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Abstract
Experimental methods are described for determining transport coefficients in a strongly
coupled dusty plasma. A dusty plasma is a mixture of electrons, ions and highly charged
microspheres. Due to their large charges, the microspheres are a strongly coupled plasma, and
they arrange themselves like atoms in a crystal or liquid. Using a video microscopy diagnostic,
with laser illumination and a high speed video camera, the microspheres are imaged.
Moment-method image analysis then yields the microspheres’ positions and velocities. In one
approach, these data in the particle paradigm are converted into the continuum paradigm by
binning, yielding hydrodynamic quantities like number density, flow velocity and temperature
that are recorded on a grid. To analyze continuum data for two-dimensional laboratory
experiments, they are fit to the hydrodynamic equations, yielding the transport coefficients for
shear viscosity and thermal conductivity. In another approach, the original particle data can be
used to obtain the diffusion and viscosity coefficients, as is discussed in the context of future
three-dimensional microgravity experiments.

(Some figures may appear in colour only in the online journal)

1. Introduction

Dusty plasma [1–5] is a low-temperature mixture of
micrometer-size particles of solid matter, neutral gas atoms,
electrons and ions. The solid particles are typically polymer
microspheres, and they are referred to as ‘dust particles’. They
each gain a large negative charge Q of about −104 elementary
charges, for a 7 µm sphere in a typical gas-discharge plasma.
Most of the volume is filled with electrons, ions and gas, while
the solid particles fill a volume fraction less than 10−3. The
motion of the dust particles is dominated by electric forces,
due to the local electric field E = Econf + Ed, where Econf is
due to the ambient plasma potential Vconf , which can levitate
and confine the dust particles. The field Ed is due to Coulomb
collisions with other dust particles.

Due to their high charges, Coulomb collisions among dust
particles have a dominant effect. The interaction force QEd

among them is so strong that the dust particles do not move
easily past one another, but instead self-organize and form a

1 Present address: Los Alamos National Laboratory, Mail Stop E526, Los
Alamos, NM 87545, USA.

structure that is like that of atoms in a solid or liquid [6–13].
In other words, the collection of dust particles is said to be a
strongly coupled plasma [14]. The pressure p in a strongly
coupled plasma is due mainly to Ed, while thermal motion,
which dominates for weakly coupled plasmas, contributes
less [15].

This paper is based on a presentation at the EPS Satellite
Conference on Plasma Diagnostics 2013. Our emphasis is on
the diagnostic methods for determining transport coefficients
in a strongly coupled dusty plasma. We start by reviewing
the spatially and temporally resolved imaging instrumentation
that yields precise measurements of the positions of individual
particles [16] and velocities [17]. This capability of making
measurements in the particle paradigm is unique in the
field of plasma physics diagnostics. To illustrate several
methods of transport coefficient determination, we summarize
how we determine viscosity and thermal conductivity as
in our previously reported two-dimensional (2D) laboratory
experiment [18, 19] and we discuss the measurement of
viscosity and diffusion coefficients in future three-dimensional
(3D) microgravity experiments.
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Figure 1. Sketch of the experimental configuration for determining
transport coefficients in a 2D dusty plasma. (a) A single layer of
dust is levitated, and it is illuminated by a 488 nm laser sheet and
manipulated by 532 nm rastered laser beams. (b) The manipulation
laser drives counter-propagating flows, which are straight within the
central region of interest that is analyzed. Reprinted from [19].

2. 2D Experiment

To prepare a 2D experiment to determine transport coefficients,
dust particles can be levitated in a single layer by the electric
field in the sheath above a horizontal lower electrode in
an argon capacitively coupled radio-frequency (rf) plasma,
figure 1(a). The 13.56 MHz waveform on the lower electrode,
as compared to the grounded vacuum chamber, is 214 V peak-
to-peak with a dc self-bias of −138 V. Accordingly, the plasma
has both rf and dc electric fields; the rf portion serves only to
accelerate electrons and sustain the plasma’s ionization, while
the dc portion provides levitation of the dust particles.

