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Phonons in a one-dimensional chain of charged microspheres suspended in a plasma were studied in an
experiment. The phonons correspond to random particle motion in the chain; no external manipulation was
applied to excite the phonons. Two modes were observed, longitudinal and transverse. The velocity fluctuations
in the experiment are analyzed using current autocorrelation functions and a phonon spectrum. The phonon
energy was found to be unequally partitioned among phonon modes in the dusty plasma experiment. The
experimental phonon spectrum was characterized by a dispersion relation that was found to differ from the
dispersion relation for externally excited phonons. This difference is attributed to the presence of frictional
damping due to gas, which affects the propagation of externally excited phonons differently from phonons that
correspond to random particle motion. A model is developed and fit to the experiment to explain the features
of the autocorrelation function, phonon spectrum, and the dispersion relation.
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I. INTRODUCTION

A one-dimensionals1Dd chain is a simple form of con-
densed matter with low dimensionality. Recently, it has been
studied in the fields of colloids, carbon nanotubes, and dusty
plasmas. In colloidal suspensions, particles can be trapped in
two counterpropagating laser beams to form a 1D coupled
array that exhibits oscillationsf1g. In a carbon nanotube ex-
periment, gas atoms have been adsorbed in a 1D chainf2g,
and the chain’s phonon frequencies have been predicted
theoreticallyf3g. Experimental measurements of phonons in
this physical system are lacking; therefore, experiments in
another physical system are desirable. In the 1D colloidal
experimentf1g the breathing and sloshing modes were mea-
sured, but other modes were not. Complete results have been
reported for 2D latticesf4,5g, but the modes are different in
1D.

Therefore, we note a broad interest in the oscillations of
1D chains, but a lack of complete experimental measure-
ments, which we will provide in this paper. The experimental
system we used is a dusty plasma, with charged micron-sized
particles confined in a single rowf6,7g. This type of confined
1D chain has the advantage of allowing direct imaging of
particle positions and velocities, thereby allowing observa-
tions of the phonons. We also note other physical systems
that consist of chains. In an ion storage ring, a 1D Coulomb
chain has been formed, which might be used in atomic
clocksf8g or quantum computingf9g. In magnetorheological
suspensions, submicron magnetic particles dispersed in a
nonmagnetic fluid interact through dipole moments aligning
with an external magnetic field, forming dipolar chainsf10g;
these suspensions have commercial use for electronically
controllable mechanical systems.

Here, we study phonons in a chain with a finite numberN
of charged particles, confined by a harmonic potential. Ex-

perimentally, we use a dusty plasma consisting of electrons,
ions, neutral atoms, and small particles of solid matter. These
so-called dust particles are polymer microspheres that ac-
quire a negative charge and are confined as a 1D chain in an
external potential wellf7g. Theoretically, we model the chain
as a single row of charged particles interacting with a
Yukawa potential, moving in a horizontal plane and confined
by a harmonic potential, in the presence of a damping that is
proportional to particle velocity.

The chain in our experiment is a driven system. Particles
undergo a fluctuating Brownian motion by colliding with gas
atoms. In addition, the energy of these charged particles is
increased by electrostatic fluctuations in the plasma, and it is
dissipated by a frictional drag due to the gasf11g. In a steady
state, the gain and the dissipation of energy are balanced.

The collective motions of particles can be treated as con-
sisting of phonons, or modes, which in an experiment can
arise two different ways. First, phonons naturally exist in a
lattice that has a finite temperaturef4,5g, driven by sponta-
neous fluctuations. These motions can be decomposed as
harmonic-oscillator-like modes, which we term natural
phonons. Here we use the term “natural” to distinguish
phonons that are present naturally from those that are delib-
erately excited by external manipulation. Natural phonons
correspond to random particle motion; we would say that
they correspond to thermal motion if our system were in
thermal equilibrium. However, because our system is not in
thermal equilibrium, we avoid calling the phonons “thermal”
and instead use the more general term “natural.”

Second, phonons can be excited in experiments by ma-
nipulations using external forces. Several experiments have
been reported within situ measurements of externally ex-
cited phonons in 1Df7g and 2Df12,13g dusty plasma crys-
tals. In these experiments, phonons were continually stimu-
lated at a specific frequency, making up a wave that
propagated away from the excitation location. This wave has
the same frequency as the excitation. Due to damping, the
wave’s amplitude decays as it propagates.

