dust cloud.�
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FIG. 4. �Color online� Results showing the pressure dependence of the
fundamental and harmonics for a position near the bottom of the dust cloud.
�a� Amplitudes of the fundamental A1, the second harmonic A2, and the third
harmonic A3. As pressure p decreases, all amplitudes increase exponentially
from the noise and then level off. �b� THD, an indicator of nonlinearity,
calculated from the amplitudes in �a�. After emerging from the noise, the
THD increases exponentially as p decreases, with a pressure constant po,
and then levels off at 45%; i.e., the harmonic energy at lower pressures is
almost half the fundamental energy. Noise on the left is due to small wave
amplitudes. In both panels, the gas pressure scale is reversed �bottom axis�.
Results here and in Fig. 6 are computed from the space-time data using
phase-sensitive detection.
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words, the nonlinearity increases to a maximum level where
energy in the harmonics is almost half the energy in the
fundamental. This 45% THD was measured for a position z
=1.3 mm near the bottom of the dust cloud. At higher posi-
tions, the nonlinearities are weaker, with a THD of 40% at
z=2.0 mm and 10% at z=3.0 mm.

C. Phase and amplitude profiles

Our phase-sensitive detection yields vertical profiles of
the phase � and the amplitude A for the fundamental and the
harmonics. As an example, �1, �2, �3, A1, A2, and A3 are
presented in Fig. 5 for time t=10.0 s, corresponding to the
gas pressure p=416.8 mTorr.

The phase data show that higher harmonics have higher
wave numbers, and they are not detectable until the wave has
partially propagated through the dust cloud, as shown in
Figs. 5�a�–5�c�. The amplitude data show that the harmonics
grow at faster rates than the fundamental, but never over-
come the fundamental, Fig. 5�d�. All amplitudes saturate near
the bottom of the dust cloud at lower values of z.

In our phase-sensitive detection, we fit phase data, like
those in Figs. 5�a�–5�c�, to a line, yielding the wave number
kr. Likewise, we fit amplitude data, as in Fig. 5�d�, to an
exponential, yielding the growth rate −ki, reported next.

D. Wave numbers and growth rates
of harmonics

Results for the wave numbers kr and the growth rates −ki

are presented as functions of pressure in Figs. 6�a� and 6�b�.
For both the fundamental and the harmonics, we see distinc-
tive values for kr and −ki that vary little with pressure. The
wave number did not vary noticeably at all, Fig. 6�a�, while
the growth rate had a slight trend to increase as p decreases,
Fig. 6�b�. In a previous report of a different experiment,26 we
noted this trend for the fundamental −ki1

; here, we find the
same trend for the harmonics −ki2

and −ki3
as well. Noise at

high pressures in Figs. 6�a� and 6�b� is due to small wave
amplitudes.

As one of our chief results, we find that the harmonic
wave numbers and growth rates nearly double for the second
harmonic, and triple for the third harmonic, as compared to
the fundamental. This is demonstrated by calculating ratios
of kr in Fig. 6�c� and −ki in Fig. 6�d�. Over a 5 mTorr range
of pressure, the ratios for wave numbers are kr2

/kr1
in the

range of 1.95–2.09 and kr3
/kr1

in the range of 2.92–3.12.
Similarly, the ratios for growth rates are ki2

/ki1
in the range

of 1.92–2.07 and ki3
/ki1

in the range of 2.82–3.04.
We are unable to definitively explain our phenomeno-

logical observation of a doubling and tripling of kr and ki for
the second and third harmonics. One possible interpretation
is in the context of three-wave mixing. Consider two ideal
undamped waves, l and m, that interact to generate a third
wave n. In the most general case, the two interacting waves
l and m are completely independent wave fields that overlap
spatially. The frequencies are expected to add as

fn = f l + fm. �1�

If these ideal waves propagate in the same direction and they
are acoustic �i.e., dispersionless, f 	k� one would expect that
wave numbers will add as

kn = kl + km �2�

for both the real and imaginary parts of the wave number.
The generation of a second harmonic 2f , for example, corre-
sponds to f l= fm= f , where f is the fundamental frequency.
For the generation of a second harmonic we would expect
the wave number to double, i.e., to have a simple ratio
kr2

/kr1
=2. Likewise, the wave number triples for the third

harmonic, kr3
/kr1

=3.
The ideal wave mixing model described above generally

assumes an infinite lossless nonlinear medium with a disper-
sionless wave incident at the fundamental frequency. Under
these ideal circumstances, the frequencies and wave numbers
will have precisely defined values. In our experiment, how-
ever, the sample region is finite in size �spanning only a few
wavelengths�, and it has strong dissipation that nearly bal-
ances a strong energy source. A dispersion relation devel-
oped in Ref. 26 for our experimental conditions predicts that
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FIG. 5. �Color online� Vertical profiles of ��a�–�c�� the wave’s phase �
and �d� the wave’s amplitude A, corresponding to gas pressure p
=416.8 mTorr. Results are shown for the fundamental wave mode ��1 ,A1�
and its second and third harmonics, ��2 ,A2� and ��3 ,A3�. Profiles like these
are calculated from space-time data using phase-sensitive detection. These
profiles are then used to measure the wave numbers kr and growth rates −ki.
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the wave has some dispersion in the frequency range f to 3f ,
as shown in Fig. 7. We note that the dissipation and the finite
system size could lead to a broadened bandwidth for the
wave’s frequencies and wave numbers. Thus, it is possible
that the wave can propagate with a wave number and fre-
quency which is slightly off the curve of the theoretical dis-
persion relation.

