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Abstract

Bispectral analysis was used to study the nonlinear interaction of compressional waves in a

2D strongly coupled dusty plasma. A monolayer of highly charged polymer microspheres was

suspended in a plasma sheath. The microspheres interacted with a Yukawa potential and formed a

triangular lattice. Two sinusoidal pump waves with different frequencies were excited in the lattice

by pushing the particles with modulated Ar+ laser beams. Waves at the sum, difference, and other

combination frequencies were shown to be the result of coherent nonlinear interaction of pump

waves. However, for certain combination frequencies coherent nonlinear interaction was ruled out.
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I. INTRODUCTION

Bispectral analysis is a powerful tool to study nonlinear phenomena [1]. In this method,

a correlation is calculated between fluctuations at different frequencies in Fourier spectra of

the waves studied. If the correlation among a triplet of waves at frequencies F1, F2, and

F1 +F2 is strong, this result indicates phase coupling between these waves. In this case, the

wave at F1 + F2 is a result of coherent nonlinear interaction of waves at F1 and F2. If there

is no correlation in the triplet F1, F2, and F1 + F2, this rules out the coherent nonlinear

interaction of waves at F1 and F2.

In this paper, we use bispectral analysis to clarify questions that remained unresolved in

Ref. [2]. In that paper, an experiment was reported where nonlinear three-wave interaction

of compressional waves was observed in a 2D dusty plasma.

A dusty plasma is a suspension of micron-size particles in a plasma. The particles are

highly charged, and due to mutual repulsion in combination with the natural confinement

provided by the plasma’s radial electric field, they arrange themselves in a structure, called

a plasma crystal, with crystalline or liquid-like order. In the presence of gravity, particles

can settle in a 2D monolayer, whereas the plasma’s electrons and ions fill a 3D volume. The

particles can be imaged directly, and their positions and velocities calculated, which allows

studying the lattice microscopically.

Sound waves, or phonons, are well-studied in the linear or low-amplitude limit. The

literature, both theoretical and experimental, for 2D dusty plasmas is reviewed in Ref. [3]

and references cited therein.

The properties of nonlinear waves in dusty plasmas have also been studied, but not as

completely as for linear waves. It was shown theoretically that nonlinear pulses can take the

form of solitons in weakly [4] and strongly coupled [5–7] dusty plasmas, although frictional

gas damping can suppress soliton formation [6, 7]. In experiments with large amplitudes,

nonlinear pulses [5, 8] and harmonic generation [2, 9] were observed in 2D lattices. Harmonic

generation was explained theoretically in Refs. [9, 10].
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II. REVIEW OF EXPERIMENT

In this paper we will present further analysis, using different methods, of the experiment

of Nosenko and Goree [2], where nonlinear mixing of compressional waves was observed in

a 2D dusty plasma crystal. Below, we will briefly review the experimental procedure and

main results of Ref. [2].

A monolayer of highly charged polymer microspheres was suspended in a plasma sheath,

Fig. 1. The particle suspension had a diameter of about 60 mm. The particles had a

diameter of 8.09± 0.18 µm [11] and a mass density 1.514 g/cm3. To achieve a low damping

rate, Ar gas was used at a pressure of 5 mTorr, so that the gas drag, which is accurately

modeled [11] by the Epstein expression, was only νd = 0.87 s−1. The plasma was sustained

by a 13.56 MHz rf voltage with a peak-to-peak amplitude of 168 V and a self-bias of −115 V.

The particles in the suspension arranged themselves in a triangular lattice, as shown in

the image in Fig. 1(a). The interparticle spacing was a = 675 ± 14 µm, as identified by

the first peak in the pair correlation function g(r). The lattice was in an ordered state;

g(r) had many peaks, and it had translational order length of 16a in an undisturbed lattice,

although this diminished to 4a when large-amplitude waves were excited. A pulse technique

[12] making use of a theoretical wave dispersion relation was used to measure the particle

charge Q = −9400±900e and screening length λD = 0.73±0.10 mm at the particles’ height.