Melamine-formaldehyde (MF) microspheres of 8.09 µm
diameter are introduced by agitating a centimeter-size metal
‘shaker’ box with a small opening so that the particles sediment
through the plasma. They become levitated at a height
where the downward force of gravity is balanced by a large
upward dc force. (Note that this large force is eliminated
in microgravity experiments, section 6.) The box is then
retracted. Viewing from the side with an analog video
camera and laser illumination, we determine whether there
is an unwanted second layer of heavier particles, which can
consist of two dust particles stuck together. We remove
these heavy particles by modulating the rf power so that the

plasma is extinguished in cycles, with plasma-off and plasma-
on intervals of about 700 µs and 10 µs, respectively. This
modulation alters the dc electric fields so that particles are
levitated at a lower height, near the lower electrode, and the
heaviest particles actually touch the electrode and stick. This
modulation is repeated in bursts of ≈102 cycles while viewing
the video monitors until all the heavy particles are eliminated.
Afterwards, the plasma is operated in steady conditions, and
the same particles remain confined in a single layer in the
plasma during the entire experiment.

The dust particles move more easily within this single
horizontal layer than in the vertical direction, due to the strong
vertical gradient of the dc electric field in the electrode sheath.
Thus, the particle motion is mainly 2D. The dust particles repel
one another with a shielded potential, due to the screening
provided by the ambient electrons and ions [20]. As the
dust particles move, they also experience drag with a force
that can be modeled using the Epstein formula [21], which is
characterized by a gas damping rate νgas, which is the ratio
of the drag force and the particle’s momentum. For the 2D
experiment described here, the argon pressure is 15.5 mTorr
and νgas = 2.7 s−1.

The diagnostic instrumentation consists of laser illumina-
tion and video imaging, figure 1. Dust particles are illuminated
by a sheet of laser light, which is made by focussing a 488 nm
argon laser beam with a pair of spherical lenses and then dis-
persing the beam into a horizontal sheet. The dispersing is
done with either a scanning mirror or a cylindrical lens. Imag-
ing of the dust particles is performed using a cooled 14-bit
digital camera (PCO 1600) fitted with a 105 mm Nikon lens
and a bandpass filter that admits light within a 10 nm bandpass
centered on the laser’s wavelength. The camera is operated at
a frame rate of 55 frame s−1, and the combination of lens and
sensor provide a resolution of 0.039 mm pixel−1. The particle
spacing in the plane has a lattice constant b = 0.50 mm, cor-
responding to a 2D Wigner–Seitz radius [22] of a = 0.26 mm,
an areal number density n0 = 4.7 mm−2, and mass density
ρ = n0md = 1.97 × 10−12 kg mm−2.

Laser manipulation [21, 23–29] is a widely used tool in
dusty plasma experiments. The radiation pressure force of
a laser can be used to drive a steady flow of dust particles,
which is useful for determining transport coefficients. In our
transport-coefficient experiment, a pair of 2.28 W 532 nm laser
beams is used to drive counter-propagating flows with a shear
region between them. They are incident at a 6◦ downward
angle to push particles in the ±x directions, as shown in
figure 1. To generate a wider flow than in previous 2D
transport experiments [25, 31], the laser beams are rastered
to have a rectangular cross section. This rastering resulted
in a Lissajous pattern, with frequencies of fx = 123.607 Hz
and fy = 200 Hz that are chosen high enough to avoid
exciting longitudinal or transverse waves at the rastering
frequency. This laser manipulation scheme results in a counter-
propagating flow pattern aligned in the ±x directions in the
center, where we analyze data. The flow pattern closes outside
the region of interest that is analyzed. Having a straight flow
in a single direction provides symmetries that greatly ease the
analysis, when determining transport coefficients.
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Figure 2. Bit map images [16]. (a) A 1/12 portion of a bit-map
image from an actual experiment, showing the overall crystalline
structure in the absence of laser manipulation. (b), (c) The bright
spot for a single particle, from synthetic data. For accurate
measurement of position, it is desirable for the random noise seen in
each pixel to be minimized, and for the spot to fill many pixels as in
(c), with a laser sufficiently powerful to exploit the full dynamic
range of the camera’s sensor (but without saturating many pixels).