This paper presents experimental results and a model for
phonons in a 1D chain. Section III presents experimental
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results. We use a method of current autocorrelation functions
sCAFd and the spectrum of the CAF to characterize the natu-
ral phonons, yielding the phonon spectrum and the temporal
decay time of phonons.

Our two chief results are tests of energy equipartition and
the dispersion relation. We observed that the phonon energy
deviates from the equipartition law, indicating the existence
of damping or heating mechanisms other than particle
Brownian motion in a neutral gas medium. We found that,
for the transverse mode, the dispersion relations for natural
and externally excited phonons are not the same; in Sec. IV
we explain the origin of this difference. Our experimental
results presented here were recorded during the same experi-
ment as in Ref.f7g, except that in Ref.f7g a laser was used to
excite phonons. Here we report data for natural phonons in
the absence of any external manipulation. Our data, which
were not previously reported, were recorded after recording
data with external manipulation.

In Sec. IV, we develop a model to describe the phonons in
a 1D dusty plasma chain. This model might also be appli-
cable to 1D chains in colloids, storage rings, nanotubes, and
other 1D systems. This model distinguishes how the phonons
are excited. It yields dispersion relations for two cases: natu-
ral phonons and phonons excited by an externally applied
sinusoidal force. For natural phonons, this model also yields
a CAF and the spectrum of the CAF. All these results are
suitable for direct comparison to the experiment.

Another model, which is also suitable for direct compari-
son to the experiment, was reported recently by Piacente,
Peeters, and Betourasf14g. As in our model, that model be-
gins with the equation of motion for a 1D chain and it yields
dispersion relations like ours presented in Sec. IV. The model
we develop in Sec. IV yields not only a dispersion relation,
but also two other results that can be compared directly to
experiment: a CAF and the spectrum of the CAF.

II. EXPERIMENTAL METHOD

In the experimental setup, which is described in detail in
Refs. f7,15g, a plasma was produced in a capacitively
coupled radio frequencysrfd discharge, using a 13.56 MHz rf
voltage with a peak-to-peak amplitude of 94 V and a self-
bias of 248 V. Xenon gas was used at a low pressure of
about 5 mtorr. A small number of melamine-formaldehyde
microspheres were shaken into the plasma. These particles
had a diameter of 8.09±0.18mm and a mass density of
1.514 g/cm3. They gained a large electric charge due to ex-
posure to the plasma, so that they were levitated by the elec-
tric field in the plasma sheath above a lower electrode.

We tracked particles from one frame to the next, calculat-
ing their velocities. This was done by illuminating them with
a HeNe laser sheet and viewing them from above with a
video camera at 29.97 frames per second, and a field of view
of 13310 mm2. Particle positionssxi ,yid were measured in
each frame with subpixel spatial resolution, and velocities
were calculated by subtracting the positions in consecutive
frames. We then subtracted the center-of-mass velocity of the
chain, yieldingsṽx,i , ṽy,id; this subtraction has the effect of
excluding the sloshing mode, which is a rigid-body motion
of all particles in the confining potential.

Our 1D chain was externally confined by the natural elec-
tric fields in the sheath above the lower electrode. The sheath
conforms to the shape of the electrode, which had a groove-
shaped depression along thex direction. Everywhere along
the groove’s length, it had a parabolic shape in they direc-
tion, Fig. 1sad. Because this groove was narrow, we formed a
1D chain, rather than a 2Df16g or 3D f17g suspension of
particles in dusty plasmas.

Compared with a 2D dusty plasma crystal, our 1D chain
has several differences. First, the equilibrium positions of
particles do not change significantly with time, unlike in a
2D dusty plasma crystal, where the crystal might rotate. Sec-
ond, the longitudinal and transverse modes do not signifi-
cantly couple to each other, unlike in a 2D dusty plasma
crystal, where pure shear or compressional modes do not
exist due to the circular boundary of the crystalf5g. Third,
the transverse mode in our 1D chain is a backward wave,
with a frequency that decreases with wave number.

