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Elastic and plastic deformations of a two-dimensional (2D) dusty plasma crystal under shear stresses

are investigated using a numerical simulation. Our simulation mimics experiments that start with a

crystal that is then manipulated by a pair of laser beams separated by a gap. In a pair of rectangular

regions, we apply two equal but oppositely directed forces, to induce a shear deformation in the gap

between. These external forces are increased incrementally to examine the elastic behavior, plastic-

ity, and liquid flows. In the low-force elastic limit, a measurement of the shear modulus is obtained,

which agrees with a theoretical value based on a sound speed. For larger forces resulting in plastic

deformation, we determine the yield stress, which is found to agree with a common theoretical

model for the critical yield stress, after accounting for the dimensionality for 2D. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4994840]

I. INTRODUCTION

Strongly coupled plasmas (SCPs) can exhibit liquid-like

or solid-like properties. Such an SCP is characterized by an

interparticle potential energy that greatly exceeds the kinetic

energy of the constituent charged particles. The parameter

for describing the coupling is

C � Q2

4p�0akBTp
; (1)

where Q is the particle charge, a is the particle spacing charac-

terized by the Wigner-Seitz radius,1 and Tp is the kinetic

energy of particles. In response to shear stresses, an SCP can

deform or flow. If the SCP is already in a liquid state, its

response to shear stress is a flow pattern called shear flow,

which has been investigated in simulations2–4 and experi-

ments.5–8 Here, instead of a liquid, we investigate the response

starting with an SCP in a solid state.

The SCP in this study is dusty plasma. Dusty plasmas

have four constituents: electrons, ions, neutral gas, and micron-

size particles of solid matter.9–21 These solid particles, which

are often called dust particles, carry a large negative charge. A

collection of dust particles can be electrically confined into a

three-dimensional (3D) cloud or a two-dimensional (2D) layer.

In either case, the space between dust particles is filled by elec-

trons and ions, which modify the usual 1=r scaling by the

effect of screening. The interaction is often approximated as a

(Yukawa) potential22

/ðrÞ ¼ Q2

4p�0

e�r=kD

r
; (2)

where kD is the screening length. For dust particles in a 2D

plane, the Yukawa potential is consistent with the experimen-

tal observation.23 Ion wake effects, which are not included in

Eq. (2), can affect the potential especially by giving it an

anisotropic character that can play a large role in a 3D

cloud.24,25 The effects of ion wakes are much less profound

for a 2D cloud.

When it has solid-like properties, a strongly coupled

dusty plasma is extremely soft. As a measure of softness, it

has been noted that the shear modulus of 3D dusty plasma

solids is about 1019 times smaller than for metals,15,26 and

106 times smaller than for colloidal crystals.26,27 This small

modulus allows very large deformation with only a small

applied force, even for a force as small as 10�14 N, as can be

applied by a manipulation laser. Manipulation lasers have

been used to apply an external force in several experiments

in the PK-4 instrument, which is on orbit on the International

Space Station (ISS),28 and in the laboratory. Laboratory

experiments using manipulation lasers in 2D dusty plasmas

have been reported for studying deformation,29–33 melting,34

viscoelastic response,35 and shear flows.5–8,36,37 Plastic

deformation was studied by Durniak and Samsonov29,31

using compression, and by Hartmann et al.32 using shear.

In this paper, we study the elastic and plastic deforma-

tions of a 2D dusty plasma crystal using a numerical simula-

tion. We use realistic experimental parameters, and to mimic

experiments with manipulation lasers, we apply shear forces

in two rectangular regions, separated by a gap. We analyze

particle position, velocity, and interparticle force data to

obtain the stress as well as the strain. Based on the stress-

strain relationship, we empirically characterize the elasticity

and plasticity of 2D dusty plasmas. The previous work on the

elastic properties included a report of shear modulus, without

units.38 Here we report results not just for shear modulus but

also for yield stress, in both physical and dimensionless units.

