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The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is

investigated in a simulation. A projectile’s drift is driven by a constant force F. We characterize

the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular

diffusion coefficient Dp? is obtained from the simulation data. The force dependence of Dp? is

found to be a power law in a high force regime, but a constant at low forces. A mean kinetic

energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to

increase with Wp with a linear trend at higher energies, but an exponential trend at lower

energies. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4885353]

I. INTRODUCTION

We investigate the diffusion of a dilute beam of

charged projectiles as they scatter on particles in a strongly

coupled dusty plasma. A dusty plasma contains small solid

particles, which we call dust particles. They become highly

charged by collecting more electrons than ions.1–13

Laboratory dusty plasmas also have a significant quantity of

neutral gas. Due to the large charge, a collection of dust

particles can be strongly coupled, with more potential

energy than thermal kinetic energy, so that the collection of

dust particles self-organizes with a liquid-like or solid-like

microscopic structure.14 Such a strongly coupled dusty

plasma can fill a three-dimensional (3D) volume in micro-

gravity experiments.15–19

Self-diffusion, which is a random walk of individual

particles, has been studied in dusty plasmas

experimentally20–31 and numerically.32–53 In the previous nu-

merical studies, diffusion was characterized under equilib-

rium conditions. Here, we investigate diffusion under a

nonequilibrium condition: in particular, we consider the ran-

dom walk of a projectile beam that drifts through a dusty

plasma due to a constant force. An additional difference, as

compared to the previous numerical papers, is that the ran-

dom walk here is not a self-diffusion: the projectile diffusion

occurs mainly due to collisions with target particles that

have a different size.

The drift of the projectiles with respect to the target par-

ticles is driven by a net force F, which can arise in a dusty

plasma due to an imbalance of forces such as the electric and

ion drag forces. Those forces scale differently with particle

size,54 so that in a mixture of two particle sizes, one size of

particles can be forced to drift through particles of another

size. The target particles may be stationary, or drifting. In

some previous microgravity experiments, target particles

were stationary while large quantities of smaller projectiles

drifted through the targets.55–57

We simulate a case similar to those experiments, except

that we consider smaller quantities of projectiles, so that

they interact only with targets, but rarely with other

projectiles. For such a dilute beam of projectiles, we previ-

ously58 characterized the drifting motion parallel to F to find

the drift velocity up. We determined the mobility lp¼ up/F,

which is a constant for low F, but an increasing function of

F at high F. Here, we investigate another transport coeffi-

cient, the diffusion coefficient, to characterize motion of the

projectiles.

In addition to the parallel drift, the projectiles will also

be scattered randomly in the direction perpendicular to F.

This random perpendicular scattering occurs due to colli-

sions of the projectiles mainly with target particles, and to a

lesser extent with gas atoms. The result is a diffusion of the

projectiles in the direction perpendicular to F, which we

characterize here. The main result of this paper is a quantifi-

cation of this diffusion coefficient, Dp?. We also determine

the kinetic energy Wp for perpendicular motion in the dilute

beam. We find the scaling laws of Dp? for varying values of

F and Wp.

II. SIMULATION

Using a molecular-dynamics approach, we integrate the

Langevin equations

mt€xi ¼ ��tmt _xi þ ftiðtÞ �
X

k

r/ik �rU; (1)

mp€xj ¼ ��pmp _xj þ fpjðtÞ �
X

k

r/jk �rUþ F: (2)

Equation (1) is for the target particles of mass mt, as

denoted by the subscript t, while Eq. (2) is for the projec-

tiles of mass mp. Processes taken into account include dust-

gas collisions, the dust-dust interaction �r/, the electric

force due to a confining potential –rU, and a constant

force F that is applied to projectiles only as in Ref. 58.

Dust-gas collisions are represented by two terms: a fluctu-

ating force f and a frictional drag term. The drag term

has a friction coefficient, �p or �t, for projectile or target

particles, respectively. Differently from most Langevin

simulations, we augment f above that predicted by the
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fluctuation-dissipation theorem in order to account for

additional heating mechanisms that may be present, in

addition to collisions with gas atoms.59

The dust-dust interaction for a particle pair i and j, with

charges Qi and Qj, is described by the Yukawa potential

/ðrijÞ ¼
QiQj

4p�0

e�rij=kD

rij
; (3)

where kD is a screening length and rij is the separation. A

collection of particles interacting with this potential can be

characterized by two dimensionless parameters: the screen-

ing parameter j and the Coulomb coupling parameter Ct.