The experimental procedure, summarized below, was re-
peated for three different numbers of particles:N=10, 19,
and 28. First, we introduced a single particle into the groove,
and used the laser manipulation method of Ref.f15g to mea-
sure the confining potential. The particle motion was har-
monic, indicating that the confining potential has a parabolic
shape in all three directions, characterized by the frequencies
vx=2.6, vy=19.0, andvz=94.2 s−1 in the x, y, and vertical
directions, respectively. The high value ofvz shows that our
confinement in the vertical direction is very strong, so that
particle displacements from equilibrium positions are prima-
rily 2D, in the horizontal plane. From the motion of a single
particle, we also measuredf7g the frictional damping rate,
n=3.5 s−1.

Second, we introduced the desired number of additional
particles, which self-assembled into a chain. Our camera’s
field of view included only the central portion of the chain,
as shown in Fig. 1sbd for N=28, except that for our shortest
chain, N=10, it included the entire chain. We recorded the
data reported in Ref.f7g for phonons externally excited by
the manipulation laser. Then, we turned the manipulation la-
ser off, and after waiting 30 min to allow equilibration, we
recorded 270 s of data. The average interparticle distance, for
all particles in the field of view, wasa=0.72, 0.8, and 1.25
mm for N=28, 19, and 10, respectively. The interparticle
spacing was not uniform; it was 15% smaller in the center
than at the chain’s end, with a gradient of]a/]x<0.01, for
N=28.

FIG. 1. sad Sketch of a chain of particles levitated in a plasma
sheath above a groove in the lower electrode of the apparatus.sbd
Top view image of the central portion of a chain of lengthN=28.
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Charged particles in this trap are believed to interact
through a Yukawa potential,

f =
Q2

4pe0r
e−r/lD, s1d

as demonstrated in Ref.f18g under similar conditions, for a
monolayer of particles of chargeQ levitated in a plane per-
pendicular to the ion flow. Tests with our apparatus are also
consistent with a Yukawa potentialf15g. The screening
length lD is attributed to the free electrons and ions sur-
rounding the particles.

We measuredlD=0.86 mm andQ=7600e. As in Refs.
f7,15g, the value forlD was obtained using a method based
on the equilibrium particle position; this method also yielded
a range of values forQ. An additional method is required to
determineQ accurately. Throughout this paper, as in Ref.f7g,
we use a value ofQ that was found by fitting experimental
data for an externally excited longitudinal wave to the corre-
sponding theoretical dispersion relation, which will be pre-
sented in Sec. IV C.

In this experiment, we use the current autocorrelation
function sCAFd and the spectrum of the CAF to characterize
natural phonons. This is different from methods previously
used in dusty plasma experiments: the Fourier spectra of the
velocity field in Ref.f4g and the normal mode spectra in Ref.
f5g. Both yielded a power spectrum of a collective current
that was calculated directly from the velocity data without
using a correlation function. Here, we first calculate the au-
tocorrelation function of a collective currentsCAFd, yielding
information in the time domain such as how spontaneous
fluctuations decay with time. We then calculate the Fourier
tranform of the CAF, yielding spectra for various values of
the wave number, which we combine to yield a phonon spec-
trum. For a stationary random process, according to the
Wiener-Khintchine theorem, the power spectrum is equal to
the Fourier tranform of the autocorrelation function. Thus,
our method provides information similar to the phonon spec-
trum as in Refs.f4,5g, plus it also provides additional infor-
mation in the time domain.

Correlation functions are used extensively in the analysis
of noise and fluctuations of statistical systemsf19g, in theo-
retical analysisf20g, and as a diagnostic for molecular-
dynamics simulationsf21g. For a Yukawa system intended to
model dusty plasmas, correlation functions have been used in
a theoretical study of the properties of 2D liquidsf20g. Cor-
relation functions can be computed from our experimental
data, in the same way as from molecular-dynamics data, be-
cause our experiment provides the same measured results:
particle position and velocity.