The particles were imaged through the top window by a video camera, and they were

illuminated by a horizontal He-Ne laser sheet. Movies of 68.3−136.7 s duration were digitized

using a digital VCR at 29.97 frames per second. The 24 × 18 mm field of view included

1000 − 1100 particles, Fig. 1(a). Particle coordinates and velocities were then calculated in

each frame using the moment method [13]. The x − y coordinate system in the plane of

particle suspension has its x axis in the direction of the laser beam, as shown in Fig. 1(b),

so that waves propagated in the ±x directions.

A laser-manipulation method was used to excite two sinusoidal compressional pump waves

with different frequencies f1 = 0.7 Hz, f2 = 1.7 Hz and parallel wave fronts in the plasma

crystal, Fig. 1. Particles were pushed by the radiation pressure force, which is proportional

to an incident laser intensity [11]. Measurements were repeated with three different laser

powers to vary the pump strength, and also with no laser power. We will report the laser

power as measured inside the vacuum chamber. Our highest power was 3.41 W. Note
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that this power was distributed over a narrow rectangular stripe that traversed the particle

suspension. To understand how large the pump power was, the most physically significant

parameter is the peak velocity of the particles in the stripe where the laser struck. This

peak velocity was 0.72 mm/s, corresponding to 3.3% of the sound speed for compressional

waves, at our highest laser power of 3.41 W.

The results of this experiment as reported in Ref. [2] were observation of the waves

propagating in the lattice at the sum, difference, and other combination frequencies, as well

as harmonics of the pump waves. The waves at the sum frequencies f1 + f2 and 2f1 + f2

were found to be generated only above an excitation-power threshold. This threshold was

attributed to frictional damping, as predicted by nonlinear wave theory [2].

III. ANALYSIS METHOD

In the present paper, we use a different method, bispectral analysis, to clarify the mecha-

nism of generating waves at different combination frequencies in the experiment of Ref. [2].

We performed bispectral analysis of the particle velocity using the following procedure. The

x-component of the particle velocity was spatially averaged within 40 rectangular bins elon-

gated along the y axis. The Fourier transform vx(f) of the averaged particle velocity vx(t)

was then computed for each of the 40 bins. Then we calculated the maps of the squared

bicoherence:

γ2(F1, F2) =
|〈vx(F1) vx(F2) v∗

x(F1 + F2)〉|2
〈|vx(F1) vx(F2)|2〉 〈|vx(F1 + F2)|2〉 , (1)

where 〈...〉 denotes the ensemble average and v∗
x is the complex conjugate of vx. Ensemble

averaging was performed in 9 data bins that were located 6.5 − 11.1 mm away from the

excitation region. The amplitudes of waves at combination frequencies did not change

significantly between these data bins. In addition, the 4096-frame time sequence of vx(t)

in each of these bins was divided into four 1024-frame sub-sequences. Thus we obtained

n = 36 ensembles, each 1024 frames long, to calculate the ensemble average. The length of

each ensemble was enough to calculate vx(f) with sufficient frequency resolution.

The aim of using bispectral analysis is to determine whether there is significant coupling

between three waves, as indicated by a strong correlation. It is customary to characterize

the coupling as strong if γ2 is nearly unity and absent if it is near zero [14]. Coupling that is

not strong can nevertheless be deemed statistically significant at the 95% confidence level if
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γ2 > 3/n, which for our case is γ2 > 0.083. We will test three different experimental cases,

corresponding to three different pump power levels, and we will find that strong coupling,

with γ2 near unity, occurs in two of these cases, for the experiment of Ref. [2].

IV. RESULTS

A. Compressional waves

Going beyond the power spectra reported in Ref. [2], we also present two other kinds of

maps. These are maps of the bicoherence γ2(F1, F2) and maps of the wave energy in ω–k

space. The maps of γ2 are presented as functions of two independent variables, F1 and F2;

these should not be confused with f1 and f2, which represent the two pump frequencies

in the experiment. The bicoherence maps indicate whether a coherent nonlinear coupling

occurs amongst three oscillations. Whether these oscillations correspond to a propagating

wave or some other oscillation such as a sloshing mode is revealed by the energy maps in

ω–k space. The maps of bicoherence and of energy in ω–k space are new for this paper; they

were not previously reported in Ref. [2] for the same experiment.