Here we briefly review the concepts of shear stress, shear

strain, and stress-strain relationship. Shear stress arises from a

force applied along a sample’s edge (although a dusty plasma

allows applying such a force in the center of the sample). The

shear stress is the force divided by the area or length of the

edge, for 3D and 2D samples, respectively. The strain is the

response to the shear stress. Strain c is a dimensionless mea-

sure of deformation; it is defined as the ratio of the change in

length to a reference length. For the configuration sketched in

Fig. 1(a), the reference length is the gap width, and c is the

tangent of the angle for the deformation of the sample.
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The variation of strain c with stress s shows generally

two distinctive regimes, as sketched in Fig. 1(b). At small

strains, the substance is in its elastic limit, where stress and

strain are linearly related by,

s ¼ Gc; (3)

where G is the shear modulus. At large strains, on the other

hand, the substance undergoes plastic deformation, with a

stress that varies less with strain than in the elastic limit. In

the case of perfectly plastic deformation, the stress varies not

at all with strain. The stress at the onset of plastic deforma-

tion is termed the yield stress. These macroscopic variables,

stress and strain, are observables for all kinds of materials

including granular materials,39,40 colloids,27,41 and many

other complex fluids.42,43

II. METHOD

A. Langevin dynamics simulation

A Langevin dynamics simulation was performed by

integrating the equation of motion

mp€ri ¼ �
X

j

r/ij �rU� �gasmp _ri þ fiðtÞ þ Fex; (4)

for a particle i of mass mp. The five force terms on the right-

hand side of Eq. (4) describe the particle-particle interaction,

confining potential, gas drag, Langevin random kicks, and an

external manipulation to apply a stress. We integrated the

equation of motion for N¼ 4096 particles. The boundary

conditions were periodic in the x direction, which is the

direction of Fex, while in the y direction, particles were con-

fined by the potential U in the same manner as in Ref. 44.

The initial configuration of the simulation was in a solid

state, with experimentally relevant parameters. We chose C
¼ 800 and a=kD ¼ 0:73, and under these conditions, particles

self-organized in a lattice structure. A high degree of spatial

order can be seen in the map of particle position, Fig. 2, where

it is evident that there were three crystalline domains, and in

the pair correlation function g(r), Fig. 3(a). The presence of

multiple domains probably had a little effect on our conclu-

sions because all the further results we will present are an anal-

ysis within the central gap, where initially there was only one

domain.

The simulation parameters were based on the experiment

of Ref. 5. We assumed that the microspheres had a diameter

of 8:7 lm, a mass mp ¼ 5:2� 10�13 kg, a number density

n2D ¼ 4:1 mm�2, and a charge Q¼ –15000 e. The screening

length and particle spacing were comparable, kD ¼ 380 lm

and a ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
n2Dp
p ¼ 280 lm, respectively. The friction con-

stant was �gas ¼ 1:1 s�1, assuming argon gas pressure of 6

FIG. 1. Illustration of concepts. (a) External shearing forces Fex cause a

stress and a strain c, within a gap between the two force regions. (b) Sketch

of the stress-strain relationship. In an experiment, if a fixed level of stress is

applied to a sample, the response will be different in two regimes: for elastic

deformation the strain will remain constant (at some fixed point along the

sloped line, in the elastic limit), while for plastic deformation the strain will

gradually increase with time (following the horizontal line to the right). The

yield stress marks the end of the elastic limit and the onset of plastic

deformation.

FIG. 2. Simulation of shear deformation of 2D dusty plasma under external stresses. In the x direction, periodic boundary conditions are used, as indicated by

the two image cells of the central square. In the y direction, there is a confining potential, localized to the edge, with a parabolic spatial profile. The initial con-

ditions, shown here, have a particle arrangement that is crystalline, with three domains separated by domain walls indicated by dashed lines. External manipu-

lation is exerted beginning at t¼ 0 in the two shaded regions (imitating laser beams in an experiment) by applying a uniform force Fex within these regions.

Results shown will be mostly for the central gap, between the regions of the applied forces. In our analysis, to obtain the shear strain, we find the average parti-

cle displacement in two analysis regions, which are slices at the top and bottom of the central gap.
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mTorr and at room temperature. Under these conditions, the

particle motion was under damped, with a characteristic fre-

quency xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2=2p�0mpa3

p
¼ 73:9 s�1, which is much

larger than the friction constant �gas.

B. Manipulation

To induce shear motion, we applied two equal but

oppositely-directed forces Fex, within the shaded rectangular

regions in Fig. 2. These external forces, which appear in the

last term of Eq. (4), imitate the external manipulation applied

by two stripe-shaped laser beams, as in the experiment of

Ref. 5. The spatial profile for this force was uniform within

the rectangular regions, and the edges were sharp. The cen-

tral gap between these laser beams had a width of 1.1 mm or

3:9a.