The screening parameter is

j ¼ a=kD; (4)

where a is a typical interparticle distance. The Coulomb cou-

pling parameter for the target particles is

Ct ¼ Q2
t =4p�0akBTt; (5)

where Qt and kBTt are the charge and the kinetic energy of

target particles, respectively. In Eqs. (4) and (5), we charac-

terize the typical interparticle distance a as the Wigner-Seitz

radius a¼ (3/4pnt)
1=3, where nt is the number density of the

target particles. Choosing some other convention for the

interparticle distance would cause j and Ct to have system-

atically larger or smaller values.

The 3D system we simulate consists of N¼ 12 800

or 57 600 target particles, along with a small number of pro-

jectiles. The target particles are not drifting. Due to the

confinement force –rU, the target particles are limited to a

rectangular volume, with a number density of nt¼ 3

� 104 cm�3 and a corresponding interparticle distance of

a¼ 0.02 cm.

We use finite boundary conditions, with a confining

potential that is flat in most of the volume, and a rising pa-

rabola at the edge. The confining potential is

U ¼ wðx; bÞ þ wðy; cÞ þ wðz; dÞ; (6)

where

wðx; bÞ ¼ 0; jxj < b
mtx2

eðjxj � bÞ2=2; jxj � b;

�
(7)

and similarly for y and z. The constants b, c, and d are the

half widths of our simulation box along the x, y, and z axes,

respectively. For our simulation with N¼ 12 800, these con-

stants are b¼ 66.0kD, c¼ 40.5kD, and d¼ 34.7kD. For the

larger simulation with N¼ 57 600, they are b¼ 131.5kD,

c¼ 61.0kD, and d¼ 52.0kD. The constant xe, which is cho-

sen to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

t =4p�0mtk
3
D

q
, characterizes the parabolic con-

finement at the edge.

A projectile is introduced on the smallest face of the rec-

tangular volume, and it is then driven by the force F (which

has a direction parallel to the longest face) to move through

the volume. At first, there is an initial transient due to the

acceleration of the projectile in the parabolic edge; we do

not analyze this early portion of the trajectories. After a short

time, the projectile drifts with an average speed up, and this

is the portion of the trajectories that we analyze. Further

details of the simulation are in Ref. 58.

The constant force F ¼ Fx̂ is applied only to projectiles.

The perpendicular diffusion that we studied here involves

the random motion in the ŷ and ẑ directions.

Here, we list key parameters in our simulation. We

choose a smaller particle radius of 0.64 lm (mp¼ 1.66

� 10�15 kg) for the projectiles, but a larger radius of 3.43 lm

(mt¼ 2.55� 10�13 kg) for the target particles. For neon at

50 Pa pressure and 0.03 eV temperature, the gas friction

coefficients11,60 are: �p¼ 273 s�1 and �t¼ 51 s�1. The parti-

cle charges are Qp¼�1590e for the projectiles, and

Qt¼�8520e for the target particles. In a strongly coupled

plasma, the time scale for collisions is comparable to the

inverse plasma frequency x�1
t , where

xt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

t nt=�0mt

q
: (8)

For our simulated parameters, xt¼ 157 s�1. The Debye

length is kD¼ 8.3� 10�3 cm. These parameters are generally

consistent with those in the PK-4 instrument.57,61,62

The target conditions we simulate are typical of a liquid

state. The screening parameter is j¼ 2.4, for a¼ 0.02 cm.

Liquids at two temperatures are simulated: a hot liquid at

Tt¼ 10Tm and a cold liquid at Tt¼ 2Tm. The corresponding

coupling parameters are Ct¼ 62 and 310, respectively. Here,

Tm is the melting point63 for the 3D Yukawa system of target

particles.

Our results are presented in dimensionless units. The

distance, time, velocity, force, energy, and diffusion coeffi-

cient are normalized by a, x�1
t , axt, mpx2

t a, mt(xta)2/3, and

a2xt, respectively.