At our highest amplitude for the pump waves, with a laser power of 3.41 W, the power

spectrum of particle velocity has peaks corresponding to the pump waves, their harmonics,

and waves at various combination frequencies, as shown in Fig. 2(a). This figure is similar to

Fig. 2(a) of Ref. [2], except that in the present paper the power spectrum was calculated in

the same region of the plasma crystal located 6.5−11.1 mm away from the excitation region

that was used to calculate bicoherence. Next, we examine our results for the two other kinds

of maps, bicoherence and wave energy in ω–k space, which are new for this paper.

The map of squared bicoherence γ2 in Fig. 2(b) shows that the waves at combination

frequencies are a result of coherent nonlinear interaction of the pump waves, thus supporting

a similar conclusion made in Ref. [2]. The black dots in this map indicate the pairs of

frequencies F1, F2, where the squared bicoherence γ2(F1, F2) is nearly unity, indicating

strong coupling. For any point on the map where γ2 is near unity, we conclude that the

corresponding frequencies F1, F2, and F1 + F2 are not only harmonically related, but phase

coupled as well, which is a signature of coherent nonlinear interaction between the waves

at F1 and F2. For example, for the point on the map corresponding to our two pump
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frequencies, the value of the squared bicoherence is near unity, γ2(f1, f2) = 0.954. This peak

shows that a third wave exists with a frequency f1 + f2 = 2.4 Hz, and that the phase of

this wave equals φ1 + φ2, where φ1 and φ2 are the phases of the waves at f1 and f2. For

this example, one can conclude that the generation mechanism for the sum-frequency wave

is coherent nonlinear interaction of the pump waves.

We will now compare the map of squared bicoherence γ2 in Fig. 2(b) and the power

spectrum |vx(f)|2 for particle motion in Fig. 2(a). Each peak at a combination frequency in

the power spectrum in Fig. 2(a) has one or more corresponding peaks in the bicoherence map

in Fig. 2(b). The latter peaks show different ways the wave at that combination frequency

was generated. There is one exception, though. For the peak at 2f1 + 2f2 = 4.8 Hz in

Fig. 2(a), there is no corresponding peak in Fig. 2(b). We will discuss the significance of

this finding for the wave at 4.8 Hz later in this paper.

At our medium amplitude for the pump waves, with a laser power of 1.19 W, the power

spectrum of particle velocity has fewer peaks, in Fig. 3(a). Some combination-frequency

peaks have disappeared at this lower amplitude, as compared to the higher amplitude case

of Fig. 2. This occurs because the pump amplitude became lower than the threshold value,

as explained by the theory of Ref. [2]. Remaining peaks at the combination frequencies of

f2 − f1, f1 + f2, and 2f1 + f2 are still a result of coherent nonlinear interaction of the pump

waves, as indicated by corresponding peaks in the map of bicoherence in Fig. 3(b), where

γ2 is near unity. For example, at the point corresponding to our two pump frequencies, the

squared bicoherence is γ2(f1, f2) = 0.957.

At our lowest amplitude of the pump waves, with a laser power of 0.11 W, the power

spectrum of particle velocity in Fig. 4(a) has, besides the pump frequencies, two peaks at

the combination frequencies f2 − f1 = 1.0 Hz and 2f1 + 2f2 = 4.8 Hz, and lower peaks

at frequencies that seem to be unrelated to the pump frequencies. However, there are

no peaks with γ2 near unity in the corresponding map of bicoherence in Fig. 4(b). For

example, at the point corresponding to our two pump frequencies, the squared bicoherence

is γ2(f1, f2) = 0.022. This means that there is no coherent nonlinear interaction of the pump

waves when they have low amplitude, in agreement with the theory of Ref. [2]. The origin

of the peaks at 1.0 Hz and 4.8 Hz in Fig. 4(a) thus remains unclear. We will discuss the

waves at 1.0 Hz and 4.8 Hz later in this paper.

