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Abstract

The shear viscosity of a two-dimensional liquid-state dusty plasma was mea-

sured experimentally. A monolayer of highly charged polymer microspheres,

with a Yukawa interaction, was suspended in a plasma sheath. Two counter-

propagating Ar+ laser beams pushed the particles, causing shear-induced

melting of the monolayer and a shear flow in a planar Couette configuration.

By fitting the particle velocity profiles in the shear flow to a Navier-Stokes

model, the kinematic viscosity was calculated; it was of order 1 mm2s−1,

depending on the monolayer’s parameters and shear stress applied.
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A broad range of charged particle systems can be modeled as Yukawa systems that

can have a liquid state; these include colloids, certain dense astrophysical plasmas, and

strongly coupled dusty plasmas. A dusty plasma is a suspension of highly charged micron-

size particles in a plasma. When these particles are confined, their mutual repulsion causes

them to self-organize in a structure called a plasma crystal, which can be in a crystalline or

liquid state.

Shear viscosity is a dynamic property of fluids required to describe shear flows and

damping of waves. Recently, molecular dynamics (MD) simulations [1–3] and theory [4] have

been used to predict the viscosity of a liquid Yukawa system. While viscosity is commonly

measured in colloids, there are no reports of comparable measurements in dusty plasmas. A

dusty plasma is much softer than a colloid, and between its particles it has only a rarefied

medium consisting of free electrons and ions, as well as neutral gas, which applies a frictional

drag to moving particles.

A plasma crystal is an analogue for molecular matter; the particles represent molecules

[5], but they have the advantage of allowing direct imaging and thus a measurement of

their individual positions and velocities [6]. Confinement of particles is provided by natural

electric fields in the plasma. The particle suspension can be manipulated using various forces.

In Ref. [7], ion drag forces were used to apply a shear stress that melted a two-dimensional

(2D) crystallized dusty plasma. In Ref. [5], a 3D dusty plasma in a liquid state flowed

past an obstacle where there was a shear. In those two experiments, experimenters had no

direct control over the forces and the resulting shear. Here, we report an experiment using

laser radiation to apply a controlled and localized shear stress to a monolayer lattice. The

lattice melted, and we modeled the resulting velocity profile to measure the nonequilibrium

viscosity. The geometry resembled a laminar planar Couette flow.

We used the apparatus of Ref. [8], with essentially the same parameters, including an

Ar pressure of 5 mTorr. A monolayer of microspheres was suspended in the plasma. The

particles had a diameter of 8.09 ± 0.18 µm [9] and a mass m = 4.2 × 10−13 kg. The

particle suspension’s diameter was 50 − 60 mm. The interparticle potential for particles

2



arranged in a single plane, like ours, was experimentally shown [10] to be nearly Yukawa:

U(r) = Q(4πε0r)
−1exp(−r/λD), where Q is the particle charge and λD is the screening

length. (This should not be confused with quasi-2D arrangements of particle chains, which

might have a different potential.) The particle suspension is characterized by κ = a/λD and

Γ = Q2/4πε0akT , where T is the particle kinetic temperature. For liquids, the characteristic

length a is the 2D Wigner-Seitz radius [11]; it is related to the lattice constant b for a perfect

triangular lattice by a = (
√

3/2π)1/2b. To vary a, κ, and Q, while keeping the plasma

parameters constant, we used a different number of particles in each of three experiments,

Table 1. We used the pulse technique of Ref. [12] to measure κ and Q.

Initially, our suspension was an undisturbed triangular lattice, Fig. 1(a). As is typical for

a 2D monolayer with our experimental conditions, it had a highly ordered state. The static

structure factor S(k) has the distinctive peaks of a hexagonal crystal, Fig. 1(b), and the

pair correlation function g(r) has many peaks and a correlation length of rcorr = (23− 30)a.

The particles were imaged through the top window by a video camera. We digitized

movies of 256 frames at 30 frames per second. The 23.1 × 17.3 mm field of view included

370− 770 particles, Fig. 1(a). Coordinates x, y and velocities ux, uy were then calculated [6]

for each particle in each frame.

To apply a shear stress in a planar Couette configuration, in an ordinary fluid one uses

moving plates, but in our dusty plasma, Fig. 1(c), we used counter-propagating laser beams,

as in Ref. [13], but with more laser power. Particles are pushed by the radiation pressure

force F , which was verified [9] to be proportional to an incident laser intensity. We chose

to use two opposing laser beams, rather than one, to avoid introducing a net momentum to

the particle suspension. An Ar+ laser beam, with a power that was varied up to 3.41 W,

was split in two. At their foci at the particle location, the laser beams had a diameter of

0.61 mm at the 1/e2 level. Two rapidly oscillating scanning mirrors rastered the beams into

vertical sheets, which made footprints on the lattice by striking it at an angle of 6.7 − 8.8◦

with respect to a horizontal plane. The sheets extended beyond the edges of the suspension.

In discussing our results, we first note that steady-state conditions in the velocity profiles
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developed within 3 s after turning on the laser. All the maps and profiles of particle velocity

and temperature presented here were computed well after that time.