The projectile’s motion was found in Ref. 58 to have

at least two force regimes. The low and high regimes corre-

spond to near-equilibrium and nonequilibrium conditions,

respectively. In the low regime, the mobility lp for the

parallel drift motion remains constant, while it is not a con-

stant and increases with F in the high regime. The transi-

tion between two regimes, which is best distinguished by a

change in the trend for the perpendicular projectile veloc-

ity, occurs at F � 2 or 3 mpx2
t a, for Tt¼ 2Tm or 10Tm,

respectively. In addition to the two regimes discussed

above, a third regime, due to a dominant role of gas fric-

tion, was also speculated to exist at even higher forces.58

We determine the diffusion coefficient Dp? using pro-

jectile displacements to calculate a probability distribution

function (PDF). For a given starting time, we calculate the

displacement in the ŷ and ẑ directions, after a time delay s.

We make a histogram of these displacements, which we av-

erage over many different starting times. This yields a PDF

of perpendicular displacements. We verified that the PDF is

Gaussian, and its width increases linearly with s, as expected

for normal diffusion, as opposed to subdiffusion or superdif-

fusion.64,65 We calculate the diffusion coefficient Dp? as the

second moment of the PDF divided by s. The diffusion coef-

ficients we report in Sec. IV are for a limiting case of large s.
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We verified that our result for Dp? does not depend on the

system size N.

III. INTUITIVE ESTIMATE OF Dp?

We can estimate roughly the expected value of Dp?.

First we consider the low regime, which is near equilibrium,

so that we make an estimate based on a random-walk argu-

ment. The diffusion coefficient will be Dp? � ½ðdyÞ2

þðdzÞ2 �=4dt, where dy and dz are some typical step sizes

between collisions, dt is a typical time between collisions.

The factor of 4 is chosen for a two-dimensional random walk,

since we are interested in only the ? directions. Estimating

that dy and dz are comparable to the Wigner-Seitz radius a,

and dt is comparable to 1/xt, we expect that Dp? will be

roughly 0.25a2xt. (In our simulation, we will find the actual

value is somewhat smaller than this, and we will find that it

depends on the target temperature as well.)

For the high regime, we expect that the diffusion will

increase above the near-equilibrium level. To understand

why, consider first that as the force is increased, the drift ve-

locity up will be larger. Projectiles will thus have a greater

momentum in the x̂ direction when they undergo a collision

with a target particle, so that after the collision the momen-

tum in the ? direction can be larger than under equilibrium

conditions, and this will lead to displacements in the ? direc-

tion that are also larger than for equilibrium. For this reason,

we expect Dp? to increase with up in the high regime, and

with F and Wp as well. We do not have a model to predict

this increase quantitatively; we will instead find it empiri-

cally, using our simulation.

IV. RESULTS

A. Projectile’s displacement and velocity

Figures 1(a) and 1(b) show typical particle displace-

ments, at two times. In Fig. 1(b), a significant time after a

projectile was injected, the projectiles have been scattered

significantly in the perpendicular direction, due to collisions

mainly with the target particles but also with the neutral gas.

This scattering corresponds to the projectile’s random walk,

or diffusion, in the perpendicular direction. This diffusion is

the main topic of this paper.

Example projectile velocities are shown in Figs. 1(c) and

1(d). The earliest time shown is in Fig. 1(c), immediately after

injection. This early time represents a transient due to the way

our simulation begins; the projectiles have not yet scattered or

attained a constant drift speed up. Later, after this initial tran-

sient, projectiles in Fig. 1(d) have attained a drift speed up,

and more importantly for the purpose of this paper, their

velocities have scattered in the perpendicular direction. In all

of our further analysis, we exclude the initial transient period.

B. Mean kinetic energy for projectiles

We characterize the dispersion of the perpendicular ve-

locity by calculating a mean kinetic energy for perpendicular

motion

Wp ¼ mpðv2
y þ v2

z Þ=2; (9)

which we plot in Figs. 2(a) and 2(b) as a function of F. In

preparing these figures from Eq. (9), we averaged over a

time interval 5< txt< 20 and over 80 projectiles. Note that

Wp describes random motion, which has an average of zero

velocity. It does not include the portion of the projectile’s ki-

netic energy due to the drift in the k direction.

We fit our Wp data to the form

mtðaxtÞ2

3

1

Ct
þ n

F

mpx2
t a

� �2
" #

(10)

to characterize the force dependence of Wp. We chose this

form by analogy to a theory66,67 for mobility and diffusion of

ion projectiles in neutral gas. That theory predicts an ion

energy that is the sum of two terms: a thermal energy kBTt and

a drift term. The latter is a kinetic energy related to the paral-

lel drift up. Our Eq. (10) is written similarly. The terms in the

square brackets are dimensionless, so that kBTt is replaced by

1/Ct. In the drift term, we replace up by a factor / F since the

parallel motion is mobility limited. The form of Eq. (10) pro-

vides a smooth transition from the low regime (dominated by

the thermal term 1/Ct) to the high regime (dominated by the

drift term with F). The dimensionless parameter n arises

physically because of collisional processes such as mobility,

and we will allow it to be the only free parameter in the fit.