The chief result of this paper is that using bispectral analysis verifies the theoretical
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prediction of Ref. [2] of an excitation-power threshold for the generation of a difference-

frequency wave. The peak at the difference frequency f2 − f1 = 1.0 Hz is present in the

power spectra of the particle velocity at all values of laser power, as shown in Figs. 2(a),

3(a), 4(a). However, the corresponding peaks in the respective maps of bicoherence are only

present at the two higher values of laser power, Figs. 2(b) and 3(b). Compare, for example,

Figs. 3 and 4. The peak at 1.0 Hz is present in the power spectra in Figs. 3(a) and 4(a), with

similar amplitudes, yet the corresponding peak in the map of bicoherence is only present in

Fig. 3(b). In general, the peak at 1.0 Hz is present in the maps of bicoherence at laser powers

of 1.19 W and higher, while it is missing at laser powers of 0.61 W and below. This means

that the wave at f2 − f1 = 1.0 Hz is phase coupled to the pump waves for Plaser ≥ 1.19 W,

but it is not phase coupled to the pump waves for Plaser ≤ 0.61 W. Hence the wave at 1.0 Hz

can be attributed to coherent nonlinear mixing of the pump waves only at higher values of

laser power Plaser ≥ 1.19 W, in agreement with the prediction of theory of Ref. [2] that there

is an excitation-power threshold for generation of combination-frequency waves.

Similarly, bispectral analysis helps to reveal that the peak at 4.8 Hz in the power spectra

of the particle velocity is not a result of coherent nonlinear mixing of the pump waves

regardless of their amplitude, even though this peak happens to be at the combination

frequency 2f1 + 2f2. Indeed, the phase of the wave at 4.8 Hz is not coupled to the phases

of the pump waves, as evidenced by the absence of the corresponding peaks in the maps of

bicoherence in Figs. 2(b), 4(b).

B. Other oscillations

While bispectral analysis can tell us that the waves at f2 − f1 = 1.0 Hz (below the

excitation-power threshold) and 2f1 + 2f2 = 4.8 Hz are not a result of coherent nonlinear

mixing of the pump waves, it cannot tell us what they are. In particular, it cannot tell

us whether the observed oscillations are propagating waves. For that purpose, we need an

additional method, described next.

A more complete identification of observed oscillations can be obtained from the analysis

of the map of wave energy in ω–k space shown in Fig. 5. The wave energy is mostly concen-

trated in distinct peaks that correspond to the pump waves, their harmonics, and waves at

combination frequencies. These peaks are superimposed on weaker curved stripes represent-
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ing the dispersion relation of spontaneously excited compressional waves, as observed in the

experiment in Ref. [16]. However, some peaks in Fig. 5 do not lie on the dispersion relation.

Most notably, the oscillations at 4.8 Hz and 6.3 Hz have a wave number k ≈ 0. These are

therefore close to a sloshing mode, i.e., a motion of all particles together as a rigid body in

the confining potential provided by the plasma’s radial electric field [17]. Such an oscillation

does not satisfy the compressional wave’s dispersion relation. This observation supports the

conclusion made earlier that the oscillation at 4.8 Hz is not generated by coherent nonlinear

mixing of the pump waves. Therefore, it is only a coincidence that this oscillation happens

to be at the combination frequency 2f1 + 2f2 = 4.8 Hz. It may be excited by a spontaneous

motion of a lattice defect or an energetic particle beneath the monolayer [18]. It may also be

an artifact due to camera vibration or noise in the camera and electronics. This oscillation

at 4.8 Hz might indeed be intermittent, because it is absent for the data series presented in

Fig. 3.

Similarly, the oscillation at 1.0 Hz has a wave number k ≈ 0 at our lowest ampli-

tude, which is below the excitation-power threshold, Fig. 5(b). This means that below

the excitation-power threshold, this oscillation, as in the case of 4.8 Hz, is a long-wavelength

motion of particles probably caused by oscillating defects or particles beneath the monolayer.

On the other hand, above the excitation-power threshold, the wave at 1.0 Hz has a finite

wave number k �= 0, that lies on the dispersion relation of compressional waves, as shown in

Fig. 5(a). This supports the conclusion that the difference-frequency wave is generated by

coherent nonlinear mixing of the pump waves, above the excitation-power threshold.