To allow a determination of the stress-strain relation-

ship, we increased Fex incrementally, as shown in Fig. 4(a).

The force was held constant during each of the ten incre-

ments, and each had a duration of 452 x�1
p .

C. Analysis

Our analysis centers on a stress-strain relationship curve.

We will use this curve to determine the shear modulus for

small strains, and for higher strains, we will use it to obtain

the yield stress and a description of the plastic flow. The

stress-strain relationship is obtained by calculating stress and

strain at different external forces, which were increased in

increments during the simulation, to change the levels of

strain.

The shear stress is computed inside the central gap as

sxy ¼
1

A

XM

j¼1

~pjx ~pjy

mp
� 1

2

X
i

X
j6¼i

xijFij;y

2
4

3
5; (5)

where A and M are the area and number of particles, respec-

tively, in the central gap. The particle momenta ~pjx and ~pjy

are indicated with a tilde because they represent the fluctuat-

ing portion of their momenta, after we have subtracted the

local mean flow velocity. The interaction force Fij;y is calcu-

lated for each pair of particles i, j as the derivative of the

potential energy in Eq. (2). The number of particles M was

about 140; this number fluctuated slightly with time, as indi-

vidual particles moved in and out of the central gap.

The shear strain, which is essentially a transverse gradi-

ent of particle displacements, is approximated using a finite

difference as

c ¼ ðXtop � XbottomÞ=Dy: (6)

Here Dy ¼ 7:8a is the separation between the top and bottom

analysis regions, as marked in Fig. 2; these analysis regions

straddle the central gap, and they each have a width 3:9a.

Within the top analysis region, for example, we calculate

Xtop as the x displacement of particles, averaged over

all these particles in each time step and then summed over

time. Essentially Xtop and Xbottom are accumulated average

displacements, in the two analysis regions. For a fixed level

FIG. 3. Pair correlation functions in the gap, at three levels of strain.

Initially there is a high degree of spatial order, typical of a crystal, while, at

larger forces and strains, the microscopic structure is much more disordered.

FIG. 4. Time series data. In the simulation, we increased the applied exter-

nal force Fex in increments, as shown in (a). The resulting shear strain c and

shear stress sxy are shown in (a) and (b), respectively. For small levels of Fex

the deformation was elastic, and the strain c and stress sxy remained mostly

steady when Fex was steady. At higher levels, the strain and stress were no

longer steady, and at still higher levels the stress actually diminished.
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of external forces, one would expect that Xtop and Xbottom to

remain steady in the elastic limit, but to increase gradually

with time for plastic deformation.

III. RESULTS

Next we present our simulation results, which are in dimen-

sionless units. Length, time, force, and stress are normalized by

a, x�1
p ; f0 ¼ mpx2

pa, and s0 ¼ Q2=4p�0a3, respectively.

The time series for stress and strain are shown in Fig. 4,

as the external force Fex was increased in increments. At low

levels of Fex, the conditions in the central gap were elastic,

so that the stress and strain were in proportion to the force,

and remained steady as long as Fex was fixed. At larger lev-

els, both quantities, strain and stress, were no longer steady,

due to the onset of plastic deformation. At still higher levels,

the sample made a transition to a liquid; this melting can be

identified at txp � 3000 in Fig. 4(b) as a decrease in the

shear stress, indicating less resistance to flow.

Fluctuations are seen in the stress time series, Fig. 4(b).

These fluctuations are possible because we obtain the stress not

from the value of the external force Fex, but instead using Eq.

(5) based on the motion of a finite number of particles within

the central gap. These fluctuations occur even when Fex is con-

stant within an increment, as can be seen in Fig. 4(b). Besides

the finite number of particles within the gap, another source of

fluctuations in the stress time series could be acoustic waves,

emitted far away by events such as a slip at a domain wall.

The data we will use for all our further analysis is the

stress-strain relationship, Fig. 5. We obtained this relation-

ship simply by replotting the data from Fig. 4. This relation-

ship shows at least three regimes for shear strain.

A. Elastic deformation

For small strain c < 0:18, which we identify as the elas-

tic limit in Fig. 5(b), the stress is proportional to the strain.

By fitting the data in this elastic limit to a straight line, we

obtain our measured shear modulus G2D as the slope of the

line. In physical units, we find G2D ¼ 4:5� 10�11 Pa m. In

dimensionless units, this result is G2Ds�1
0 ¼ 0:032.