A doubling and tripling of −ki has been observed in ex-
periments with a different kind of plasma wave. About 40
years ago, several experimenters measured the growth of un-
stable Langmuir waves using an interferometric method re-
lying on a lock-in amplifier to provide phase-sensitive detec-
tion. Their waves grew as the result of an electron-beam
driven instability. In three of the Langmuir-wave experi-
ments, a doubling of −ki for the second harmonic and a tri-
pling of −ki for the third harmonic were observed �Refs.
33–35�. However, our inspection of the data from another
similar experiment by Apel36 reveals a departure from this
integer multiplication of the growth rate, with measured −ki

values less than integer multiples. Although there are some
similarities between the results of these experiments and our
results, the physical systems are not the same. For instance,
in our experiment, the DDW is not in resonance with the
ion-flow velocity, whereas the Langmuir wave’s fundamental
mode is in resonance with the electron-beam velocity. Addi-

tionally, the sources of nonlinearity may be different, and the
time scales are much slower in our experiment.

In addition to the doubling and tripling of kr and −ki, one
of our quantitative results was the amplitude of the harmon-
ics. Suitable theories could be tested against the amplitudes
we observed. It is unclear whether one can use the Manley–
Rowe relations,37 which are used most often to model an
ideal nonlinear system without dissipation, driven by an ex-
ternal oscillator.

VI. SUMMARY

In a dusty plasma experiment, we study nonlinearity in a
naturally occurring dust-density wave, which grows as it
propagates. Our experimental design provides nearly planar
wave fronts, which allows using phase-sensitive detection to
measure the amplitude and phase for both the fundamental
and the harmonic wave components. As a control parameter
for nonlinearity, we adjust the gas pressure over a very small
range near the critical pressure, where the ion-flow instability
is in balance with gas damping.

As our first main result, we observe three conditions in
the development of nonlinearity in the dust-density wave.
The nonlinearity is indicated by the presence of harmonics
with large amplitudes and is quantified by the THD. As gas

� � � � �� �� �� �� �� ��

�	
� t ��

��� ��� ��� ��� ��� ���

������ p �
�����

��

��

��

��

�

�

�

�

�

�
�
�
�
�
�


�
�
�

k r
�




��
�

�r
k

�r
k

�rk

���

�
�
�
�
�
�


�
�
�
��
�	
�


���

���

���

���

���

���

���

���

���

� � � � �� �� �� �� �� ��

�	
� t ��

��� ��� ��� ��� ��� ���

������ p �
�����

����r
k

�r
k

�r
k

�r
k

��� ��� ��� ��� ��� ���

������ p �
�����

� � � � �� �� �� �� �� ��

�	
� t ��

 
��
�
�!

��
��

��
�	
�


���

���

���

���

���

���

���

���

���

�"��i
k

�i
k

�i
k

�i
k

�i
-k

�i
-k

�i
-k

� � � � �� �� �� �� �� ��

�	
� t ��

��� ��� ��� ��� ��� ���

������ p �
�����

 
��
�
�!

��
��

�k
i
�




��
�

���

���

���

���

���

���

���

���

FIG. 6. �Color online� Measurements of �a� wave numbers kr and �b� growth rates −ki as a function of gas pressure p. In �a�, the real wave numbers for the
fundamental mode kr1

, second harmonic kr2
, and third harmonic kr3

do not vary with p. In �b�, the growth rates of the same modes −ki1
, −ki2

, and −ki3
increase

slightly as p decreases. �c� Wave number ratios kr2
/kr1

and kr3
/kr1

are close to two and three, respectively, when nonlinearity develops at lower pressures. �d�
Growth rate ratios ki2

/ki1
and ki3

/ki1
are also two and three. In �a� and �b�, scatter on the left is due to small wave amplitudes, which lead to noise in

measurements of kr and ki. In �c� and �d�, adjacent averaging is used to smooth data before calculating the ratios. Pressure and time scales are the same as in
Fig. 4.
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pressure p is reduced gradually, the three conditions ob-
served are as follows: at high p the nonlinearity cannot be
distinguished from noise; at intermediate p the nonlinearity
increases exponentially over a limited range in p; and finally
at lower p the nonlinearity no longer increases.

As our second main result, we find that the wave num-
bers and growth rates of the second and third harmonic
modes are doubled and tripled, respectively, as compared to
those of the fundamental. Such a doubling and tripling would
be expected for an ideal wave with no dispersion or damp-
ing. Our observations for the doubling and tripling of the
growth rate are similar to observations for Langmuir waves
driven by a beam-plasma instability.
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FIG. 7. �Color online� Three linear dispersion relations for the frequency
�upper three curves� and spatial growth rate −ki �lower three curves� calcu-
lated from Eq. �6� of Ref. 26. The model’s input parameters are explained in
the Appendix of Ref. 26. The differences in the three curves reflect the
uncertainty in our estimates of these input parameters. Also plotted are the
experimental measurements of frequency �crosses� and −ki �circles� for the
fundamental, second, and third harmonic modes. These frequency vs kr mea-
surements fall on a straight line �gray�, as if they obeyed a purely acoustic
dispersion relation. Both the experimental and model data are for 414 mTorr.
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