Finally, we note some faint unexplained features in the map of bicoherence for the lowest

pump amplitude, Fig. 4(b). Even though there is no coherent nonlinear interaction of

the pump waves when they have low amplitudes, the map of bicoherence in Fig. 4(b) has

peaks at random frequencies in the range F1,2 ≤ 1 Hz. These peaks are weak, with a squared

bicoherence of only γ2 ≤ 0.4. The frequencies of these random peaks, however, are unrelated

to the pump frequencies. Similar peaks with γ2 ≤ 0.3 are present even without any external

excitation (zero pump amplitude). These bicoherence levels indicate that the coupling is not

strong, although they might be statistically significant. The latter observation might be an

indication of phase coupling between spontaneously excited low-frequency long-wavelength

waves in a 2D plasma crystal. On the other hand, these features at low amplitude might

also be merely artifacts of the random errors in our velocity measurements.
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V. USES OF BISPECTRAL ANALYSIS BEYOND BICOHERENCE

Bispectral analysis can provide more information on nonlinear wave interaction than is

illustrated in this paper. Rather than use the bicoherence γ2, one could use the bispectrum

B(F1, F2) = 〈vx(F1) vx(F2) v∗
x(F1 + F2)〉, (2)

where we have used the same notations as in Eq. 1. It can be shown that the imaginary

part of the bispectrum carries information on the rate of power transfer between different

modes. This method will be described in detail elsewhere.
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FIG. 1: Experimental apparatus. (a) Particles arranged in a triangular 2D lattice. Atop this

image is a sketch showing where the radiation pressure force from two modulated Ar+ laser sheets

pushes particles, exciting sinusoidal compressional pump waves. (b) The particles are polymer

microspheres, suspended as a monolayer above the lower electrode in a capacitively coupled rf

plasma. All our analysis is based on images recorded by the top-view camera.

FIG. 2: (a) Power spectrum |vx(f)|2 and (b) map of the squared bicoherence γ2(F1, F2) of the

particle velocity. Note that f , F1, and F2 denote independent variables, whereas f1 = 0.7 Hz

and f2 = 1.7 Hz are the pump frequencies. Data shown here are for a high excitation laser

power of 3.41 W. Black dots in (b) indicate the pairs of frequencies F1, F2, where bicoherence

is high, γ2(F1, F2) ≈ 1. The waves with corresponding frequencies F1, F2, and F1 + F2 are not

only harmonically related, but phase coupled as well, which is a signature of coherent nonlinear

interaction between the waves at F1 and F2. For example, the points at (f1, f2) and (f2, f1)

represent the generation of the combination frequency f1 + f2, where f1 and f2 are the pump

frequencies.

[16] S. Nunomura et al., Phys. Rev. Lett. 89, 035001 (2002).

[17] S. Nunomura et al., Phys. Rev. E 65, 066402 (2002).
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FIG. 3: (a) Power spectrum |vx(f)|2 and (b) map of the squared bicoherence γ2(F1, F2) of the

particle velocity for the medium excitation laser power of 1.19 W. The waves at combination

frequencies f2 − f1, f2 + f1, and 2f1 + f2 are generated by coherent nonlinear mixing of the pump

waves, as indicated by corresponding peaks in bicoherence, where γ2 ≈ 1.
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FIG. 4: (a) Power spectrum |vx(f)|2 and (b) map of the squared bicoherence γ2(F1, F2) of the

particle velocity for the low excitation laser power of 0.11 W. The power spectrum has peaks at

combination frequencies f2 − f1 = 1.0 Hz and 2f1 + 2f2 = 4.8 Hz. However, bicoherence γ2 � 1

for all frequencies. This rules out coherent nonlinear interaction of the pump waves at this low

amplitude.

FIG. 5: Map of wave energy in ω–k space for (a) high and (b) low excitation laser power. The levels

of laser power in (a) and (b) correspond to Figs. 2 and 4, respectively. The wave energy is mostly

concentrated in distinct peaks that correspond to the pump waves, their harmonics, and waves

at combination frequencies. These peaks are superimposed on weaker stripes representing the

dispersion relation of spontaneously excited compressional waves [16]. The oscillation at 4.8 Hz

has a wave number k ≈ 0 and does not satisfy the dispersion relation. This oscillation is not

generated by coherent nonlinear interaction of the pump waves, even though it happens to be at

the frequency 2f1 + 2f2 = 4.8 Hz.
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Fig. 2
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Fig. 4
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Fig. 5
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