We can compare our result for the shear modulus to a the-

oretical shear modulus based on the sound speed of a transverse

sound wave. The theoretical expression is G2D ¼ n2DmpC2
s ,

where Cs is the transverse sound speed. Calculating Cs using

the theory of Ref. 45 for a two-dimensional Yukawa crystal,

we obtain Cs ¼ 0:23axp¼ 4.8 mm s–1 for our simulation

parameters. For this sound speed, the theoretical shear modulus

is G2Ds�1
0 ¼ 0:034, which agrees with our simulation result

within 6%.

B. Plastic deformation

For somewhat larger strain 0:18 < c < 0:37 in Fig. 5(b),

we find what we identify as the plastic deformation regime.

The signature of plastic deformation is that the stress no lon-

ger increases with strain the same way as in the elastic limit.

The onset of plastic deformation, i.e., the yield stress, is

identified as the point in the stress-strain plot where the two

quantities no longer obey the same linear relationship as in

the elastic limit. Examining Fig. 5(b) we see that this devia-

tion from the elastic limit occurs at c ¼ 0:18. The stress

at this point is the yield stress, sY ¼ 5:7� 10�3 s0 or 8:0
�10�12 Pa m in physical units.

Our result for the yield stress is quantitatively consistent

with a formula for the critical shear stress, based on a theo-

retical model that is familiar for 3D materials.43 In physical

units, this formula for the theoretical critical shear stress is43

sth ¼ Gb=2ph; (7)

where G is the shear modulus for 3D materials, b is the particle

spacing in the direction of the shear stress, and h is the separa-

tion between two neighboring planes that exhibit a dislocation.

FIG. 5. Stress-strain relationship. The same data are presented in (a) and (b),

over different ranges of shear strain. The stress and strain plotted here were

obtained from the time series data, Fig. 4. For the elastic portion, we fit the

data to a straight line, yielding a slope, as our measurement of the shear modu-

lus G2D. A transition from elastic to plastic deformation, i.e., yield stress, is

identified by a change in slope, which is less severe than sketched in Fig. 1(b).

A transition to liquids is marked by a maximum shear stress at c � 0:37. Flow

develops at large strain, with an increasing deformation at constant stress.
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To allow a comparison to our result for a 2D substance, we

make two substitutes: we use our 2D shear modulus G2D for

the 3D shear modulus G, and we use h ¼
ffiffiffi
3
p

b=2, which is the

separation of two adjacent particle rows (parallel to the princi-

pal axis) in a 2D triangular lattice. Making these substitutes, we

find sth ¼ 5:9� 10�3 s0, which matches our simulation result

sY ¼ 5:7� 10�3 s0 based on Fig. 5(b).

C. Liquid flow

Our stress-strain relationship curve has indications that

distinguish three conditions: elastic deformation, plastic flow,

and liquid-like flow. The elastic-plastic transition, as men-

tioned above, is at c ¼ 0:18, and it is marked by a deviation

from the linear relationship in the low-stress elastic limit. At

about double that stress, c ¼ 0:37, there is a plastic-liquid

transition, which is marked by a peak in the stress. This peak

stress is 0:010s0. Beyond that peak the stress diminished to

about one third of the maximum. Furthermore, the micro-

scopic structure in the central gap became more disordered,

as indicated by Figs. 3(b) and 3(c), and the flow appeared to

be liquid-like, when viewing movies of the particle motion in

the simulation. In a future paper, we will analyze the micro-

scopic behavior in the plastic and liquid-like flow regimes.

IV. SENSITIVITY TO TEMPERATURE

Here we assess the sensitivity of shear modulus and yield

stress to temperature. To do this, additional simulations were per-

formed at different temperatures. Results are shown in Table I.

We find that both shear modulus and yield stress

decrease with temperature. For the temperature range we

tested, the decrease is gradual. In Table I, as the temperature

increases by a factor of 6, the shear modulus decreases only

by 37%, while the yield stress decreases by 63%.

V. SUMMARY

Elastic and plastic deformations of 2D dusty plasma crys-

tal under shear stress were investigated using a simulation. A

stress-strain relationship was empirically obtained, by apply-

ing two oppositely-directed forces. Based on the stress-strain

relationship, we characterize the dusty plasma crystal in three

regimes: elastic deformation, plastic deformation, and flow.