There are several methods that can be used to obtain a
phonon spectrum. In most experimental systems, one uses
x-ray or neutron scattering to measure a spectrum, and from
this it is possible, if desired, to compute correlation func-
tions. In our experimental system, direct imaging of particles
yields a completely different kind of data to begin with: the
positions and velocities of individual particles. With these
data, we have a choice of either computing a spectrum di-
rectly as in Ref.f4g, or computing the dynamic structure
factor Ssk,vd as in Ref.f20g, or computing a current corre-

lation function and then Fourier transforming to yield a spec-
trum, as we do in this paper. The dynamic structure factor
Ssk,vd corresponds to a density autocorrelation function, and
it is calculated based on particle position only. We computed
Ssk,vd for our experimental data, but we found that it was
noisy, and in any case it provides data only for the longitu-
dinal and not the transverse mode. We therefore must choose
between the method of Ref.f4g and the method beginning
with the CAF. We chose the latter because it offers a straight-
forward normalization of the energy units and because it
yields correlation functions that have a low noise level,
thereby allowing an accurate characterization of the decay
rate of phonons. We note that the longitudinal CAF is related
to Ssk,vd by a continuity equationf20g.

The current autocorrelation functions are

CTsk,td =
1

N
k jTsk,td jTs− k,0dl s2d

for the transverse mode and

CLsk,td =
1

N
k jLsk,td jLs− k,0dl s3d

for the longitudinal mode. We computed the correlation func-
tions over a range 0ø tøt, where we choset=68.27 s. Here
k is the wave number, and the currents are defined as

jTsk,td = o
i=1

N

ṽy,istdeikxistd s4d

and

jLsk,td = o
i=1

N

ṽx,istdeikxistd, s5d

whereN is the number of particles andi is an index for the
particle number. In the experiment, if our camera field of
view does not include allN particles in the chain, we replace
N by the number of particles that we actually view.

As is common for MD simulations, we replace the en-
semble averagek¯l in Eqs.s2d and s3d with a time average
over a finite intervalf22,23g. The entire time series for a
currentjsk,td is broken intoMt segments, each of durationt.
Each segment, indexed byl t, is started after a delayl tDt. It is
commonf22g to chooseDt,t so that the segments overlap
in order to increase the number of segmentsMt entering into
the calculation of the averagek¯l. We thus compute the
correlation functions in Eqs.s2d and s3d as

Csk,td =
1

NMt
o
l t=0

Mt−1

jsk,t + l tDtd jsk,l tDtd. s6d

We choseDt=1/n, the decay time due to gas damping. The
entire time series had a durationMtDt=270 s, which is much
longer than the most important time scales for particle mo-
tion: 1/n<0.3 s, and the period of a mode 2p /v, which is
<2.4 s for the slowest mode in our chain.

To verify that our time average yields a good ensemble
average, we checked that CAF does not depend sensitively
on the value ofMt. Repeating the calculation of Eqs.s2d and
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s6d with five different intervalsMtDt for the time series,
Mt=200, 400, 600, 800, and 900, we found thatCTsk,td al-
ways looked like the same damped oscillation. To make the
test quantitative, we verified that three parameters describing
CTsk,td were essentially unchanged:CTsk,0d, the decay rate,
and the oscillation frequency. These tests give us confidence
that our averaging method yields a good ensemble average.
Hereafter, we will always useMt=900.

The spectra of the CAF are calculated using the Fourier
transform of the CAF. For example, the spectrum of the CAF

for the transverse mode isC̃Tsk,vd=2t−1e0
tCTsk,tdeivtdt.

This spectrum is calculated for a given value ofk. Typically,
we repeat the calculation of the spectra for various values of
k.

III. EXPERIMENTAL RESULTS

Here we report results recorded during the same experi-
ment as in Ref.f7g, except that in Ref.f7g a laser was used to
excite phonons. Here we report data for natural phonons in
the absence of any external manipulation; these data were
not previously reported.

A. Time series

Particles in our chain were immersed in a neutral gas,
which causes a particle to undergo Brownian motion. The
particles might not be in thermal equilibrium, however, be-
cause they can also be accelerated by electrostatic fluctua-
tions related to ion flow and the plasma sheath. The tempera-
tureTp=kmṽx

2l=kmṽy
2l, as calculated from the time series for

particle velocities, is 0.02±0.01 eV. Herem is the particle
mass. As we mentioned earlier, we have subtracted the
center-of-mass motion in obtaining this temperature; the ac-
tual particle energy was higher. The uncertainty60.01 eV
arises from random errors in particle position measurement.
These errors prevent us from calculating a velocity distribu-
tion function, but they do not adversely affect the spectral
methods we report next.