3. Image analysis

Measuring particle positions and velocities in a dusty plasma
experiment can be done using particle tracking velocimetry
(PTV). The measurement starts with a bit-map image
representing a single frame of the recorded video. As an
example, in figure 2(a) is a portion of single video frame from a
2D dusty plasma experiment different from the one described
in section 2. Each bright spot represents a microsphere. A
single microsphere fills multiple pixels, due to diffraction, as
shown in figure 2(b). It is desirable to make it fill even more
pixels, as in figure 2(c), as can be accomplished by defocusing
the camera lens while increasing the illumination laser power.

Images have random noise in each pixel. This random
noise can arise because of fluctuations in the camera’s sensor
and its electronics, and it has an average value that we term the
‘background intensity’, Ibg.

After recording a bit-map image, we use the moment
method algorithm [16] to compute the particle position as

Xcalc =
∑

k Xk(Ik − Ibase)∑
k(Ik − Ibase)

, (1)

where the most important quantities are the position Xk and
intensity Ik of a pixel k. The result of equation (1) is a ‘center
of mass’ of the bright spot. When the particle fills more than
one pixel, this calculation can yield an estimate of the particle
position with sub-pixel accuracy. Because of its computational
efficiency, the moment method is suited for analyzing large
quantities of data. In the 2D experiment described here,
millions of particle-position measurements were made from
the video images using this method. There are other variants
of this method [30].

There are two sources of error in the particle position
Xcalc. One is the random noise, which is a fluctuation in each
value of Ik regardless of what is imaged. The other is called
‘pixel locking’, and it is due to the finite size of a pixel on
the sensor and the way that the light intensity pattern from the
lens is averaged within a pixel. Pixel locking causes computed
particle positions to be located at favored positions such as the
center or corner of a pixel. We devised and tested an optimized
method of using equation (1) to measure particle positions
while reducing pixel locking and controlling the effects of
random errors, reported in [16], which we summarize next.

With this algorithm, it is necessary to limit which pixels are
included in the analysis; this is done by choosing contiguous
pixels that are brighter than a threshold value Ith, which we
select using an optimized procedure presented in section 6
of [16]. We also record an image without dust, which we call a
dark-field image. We denote its intensity in pixel k as Idark k . In
equation (1) we subtract a baseline intensity Ibase k , calculated
separately for each pixel as Ibase k = Idark k + (Ith − Ibg),
where Ibg is the average of Idark k for pixels in the image. The
threshold Ith is chosen by varying it downward until artifacts
of pixel-locking are minimized in a sub-pixel map. Most steps
in this analysis can be done with the ImageJ [32] code, and
errors of 0.1 pixels or smaller can be attained.

After calculating particle positions using equation (1), we
calculate particle velocities by subtracting the positions Xcalc

of the same particle in two different frames and dividing by
the time interval between frames. This requires ‘threading’ or
tracking a particle between two consecutive frames. Threading
is typically done by searching the second image within a
specified radius around the particle’s position in the first frame;
if this search yields one particle, we assume it is the same
one. If it yields no particles, or more than one particle, then
the particle is not successfully threaded to the next frame.
Threading for just two frames usually poses little problem if the
frame rate is high enough. Threading for many more frames,
however, is needed for diffusion coefficient measurements, and
this cannot be done indefinitely because particles eventually
move out of the region of interest, or in the case of 3D
experiments they move sideways out of the illuminating laser
sheet.