This characterization results in the shear modulus in the elas-

tic limit and the yield stress at the onset of plastic deforma-

tion, for a 2D plasma crystal. The shear modulus from our

simulation is found to agree with a theoretical prediction using

the speed of transverse sound wave. Our determined yield

stress is consistent with a theoretical formula for 3D materials.

Experiments may be able to observe the same phenomena; the

required observables in an experiment are position and veloc-

ity of particles during manipulation by a laser beam, which

are standard experimental methods.
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APPENDIX: COMPARISON WITH OTHER MATERIALS

Here we compare the shear modulus and yield stress for

our 2D dusty plasma with that for 2D penta-graphene and

typical 3D materials. The latter comparison requires

TABLE I. Shear modulus and yield stress at different temperatures. Here,

temperature is normalized by melting point, Tp;m ¼ 1=Cm, where Cm ¼ 155,

as determined using the Eq. (4) of Ref. 46 for j ¼ 0:73.

C Tp=Tp;m Shear modulus G2D=s0 Yield stress sY=s0

1585 0.1 0.035 0.0078

800 0.2 0.032 0.0057

490 0.3 0.030 0.0056

247 0.6 0.022 0.0048

TABLE II. Comparison with 2D penta-graphene and 3D solid materials.

Both the shear modulus and the yield stress are normalized by temperature

and number density. The yield data for both penta-graphene and the 3D mate-

rials are for tensile yield stress rY, which is
ffiffiffi
3
p

times larger than the yield

stress sY in pure shear, according to the von Mises yield criterion.47 For 3D

materials, the number density is calculated as n ¼ q=m, where q and m are

the material’s mass density and atomic mass, respectively. Melting point

Tm data, not shown here, were from Ref. 48. For 2D penta-graphene, we use

Tm¼ 4100 K for melting point49 and n2D ¼ 0:453 Å
�2

for area density.50

Parameters used for 3Da

3D materials T=Tm G=nkBT rY=nkBT
T

(K)

G

(GPa)

rY

(mPa)

q
(kg/m3)

Al(refined,

99.98%)

0.31 115 0.04–0.10 298 27.8 10–25 2.7�103

Fe(soft,

polycrystal)

0.16 239 0.38 298 81.6b 131b 7.9�103

Ag(99.97%) 0.24 125 0.12 293 29.5 28 1.1�104

0.38 0.07 473 25

0.55 0.04 673 20

0.87 0.02 1073 17

Sn(single

crystal)

0.58 128 0.01 298 19c 1.3c 7.3�103

Au(99.99%) 0.22 110 0.13 298 26 30 1.9�104

Lead (cast) 0.49 21 0.02 298 5.54 5.9 1.1�104

Parameters used

for graphened

2D penta-

graphene T=Tm rY=n2DkBT T (K) rY(Pa m)

0.07 119.4 300 22.4

0.12 68.4 500 21.4

0.17 39.5 700 17.3

2D dusty

plasma Tp=Tp;m G2D=n2DkBTp sY=n2DkBTp

0.10 176 38.8

0.19 80 14.3

0.32 46 8.6

0.63 17 3.7

aUnless otherwise specified, all parameters data for 3D solids are from Ref. 48.
bFrom Ref. 51.
cFrom Ref. 52.
dFrom Ref. 53.

103702-5 B. Liu and J. Goree Phys. Plasmas 24, 103702 (2017)



recasting these quantities in dimensionless units because

shear modulus and yield stress have different units in 2D and

3D. Recognizing that this difference in units corresponds to

the difference between 2D and 3D number densities, we

choose to normalize shear modulus and yield stress by

n2DkBT for 2D and by nkBT for 3D materials, where n is the

3D number density, and T is the temperature. In Table II, we

list the normalized shear modulus and yield stress.

For the normalized shear modulus, we find that a 2D

dusty plasma is similar to 3D materials. The normalized

shear modulus G2D=n2DkBTp is comparable to G=nkBT for

3D materials, as listed in Table II. The similarity of these

two values is possible, despite the very small shear modulus

in physical units for the dusty plasma, because the dusty

plasma has a very low density n2D.

For the yield stress, we find sY=n2DkBTp for the dusty

plasma is comparable to rY=n2DkBT for 2D penta-graphene.

However, it is generally larger than rY=nkBT for 3D materi-

als, by at least one order of magnitude.
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