FIG. 1. Diffusion of projectiles due to collisions with charged target par-

ticles and neutral gas. (a) A beam of projectiles is injected at a displacement

Dx¼ 0. (b) The projectiles spread as they drift in the x̂ direction. The diffu-

sion of the projectile beam, as seen from the dispersion in (b), is our main

focus. Our analysis will be based on random walk displacements in the per-

pendicular ŷ and ẑ directions. The velocities of projectiles exhibit an

increasing dispersion, starting soon after injection in (c) and increasing later

in (d). Data shown here are for Tt¼ 2Tm and F ¼ 3 mpx2
t a, for which the

drift speed is up¼ 0.92 axt.
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We find that Eq. (10), shown as smooth curves in Figs.

2(a) and 2(b), fits the data for Wp well for F < 10 mpx2
t a.

The only free parameter in the fit was n, which we deter-

mined to be n¼ 3.6� 10�4. The fit fails, however, for

F > 10 mpx2
t a, perhaps due to an increasing role of gas fric-

tion, as discussed in Sec. IV C.

C. Diffusion and its force dependence

Our chief result is the diffusion coefficient Dp?. We pres-

ent its values in Figs. 2(c) and 2(d), as a function of force. The

diffusion coefficient varies over a range of 0.03 to 2.0 a2xt, for

the target temperatures and range of forces that we consider. In

physical units, this range corresponds to 0.19 to 12.6 mm2/s

for the PK-4 parameters listed in Sec. II. (This diffusion coeffi-

cient for projectiles should not be confused with the diffusion

coefficient of the non-drifting target particles, which is 0.0011

or 0.0082 a2xt, for Tt¼ 2Tm or 10Tm, respectively.)

We find that the diffusion coefficient Dp? exhibits differ-

ent trends in the two force regimes. In the low regime, Dp?
approaches a constant value as the force diminishes. This

low-force constant depends on the target temperature; it is

Dp?¼ 0.033 6 0.006 a2xt for Tt¼ 2Tm, and 0.21 6 0.01 a2xt

for Tt¼ 10Tm. These values for Dp? are somewhat smaller than

our rough estimate in Sec. III, which was based on a simple

random-walk argument. Moreover, Dp? also depends on target

temperature, which was not anticipated by our rough estimate.

We can empirically characterize the data for Dp? in

both regimes by fitting them to a single function of force and

target temperature. In Figs. 2(c) and 2(d), we find that the

data are fit well by an expression

a2xt A
1

Ct
þ b

F

mpx2
t a

� �2
" #( )C

: (11)

We chose the form of Eq. (11) in analogy to Eq. (10), but

with an exponent C. This exponent is required at high forces

because we find that the power law dependences of Dp? and

Wp with respect to F are not the same. The temperature de-

pendence is reflected by the term with 1/Ct and, to a lesser

extent, the exponent C. The free parameters, for the best fit

shown as smooth curves, are A¼ 2.3 6 0.1 and

b¼ 0.0031 6 0.0002. The third free parameter, C, varies

weakly with the target temperature, with C¼ 0.73 6 0.02

and 0.49 6 0.09 for Tt¼ 2Tm and 10Tm, respectively.

The power law dependence of Dp? in the high regime

depends on target temperature. This is different from the

behavior of Wp in the high regime, which had the same quad-

ratic scaling in both regimes. Based on our fit, we find that
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FIG. 2. Mean kinetic energy Wp dependence on F for: (a) Tt¼ 2Tm and (b) Tt¼ 10Tm. The dashed curves are fits to Eq. (10). The perpendicular diffusion coeffi-

cient Dp?, which is our main result, is shown for (c) Tt¼ 2Tm and (d) Tt¼ 10Tm. The solid curves are fits to Eq. (11). In the high regime (large F), Dp? / F1.5

for Tt¼ 2Tm and Dp? / F1.0 for Tt¼ 10Tm. The transition between the low and high regimes, as was identified in Ref. 58, is indicated by arrows.
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the power law scaling is Dp? / F1.4660.04 for the low

temperature Tt¼ 2Tm, but Dp?/ F0.9860.18 for the high tem-

perature Tt¼ 10Tm.