4. From particles to continua

Using experimental measurements of their positions and
velocities, the dust particles can be described in a particle
paradigm. Dusty plasmas are unique in the field of plasma
physics for allowing one to work with experimental data in
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the particle paradigm. However, one often needs to work in
a continuum paradigm, with fluid quantities such as number
density, flow velocity and temperature that are recorded as a
function of position. It is possible to convert data from the
particle paradigm to the continuum paradigm (but not vice
versa); this conversion is done by averaging the particle data
on a spatial grid.

Starting with the positions and velocities of individual
particles as determined by PTV, we convert to continuum data
by averaging particle data within spatial regions of finite area,
which we call bins. A similar binning process is used for the
same purpose in particle-in-cell simulations [33]; here we use
it with experimental data. For the experiment described here
there are 89 bins, which are narrow rectangles aligned in the y

direction, as shown in figure 1(b). In all our calculations of the
continua quantities, we weight the particle data using a simple
cloud-in-cell algorithm [33]. If a particle is located at distances
La and Lb from the two nearest bins a and b, the weighting
factors for these bins are Lb/(La + Lb) and La/(La + Lb),
respectively. This weighting scheme reduces noise when a
particle crosses from one bin to another. The experimental
conditions described here were steady, so we also average data
over time. The bin width was chosen to be a, the Wigner–Seitz
radius.

Spatially resolved data for the number density, flow
velocity, and kinetic temperature are required to determine the
transport coefficients. We obtain the number density profile
simply by counting the weighted particles in each bin and
dividing by the area of the bin. Multiplying by the particle mass
or charge then yields the profile of the mass density ρ or charge
density ρc of the dust continuum. The flow velocity profile vx

and kinetic temperature Tkin are obtained similarly. For the
temperature, we use the squared velocity fluctuation. Results
for the profiles in our 2D transport-coefficient experiment are
shown in figure 3. These profiles will be used in the continuity
equations, described below, to obtain the transport coefficients.

We can obtain additional dust particle parameters from
the velocity data by calculating autocorrelation functions and
then Fourier transforming them. This procedure yields spectra
of longitudinal and transverse waves in a lattice [34]. We do
this without laser manipulation to obtain a good crystal, which
allows for fitting a dispersion relation (from a theory for a
triangular lattice with a Yukawa potential) to the experimental
spectra. For our transport-coefficient experiment, we find
the charge Q/e = −9700, a 2D dust plasma frequency
ωp = 75 s−1, and the particle spacing a/λD = 0.5 (which
is written as a multiple of the screening length).

We now list the continuity equations. For mass and
momentum they are

∂ρ

∂t
+ ∇ · (ρv) = 0 (2)

and
∂v

∂t
+ v · ∇v = ρcEconf

ρ
− ∇p

ρ
+

η

ρ
∇2v

+

[
ζ

ρ
+

η

3ρ

]
∇(∇ · v) + fext, (3)

Figure 3. Profiles of the flow velocity (a) and kinetic temperature
(b) from the 2D experiment. Fitting these profiles to
equations (6)–(8) yields the transport coefficients for viscosity and
thermal conductivity. Note the temperature peaks in the regions of
high shear; these peaks are due to viscous heating. Unlike other
substances, in a dusty plasma, thermal conduction does not
overwhelm viscous heating, so that it is possible to detect these
viscous heating peaks. Data points correspond to bins of width
a = 0.26 mm.

respectively. The transport coefficients η and ζ are the shear
viscosity and bulk viscosity, respectively, and η/ρ is called
the kinematic viscosity. Equation (3) describes the force per
unit mass, i.e., acceleration, acting on the dust continuum.
The last term in equation (3) is due to forces such as gas
friction, laser manipulation, ion drag, and any other forces
that are external to the layer of dust particles. The third and
fourth terms on the right-hand-side of equation (3) correspond
to viscous dissipation, which arises from Coulomb collisions
amongst the charged dust particles.