The particle velocity was always highest within the laser footprints. The velocity dimin-

ished elsewhere, with a profile that we will model.

Beginning with an undisturbed lattice, we applied increasing levels of shear stress, and

we observed that the particle suspension passes through four stages: elastic deformation,

defect generation while in a solid state, onset of plastic flow, and fully developed shear

flow. We present data for the latter two stages. At the onset of plastic flow, Fig. 1(c),

the particles hopped between equilibrium lattice sites. Domain walls developed, and they

moved continuously. The crystalline order of the lattice in the shearing region deteriorated,

broadening the peaks in the static structure factor S(k) in Fig. 1(d). At still higher levels of

shear stress, the lattice fully melted everywhere, and a shear flow developed, Fig. 1(e). The

particle motion was highly irregular on a small scale compared to the interparticle spacing,

but on a larger scale, it was like a laminar flow in a fluid. The liquid-like order of the particle

suspension is clearly indicated by the diffusiveness of the structure factor S(k) in Fig. 1(f).

Particles were confined so that after flowing out of the field of view they circulated around

the suspension’s perimeter and re-entered the field of view, and the suspension did not buckle

in the vertical direction. Within the field of view, more than 95% of the time-averaged flow

velocity was directed in the x-direction, with less than 5% of the flow velocity diverted in

the y-direction.

We used a method of binning the velocity measurements ux and uy according to a parti-

cle’s y position to compute spatial profiles: vx(y) for the flow velocity, and the fluctuations

parameterized as the kinetic temperature Tx(y) and Ty(y). Within each bin, we computed

moments of the velocity, and then time-averaged over 256 consecutive frames, beginning

after a steady state was attained. This yielded Tx(y) and Ty(y) from the second moments

of ux and uy, respectively, as shown in Figs. 1(c) and 1(e); and vx(y) from the first moment,

as shown in Fig. 2(c). We used the region between the laser sheets to calculate a spatially

and temporally averaged < Ty >, which we used to compute Γy. We use Γy and not Γx
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to characterize our system, because there was no external energy input in the y-direction.

Separately, we also computed maps of velocity, ūx(x, y), which were time-averaged to reduce

noise, Figs. 2(a) and 2(b).

At the onset of plastic flow, the velocity maps ūx(x, y) reveal interesting 120◦ zigzag

features, Fig. 2(a). This angle corresponds to a triangular lattice. The underlying movement

of individual particles is best seen by viewing the movie [14].

In the fully melted condition, the velocity map in Fig. 2(b) has no significant variation

in the x direction. In this shear flow, particles slip past their neighbors [14].

The flow velocity profile vx(y) in Fig. 2(c) was curved, unlike in a traditional planar

Couette flow where vx(y) is linear with y. We attribute this curvature to the frictional

drag exerted on particles by the gas. A balance between this drag in the x direction and

the viscous transport of particle momentum mux in the y direction away from the laser

footprints accounts for the observed steady-state velocity profile.

We modeled the velocity profile in the continuum approximation, using the Navier-Stokes

equation with a term for the gas drag: ∂v/∂t + (v∇)v = −ρ−1∇p + (η/ρ)∇2v + [ζ/ρ +

η/(3ρ)]∇(∇ · v) − νdv. Here, the parameters for the continuum representing our particle

suspension are v, p, ρ, η, and ζ , which are the velocity, pressure, areal mass density, shear

(dynamic) viscosity, and second viscosity, respectively, and νd is the gas friction. The ratio

η/ρ is the kinematic viscosity, which has the same dimensions in 2D and 3D systems. Our

flow has a symmetry ∂/∂x = 0 and vy = 0. The Navier-Stokes equation is then reduced to

∂2vx(y)/∂y2 − (νd ρ/η)vx(y) = 0 and p = const.

We will compare our results to a theoretical velocity profile vth
x (y) = [(V1 + V2 e2αh)eαy −

(V2+V1 e2αh)e−αy]/(e3αh−e−αh), where α =
√

νd ρ/η and 2h is the distance between the laser

sheets. We used the boundary conditions vx(−h) = −V1 and vx(h) = V2; if V1 = V2 = V ,

the theoretical profile simplifies to V sinh(αy)/sinh(αh). Here we have ignored the spatial

dependence of η/ρ, thereby neglecting the temperature gradient in the shear flow. As νd → 0,

the solution approaches a linear velocity profile, as for a planar Couette flow. The gas drag

νd �= 0 gives the steady-state velocity profiles a curvature depending on viscosity; this allows
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us to calculate the viscosity from the profiles, if νd is known.

We fit our experimental velocity profiles in Fig. 2(c) to theory using experimental values

of V1 and V2 and a single free parameter α. We then calculated the kinematic viscosity

η/ρ = νd α−2 using the known value of Epstein gas drag νd = 0.87 s−1 for our experimental

conditions [9]. The resulting curves fit our profiles well.

Our main experimental result is the kinematic viscosity η/ρ of our particle suspension,

Fig. 3(a). Its value is of order 1 mm2s−1, which is comparable to η/ρ for both a 3D Yukawa

system and liquid water [1–5]. For a given value of κ, the parameter we varied was the

applied laser power; increasing this power caused the shear stress to increase and Γy to

decrease, so that these two parameters were not varied independently.