B. Current autocorrelation function (CAF)

Our chain exhibits harmonic-oscillator-like collective
modes, i.e., natural phonons. On a time scale of 2 s, we
observe a rapidly decaying phonon, as indicated by the
damped oscillations in the CAF for the modes atk
=1.13 mm−1, shown in Figs. 2sad and 2scd for the transverse
and longitudinal modes, respectively. To fit the first few
damped oscillations, we use a damped harmonic-oscillator
model of phonons in a chain,

Csk,td =
kBTp

m
e−nfitt/2ScossVktd +

n fit

2Vk
sinsVktdD . s7d

We will derive Eq. s7d in Sec. IV B. The oscillation fre-
quencyVk is related to the natural frequencyvk of an un-
damped phonon and the decay raten fit by Vk

2=vk
2−n fit

2 /4. We
fit our results to Eq.s7d, yielding values forvk, n fit, and the
temperaturekBTp. For the transverse mode atk=1.13 mm−1,
we find vk=18.7 s−1, n fit =5.0 s−1, and kBTp=0.013 eV.

Similarly, for the longitudinal mode, at the samek, we find
vk=14.2 s−1, n fit =7.8 s−1, and kBTp=0.017 eV. The decay
rate n fit is of the order of the gas-damping coefficient,n
=3.5 s−1, indicating that natural phonons are significantly
damped by gas drag.

C. Spectra of the CAF

Next, we Fourier transformCTsk,td and CLsk,td, for a

given value ofk, yielding the spectra of the CAF,C̃Tsk,vd
and C̃Lsk,vd. We then subtract a sloping baseline, corre-

sponding to instrumental noise, inC̃Tsk,vd and C̃Lsk,vd.
The sloping baseline is intended to account for instrumen-

tal noise in the particle velocity data. This noise arises as

FIG. 2. sad and scd Current correlation functionssCAFd. Both
CTsk,td andCLsk,td exhibit damped oscillations. HereCT,Lsk,td is
computed from Eqs.s2d ands3d and then multiplied by the particle
mass, giving it units of energy.sbd andsdd The spectra of the CAF.
Most of the energy is concentrated around a peak atv1. The experi-

mental spectraC̃T,Lsk,vd are the Fourier transform ofCT,Lsk,td.
The theoretical curve is a fit with three free parameters:v1 andn fit,
which yield one data point for the real and imaginary parts of the
dispersion relation, respectively, as well askBTp. Data shown are for
the modes withk=1.13 mm−1; we measured the spectra of the CAF
for other values ofk also, to find the dispersion relations.
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follows. We calculate a particle’s velocity as the difference in
the particle’s position in two consecutive frames. The posi-
tion is determined from a camera image using the moment
methodf24g to find the center of the multiple pixel region
corresponding to a particle. Each pixel has some randomly
varying electronic noise, so that the pixel’s brightness fluc-
tuates, and this affects the calculated particle positions and
therefore velocities. Empirically, we find that the effect of
the random noise is to displace the spectrum upward, and
this displacement is larger at higher frequencies. By model-
ing this displacement as a baseline, with two parameters,
slope and intercept, we are able to fit the experimental spec-
trum. This method of correcting data for the instrumental
noise in the frequency domain is much more effective than
attempting to correct the data in the time domain. Conse-
quently, the particle temperature computed using this spectral
method is more precise than when computed from the time
series.

Results for the spectra of the CAF are shown in Figs. 2sbd
and 2sdd. The spectra have most of their phonon energy con-
centrated in a frequency band centered around a peak atv1
with a linewidth Dv. The linewidthDv is rather wide; for
example in Fig. 2sbd for the transverse mode,v1/Dv=3.3.
Effects that contribute toDv include damping of phonons by
friction in the neutral gas, anharmonic effects, and the non-
uniform particle spacing which has the effect of making the
resonance frequencyv1 not a single pure frequency.