The continuity equation for the internal energy is

T

(
∂s

∂t
+ v · ∇s

)
= � +

κ

ρ
∇2T + Pext. (4)

Here, T is the thermodynamic temperature of the dust
continuum and s is its entropy per unit mass. The second
term on the right-hand-side of equation (4) is due to thermal
conduction. The transport coefficient κ is the thermal
conductivity. It arises from a temperature gradient. The first
term on the right-hand-side of equation (4) is due to viscous
heating, and it arises from a velocity shear. The viscous heating
term � depends on the square of the shear, i.e., the square
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of the gradient of flow velocity, and its expression has many
terms, although it can be simplified for our transport-coefficient
experiment by taking advantage of symmetries. The last term
is due to the energy contribution from the same external forces
fext as in equation (3).

External forces that contribute momentum and energy
include gas friction, laser manipulation, and the electric
confining force. The latter is balanced by the pressure
inside the body of charged dust, ρcEconf = ∇p, so that
only two forces need to be considered: gas friction and laser
manipulation. The gas friction force can be calculated using
measured particle velocities and a known drag coefficient. The
laser manipulation force could also be computed if the laser
intensity were known, but this is not necessary if we analyze
data only in the spatial regions outside the laser beams, as we
do here.

We can simplify the continuity equations by exploiting the
steady conditions ∂/∂t = 0, the one-dimensional symmetry
of the flow configuration ∂/∂x = 0 and vy = 0, and
incompressibility ∇ · v = 0 for subsonic flows. Within the
spatial region where the laser intensity is zero, the equations
become

∇ρ = 0 (5)

∂2vx

∂y2
− ρνgas

η
vx = 0 (6)

� +
κ

ρ

∂2

∂y2
T − 2νgasKE/md = 0 (7)

where

� = η

ρ

(
∂vx

∂y

)2

(8)

is the viscous heating term, simplified for the symmetry
of the experiment. The term with KE, which is the local
average particle kinetic energy (including both random and
flow motion), represents the energy loss due to gas friction.
We will use these equations to fit the experimental profiles.
In doing so, we will assume that η and κ are independent of
temperature [25, 35].

5. Obtaining the 2D transport coefficients

The momentum and energy equations are written so that their
right-hand sides are zero. When we use these equations with
an input of experimental data, however, the terms will not sum
exactly to zero, but will instead sum to a nonzero residual.
In order to calculate the transport coefficients η and κ , we
treat them as free parameters and we minimize the squared
residuals summed over the bins in the central flow region.
Using this fitting method, we obtain both transport coefficients
simultaneously.

For our experiment, this method yields the kinematic
viscosity ν = η/ρ = 0.69 mm2 s−1 and thermal diffusivity
κ/(cρ) = 8 mm2 s−1. These values are the culmination of
the experimental methods described above, starting with video
imaging and ending with continuum flow profiles that are fit to
the continuity equations. They were obtained simultaneously,
from the same experiment, by analyzing the same central

region, corresponding to the middle 19 bins, corresponding
to the 19 data points in in the middle of figure 3. Each bin has
a width a.

We note that viscosity can depend on parameters such as
shear rate ∂vx/∂vy and temperature [36, 37]. In our experiment
these quantities are not uniform within the analyzed 19-bin
central region, which leads us to repeat our analysis of viscosity
for smaller portions of the flow. There are limits to the spatial
resolution that one can hope to achieve in a nonuniformly
sheared flow because viscosity is a hydrodynamic quantity that
requires local equilibrium. Thus, differences in viscosity are
not physically meaningful if they occur on a scale length as
small as a. We divide the central region into three portions,
each with seven bins that overlap by one bin. We find the
kinematic viscosity is 1.30 mm2 s−1 in the innermost 7-bin
portion where the shear rate and temperature are lowest, and
0.70 and 0.67 mm2 s−1 in the two bordering 7-bin portions
where the temperature and shear rate are higher. Thus, there
is a systematic decrease of about 50% that is attributable to an
increasing shear rate and temperature. This effect is significant
compared to random errors of order 0.03 mm2 s−1. The same
approach of using smaller portions of an inhomogeneous
flow could be used for the thermal diffusivity, not
shown here.