A prominent feature of Figs. 3(a) and 3(b) is a broad minimum in the viscosity. The

minimum occurs in the range 70 < Γy < 700. In 3D Yukawa systems, there is also a

minimum, and the value of Γ for this minimum depends on κ [1–4].

We next consider some of the assumptions in our model and validate them using our

experimental results. The weak dependence of viscosity on Γy in the range 70 < Γy < 700

validates our neglecting the temperature gradient, but only in this range of Γy; our data

points outside this range are less reliable, due to this assumption. The Reynolds number of

our shear flow was R = V1h/(η/ρ) = 0.7 − 17; values this low typically indicate a laminar

flow, validating that assumption in our model.

We have also assumed that the neutral gas does not flow and entrain the particles. This

is true because the gas-gas collision mean free path of 15 mm was of the order of the entire

suspension’s size, and the particles filled only a tiny solid angle. Thus, a gas atom that was

struck by one moving particle was unlikely to strike another.

The good fit in Fig. 2(c) suggests that the Navier-Stokes model, which is a continuum

model that does not describe motion of individual molecules, works well even when the ratio

of the shearing region width 2h to the Wigner-Seitz radius a is as small as 17 to 24, as it

was in our experiment. In Ref. [1], tests suggested that validity of the Navier-Stokes model

requires that the length scale 2h of the system exceed both the interparticle mean free path
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λmfp and rcorr. Both of these conditions are satisfied for our experiment. We validate the

2h > λmfp condition by observing that 2h/a was in the range 17 − 24 in our experiment,

and judging that λmfp ≈ a, based on the movies of the particle motion [14]. We validate the

2h > rcorr condition using the pair correlation results, yielding 2h/rcorr = 3.0 − 9.4 for all

data points except for two with 2h/rcorr = 2.5 − 2.9; for these, Γy ≥ 1000. The latter two

data points, which are for a mostly solid suspension, are therefore less reliable.

However, the Navier-Stokes equation cannot be used inside the laser footprints, where

the shear stress is applied, because this region is very narrow, less than an interparticle

spacing. For this reason, we did not extend our fits into the footprints. In general, if the

Navier-Stokes equation fails to apply, one cannot expect the usual relation, that the shear

stress is the product of the dynamic viscosity and shear rate, to apply.

Our experiment suggests a need for a theory or simulation for the viscosity of a 2D

Yukawa system. The only previous work, to our knowledge, is for a 3D Yukawa system

[1–4].

After we submitted this paper we learned of the experiment of Ref. [15], where the shear

viscosity of a multi-layered dusty plasma was measured using a shear flow induced by a

single laser beam.

We thank B. Liu, J. Marshall, R. Merlino, and F. Skiff for valuable discussions. This

work was supported by NASA and DOE.
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FIGURES

FIG. 1. Particle suspension at three levels of shear stress applied by a pair of

counter-propagating laser sheets in a planar Couette configuration. Panels (a), (c), and (e) are top

views with shear stress that is zero, moderate, and high, respectively. The snapshot of the undis-

turbed suspension (a) shows a highly ordered triangular lattice. At the onset of plastic flow (c),

particle trajectories reveal localized hopping. In a fully developed shear flow (e), the trajectories

show particles moving significantly everywhere. Profiles of the inverse particle temperature T−1
x

and T−1
y are shown in the insets. The static structure factor S(k) was computed as the Fourier

transform, with a Hanning window, of the raw bitmap images as in (a). The peaks in S(k) are

distinctive for an undisturbed lattice (b); they are broadened and then diffuse at progressively

higher levels of shear (d),(f). The particle suspension’s parameters here and in Fig. 2 correspond

to Experiment 1 in Table 1. We calculated η, < Ty >, and Γy using data in the range −h < y < h.

FIG. 2. Particle velocity data. Map (a), averaged over 64 frames at the onset of plastic flow,

shows particle movement localized near the laser footprints. Map (b), averaged over 256 frames

at the highest laser power, shows a fully developed shear flow that has no variation with x. Ex-

perimental profiles (data points) (c) are with fits to the Navier-Stokes model (curves), as used to

calculate the kinematic viscosity of the particle suspension.

FIG. 3. Results for kinematic viscosity η/ρ, as functions of the shear stress (a) and coupling pa-

rameter Γy (b). The latter two parameters were not varied independently, but were related as shown

in (c). There is a broad minimum in viscosity in the range 70 < Γy < 700. In (b), to allow com-

parison to theory, we normalized the viscosity as η∗ = η/(ρωpd a2), where ωpd ≡ [Q2/2πε0ma3]1/2

for two dimensions [11].
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TABLES

TABLE I. Parameters of the particle suspension measured without any shear flow, for three

experiments.

1 2 3

Wigner-Seitz radius a (mm) 0.402 0.449 0.580

κ 0.36 0.42 0.53

Q/e -11 940 -13 840 -16 360

ωpd ≡ [Q2/2πε0ma3]1/2 (s−1) 49.2 48.2 38.8
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Fig. 1
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Fig. 3
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