We expect that our fitting expressions, Eq. (10) for Wp

and Eq. (11) for Dp?, will not apply in a third regime58 at

higher forces. In this third regime, we expect neutral gas will

play a larger role. However, neutral gas is not accounted for

in Eqs. (10) and (11). We can explain conceptually how the

scaling of Wp and Dp? will change in this third regime.

Consider that the drift velocity up is the source of the

enhanced scattering in the high regime. This scattering will

take a different character when it is determined not just by

target particles, but gas as well. Since Wp and Dp? are due to

the scattering, the different scattering character in the third

regime could lead to a different scaling. There may be a hint

of this third regime in Figs. 2(a) and 2(b) for F > 10 mpx2
t a,

but we have not explored this third regime in detail.

D. Energy dependence of diffusion

An obvious question to ask about diffusion, in equilib-

rium systems, is how the diffusion coefficient depends on

temperature. In the case with a dilute beam, the projectiles

do not have a temperature, because they are driven by a force

and therefore they are not in thermal equilibrium. We can,

however, report our diffusion coefficient as a function of the

mean kinetic energy Wp for the projectile’s random motion.

We do this by replotting the data in Fig. 2, eliminating F.

The results for the energy dependence of Dp? are shown

in Fig. 3. We find that the diffusion coefficient Dp? increases

monotonically with the mean kinetic energy Wp. This

increase is nearly linear for high energies. For lower ener-

gies, the dependence is nearly exponential.

For high energies, the normalized data points for the

two target temperatures overlap in Fig. 3. This overlap sug-

gests that Dp? vs Wp is self similar with respect to a change

in target temperature. A comparable similarity is not seen in

the force dependence, Figs. 2(c) and 2(d) for Dp? vs F.

For the high energies, where the results are the same for

both target temperatures, we find that our data in Fig. 3 scale

as Dp? / W1:0
p . Fitting to this form, we find an empirical lin-

ear relationship Dp?¼ 60Wp/mtxt. This fit is shown as a

straight line in Fig. 3.

For the lowest energies in Fig. 3, the curve for Dp? vs

Wp rolls off, and the linear relationship above fails. This roll-

off occurs at Wp< 3.5kBTt for Tt¼ 2 Tm and Wp< 1.5kBTt for

Tt¼ 10Tm. Instead of a linear dependence, the data in this

rolloff exhibit a dependence that is nearly, but not exactly,

exponential, Dp? / e�Ea=Wp . This exponential dependence

resembles the Arrhenius dependence of diffusion for impu-

rity atoms in a solid, where an atom must surmount a poten-

tial barrier Ea in order to diffuse.68 In our physical system,

the energy Ea might correspond to some physical quantity

other than just a potential barrier, because we found that Ea

depends on the target temperature.69

V. SUMMARY

In summary, we investigated the perpendicular diffusion

of a charged projectile drifting through a strongly coupled

dusty plasma. Such a drift can occur due to a net force that

acts only on projectiles but not on target particles of a differ-

ent size. In a dusty plasma, a net force can be nonzero due to

unbalanced electric and ion drag forces.

The diffusion coefficient Dp? was determined from the

simulation data. We found values ranging from 0.03 to 2.0

a2xt, depending on the force and target temperature.

We found that the force affects a projectile’s diffusion

differently in two regimes, for low and high forces. In the

low force regime, the diffusion coefficient approaches a

constant, but in the high regime, Dp? increases with the

force with a power law scaling that depends on target tem-

perature. The computed value in the low regime is some-

what smaller than our rough estimate 0.25a2xt based on a

random-walk argument, and it also depends on the target

temperature.

We also investigated the energy dependence of the dif-

fusion coefficient. In terms of a mean kinetic energy Wp, we

empirically found that Dp?¼ 60Wp/mtxt, for high energies.

This same linear function applies for both target tempera-

tures that we simulate. For low energies, however, Dp?
varies nearly exponentially with Wp, not linearly.

We anticipate that the diffusion process studied here

can be observed experimentally. Doing this in a dusty

plasma would require tracking the projectile particles for a

sufficiently long time to evaluate the diffusion coefficient.

The feasibility of this measurement was considered in

Ref. 59.
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