In addition to our method based on fitting to hydrodynamic
equations, another method [37, 38] of obtaining the
viscosity from particle-domain experimental measurements
was introduced by Hartmann et al [37]. The Hartmann method
does not require fitting. The local viscosity is calculated as the
ratio of the local value of the shear stress Pxy and the local
value of the shear rate ∂vx/∂vy . The shear stress is obtained
from experimental measurements as the sum of a kinetic term∑

i mivxivyi and a potential term, and this sum is binned to
convert to the continuum paradigm. This method yields a
spatially resolved profile for the viscosity, which is well suited
for experiments where the shear rate is nonuniform. It has
been used to quantify shear thinning to describe how viscosity
diminishes with shear rate [37].

6. 3D microgravity experiments

We carried out a Langevin molecular-dynamics simulation of
a 3D dusty plasma to assess the feasibility of determining
transport coefficients in the PK-4 device [39–42]. This
European Space Agency (ESA) facility, which is expected
to be launched to the International Space Station, is shown
schematically in figure 4. It produces a dc plasma in a
glass tube, and it is equipped with laser illumination and
video imaging. Flows can be driven by laser manipulation
or ion drag.

Our simulation parameters were modeled on quantities
reported by other experimenters. We assume the gas is neon
at 50 Pa pressure, while the MF microspheres have a radius
of rp = 3.43 µm [41], and a mass mp = 2.55 × 10−13 kg
calculated for a mass density of 1.51 g cm−3. We assume
a number density of dust particles nd = 3 × 104 cm−3,
which corresponds to a three-dimensional Wigner–Seitz radius
a = (3/4πnd)

1/3 = 0.020 cm. For a 50 Pa gas pressure, the
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Figure 4. Sketch of the PK-4 instrument.

gas friction constant is νg = 51 s−1. We assume a particle
charge Q = 8520 e, which we estimated2 by adjusting the
charge of 1490 e as obtained from the figure 7(a) in [42] for
a smaller rp = 0.6 µm particle. We assume a plasma density
ne = 2.4 × 108 cm−3 and electron temperature Te = 7.3 eV,
which we estimated for 50 Pa neon, using a fitting formula for
PK-4 data [42]. As in [42], we assume that the ion temperature
is close to the gas temperature, Ti ≈ Tgas ≈ 0.03 eV. We

assume λD = (λ−2
De + λ−2

Di )
−1/2 = 8.3 × 10−3 cm, where λDe

and λDi are the electron and ion Debye lengths calculated using
Te and Ti, respectively.

We assess the feasibility of determining the shear viscosity
and the diffusion coefficient in an experimental scheme that
has no flows of the dust particles. For the shear viscosity,
instead of using the hydrodynamic equations as we did above
for the 2D experiment, here we consider an alternate approach
of using the Green–Kubo relation, which requires as its inputs
the positions ri , velocities ṙi of each particle i, and the potential
φij between all particle pairs [43]. The conditions must provide
random thermal motion with an absence of macroscopic flow,
which is different from the conditions we used above for the
2D experiment. When using experimental data, which do not
provide a direct measure of potentials, the potentials must be
calculated from the positions by assuming a model such as
the Yukawa potential for the interparticle forces [43]. For the
diffusion coefficient, we compute a time series of the mean-
square displacement (MSD), which requires threads for the
particle positions, and these threads must be sufficiently long in
their time duration. The diffusion measurement is challenged
by the problem that in the experiment the threads (i.e., the time
series of data for a given particle) have a finite lifetime due to
particles drifting out of the plane of illumination.