We fit the experimental spectra to a model spectrum,

C̃sk,vd =
n fitkBTp

mp

vk
2

sv2 − vk
2d2 + svn fitd2 . s8d

We will derive Eq. s8d in Sec. IV B. There are three free
parameters in the fit:vk, n fit, andkBTp describe the spectrum.
This fit was our method of measuringv1;Îvk

2−n fit
2 /2, ex-

cept for the portion of our longitudinal-mode data withka
,0.5, where the fit was poor due to an extra peak atv
<2 s−1; for that portion we measuredv1 instead by finding
the maximum of a smoothed spectrum. For Figs. 2sbd and
2sdd, which show the spectra of the CAF computed for the
modes atk=1.13 mm−1, fit results were as follows. For the
transverse mode,v1=20.1 s−1, n fit =6.2 s−1, and kBTp
=0.016 eV. For the longitudinal mode,v1=15.0 s−1, n fit
=8.2 s−1, andkBTp=0.018 eV. Fitting the spectra of the CAF
for all values ofk sbut excluding the longitudinal mode with
ka,0.5d for three chains,N=10, 19, and 28, yields an aver-
aged value ofkBTp, which is 0.018 eV, andn fit =5.3 s−1.

The phonon decay rate is not one of chief experimental
results, but it is useful to discuss the discrepancy between the
measurement of the phonon decay raten fit =5.3 s−1 for a 1D
chain and the gas damping raten=3.5 s−1 for a single par-
ticle. This discrepancy is presumably due to interparticle in-
teractions. Otherwise, if phonon decay is due to only gas
damping, both measurements would yield the same results,
because nothing was changed other than the number of par-
ticles. One type of interparticle interaction is an anharmonic
effect arising from nonlinear terms in the interparticle inter-
actions; such an effect causes a wave’s frequency to change
as it propagates along a chain. Other possible causes are the

nonuniform particle spacing and the finite chain length in the
experiment. Whichever of these effects is largest, it neverthe-
less has a weaker effect than gas damping, because the fric-
tional damping raten=3.5 s−1 accounts for more than half
the observed decay raten fit =5.3 s−1.

D. Phonon spectrum

Combining the spectra of the CAF for all values ofk
yields a phonon spectrum. Results for the longitudinal and
transverse modes are shown in Figs. 3sad and 3sbd for N
=28. The vertical axis is the phonon energy in a frequency

band dv=2p /t, i.e., mC̃Tsk,vddv and mC̃Lsk,vddv for
transverse and longitudinal modes, respectively. The values
of k were chosen ask=sp /Lx, wheres=1,2,… Here,Lx is
the distance between the two outer particles that were in-
cluded in the image. The maximum value ofs was the num-
ber of particles we viewed minus two; it was less thanN for
two reasons. First, forN=19 and 28 our camera’s field of
view did not include every particle. Second, we excluded the
sloshing mode,s=0.

Here, we chose values ofk that are equally spaced; our
motivation for this choice is that it is convenient, and that
there is no unique choice for the wave numberk for each
mode, because theN modes forN particles overlap in wave-
number space. In Ref.f7g, we reported a lack of reflected
waves from the chain’s end, as observed in the chain’s center
where we make our measurements, for an experiment with
externally excited waves. In the absence of such reflections,
we cannot expect to distinguish one mode from another. In
wave-number space, each mode has a finite width, overlap-
ping with the next mode. For these reasons, it is acceptable
to perform a Fourier analysis assuming modes of the form
eikx, even though the chain is finite and the particle spacing is
not regular. Another method, which would also be accept-
able, would be a normal-mode analysisf5g, which results in
a spectrum where the horizontal axis has a depiction of dis-
crete mode numbers rather than a continuous varying wave
numberk.

One of our chief results is that the observed phonon spec-
trum is broadband, and its energy is not partitioned equally
among modes.

The phonon spectrum is broadband in frequency. Our time
series included 2048 frames, so that our measured frequency
spectrum was computed for a correspondingly large number
of frequencies. We find that our observed spectrum is
smooth, not consisting ofd functions, and it has a finite
linewidth. The largest contribution to this linewidth is pho-
non decay arising from gas friction.