2 In this estimation, we have adjusted the charge according to the particle
radius, assuming that the charge varies linearly with the radius, although it is
possible that the actual scaling at this gas pressure is different from linear due
to ion–neutral collisions

ω

ω

ω

ω

Figure 5. PDF computed from particle displacements after various
times, from our 3D simulation. Time is normalized by the dust
plasma frequency ωp, and displacement is normalized by the
Wigner–Seitz radius a.

In our simulation we integrate a Langevin equation of
motion for each particle i,

mpr̈i = −νgmpṙi + ζi (t) − ∇
∑

j

φij − ∇Vconf . (9)

We use N = 12 800 dust particles that interact with a Yukawa
potential

φ(rij ) = Q2

4πε0

exp−rij /λD

rij

, (10)

while experiencing drag on the gas as well as random forces
ζi from the gas atoms. The confining potential Vconf is flat
in the analyzed region. Since a higher kinetic temperature
is more challenging for the diagnostic, and the dust kinetic
temperature Tkin exceeds the gas temperature in an experiment,
we elevated Tkin by applying a multiplier to the random force
ζ in the Langevin equation. We found that a multiplier of 16.7
yields Tkin = 8.3 eV.

For the feasibility of measuring the diffusion coefficient
D, we calculated the probability distribution function (PDF)
as a histogram of particle displacements during a specified
time interval, figure 5. The MSD is calculated as a moment
of the PDF for various time intervals, and presented as a time
series, figure 6. An MSD curve typically has two portions:
at small times the motion is ballistic with MSD ∝ t2 while
at long times it is diffusive with MSD ∝ t . The diffusion
coefficient is determined from the long-time portion, so that it
is necessary to record data for sufficiently long times. From
the simulation data we determined D = 0.051 mm2 s−1. To
assess the experimental feasibility, we also must know the
transition between the two regimes, which we determined to be
tωp = 5 corresponding to t = 32 ms for the PK-4 parameters
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ω

Figure 6. MSD curves computed from PDF data from our 3D
simulation. In an experimental measurement of the diffusion
coefficient, it would be necessary to track (thread) particles at least
three times as long as the transition time.

we assumed. To determine the diffusion coefficient, the MSD
curve should be at least three times as long as the transition
time (and preferably longer), meaning at least 100 ms for the
predicted experimental conditions. To attain threads of this
length, the minimum thickness of the laser sheet, for tracking
a particle that starts in the laser sheet’s center, would be
142 µm, for the simulated conditions. This is comparable to
the typical laser sheet thickness in an experiment, meaning that
this measurement appears to be marginally feasible, for the
parameters evaluated here. Another feasibility consideration
is the camera’s resolution, i.e., the size that is imaged by one
pixel. To measure D will require sufficient spatial resolution so
that errors in the particle position do not spoil the MSD curve.
For D = 0.051 mm2 s−1, an observation time of 100 ms would
require that the errors in the measured displacement should be
significantly smaller than

√
0.0051 mm2 = 71 µm. For an

imaging resolution of ≈14 µm, an algorithm providing sub-
pixel accuracy as in [16] would be required to attain sufficiently
small errors.

To assess the feasibility of measuring the viscosity η

in the experiment, we calculate the Green–Kubo integrals,
equations (1)–(3) of [43], which require data for particle
positions in all three dimensions. 3D imaging schemes for
PTV have been demonstrated using digital holography and
multi-camera stereoscopic imaging [30]. Such a scheme
could be used in future space-based experiments beyond PK-4.
From our simulation data we determined η = 2.1 × 10−9 ∼
g mm−1 s−1. To assess the effect of a finite frame rate for the
camera, we perform a test. In our test, we use simulation data
sampled at finite time intervals corresponding to an adjustable
camera frame rate. Performing this test, we found that a
camera frame rate of at least 30 s−1 would be required for the
parameters above, so that the error introduced in the calculation
of viscosity, due to the finite frame rate, is smaller than 2%.
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