The energy in the phonon spectrum in our experiment was
not equally partitioned among phonon modes; instead, it was
somewhat concentrated at smaller values ofk. For the longi-
tudinal mode, this is seen in Fig. 3scd, which is a graph of the
phonon energy distribution versus wave number. This graph
was computed by integrating the phonon spectrum in Fig.
3sad over frequency. Note the peak at smallk<0.5 mm−1,
corresponding to a wavelength of<13 mm, which is of the
same order as the 20 mm length of theN=28 chain. There
would be a similar peak for the transverse mode if we did not
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subtract the center-of-mass motion. This result is different
from earlier observations in a 2D dusty plasma crystalf4g,
where the phonon energy was almost equally distributed with
respect to wave number. Our observation of a lack of equi-
partition offers a clue to some unexplored problems in the
physics of dusty plasmas, which we discuss next.

We can propose a possible reason for the deviation from
energy equipartition. The heating mechanismf25g, which in-
cludes both Brownian motion due to collisions with gas at-
oms and electrostatic fluctuations, might favor depositing en-
ergy into long-wavelength phonons, if, for example, the
heating mechanism intrinsically has low frequencies. We
note that the experimental spectrum in Fig. 2sdd has an ad-
ditional peak atv<2 s−1. We speculate this peak is coherent
noise due to low-frequencysv<2 s−1d fluctuations present
in the plasma, although we made no other measurements to
observe such fluctuations. This possibility requires further
study.

Another measurement ofkBTp, in addition to those we
have presented using the time series and the spectra of the
CAF, can be obtained by averaging the phonon energy for all
wave numbers. We do this by averaging all the data points in
Figs. 3scd and 3sdd. This result, 0.018 eV, matches both the
value from fitting the spectra and the less precise value from
the time series. We note that all three results exclude the
sloshing mode’s energy, because we removed the center-of-
mass motion as the first step in our data analysis. Therefore,
there is no reason that our measurements must yield a tem-
perature greater than room temperature, 0.025 eV.

E. Dispersion relation

To reveal the dispersion relations for the longitudinal and
transverse modes, we prepared Figs. 3sed–3sjd, which were
computed by normalizing the color separately for each value
of k. This was done by normalizing the spectra of the CAF
for each value ofk. The denominator is the same quantity
plotted in Figs. 3scd and 3sdd. We did this normalization
separately for the longitudinal and transverse modes. This
yields plots of the phonon spectrum as if energy were parti-
tioned equally among the modes. This “normalized phonon
spectrum” allows the viewer to easily see the dispersion re-
lation. The data for the normalized phonon spectra shown in
Figs. 3sed–3sjd include the first Brillouin zone. Also shown
with the normalized phonon spectra are triangle symbols rep-
resenting the value of the peak frequencyv1; these symbols
are our experimental measurement of the dispersion relation
of natural phonons.

Examining the dispersion relations, we can identify fea-
tures that we attribute to the confining potential, the value of
k=a/lD, and the role of gas friction. We will examine each
of these three effects next.

Due to the confining potential in they direction, the trans-
verse mode has a frequency that decreases with wave num-
ber, i.e., it is a backward wave. This is different from the
dispersion relation of transverse phonons in a 2D dusty
plasma crystal, where the transverse wave is forward, i.e., its
frequency increases with wave numberf4g.

Due to the confining potential in thex direction, the lon-
gitudinal mode has a minimum nonzero frequency ask→0.
This minimum frequency corresponds to the longitudinal
sloshing mode. A minimum frequency should also occur in a
2D dusty plasma crystal, for the same reason as in 1D, al-
though the authors of Ref.f4g for a 2D experiment did not
comment on this observation. Unlike the transverse mode,

FIG. 3. sad, sbd Phonon spectrum, made by combining the spec-
tra of the CAF as in Figs. 2sbd and 2sdd for various k. scd, sdd
Phonon energy variation with wave number, computed by integrat-
ing the data insad and sbd over v. In scd, note the concentration of
phonon energy at long wavelengths, indicating a lack of equiparti-
tion. sed–sjd Normalized phonon spectra, computed by normalizing
the color separately for each value ofk, as in sad and sbd, by the
energy per mode as inscd and sdd. Note that the experimental dis-
persion relation for natural phononsstrianglesd differs from that for
externally excited phononsssquaresd.
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the longitudinal mode is forward, because the restoring force
for a particle arises mainly from interparticle interactions
rather than the confining potential.

The effect of varyingk is a change in the slope of the
dispersion relation. This slope is steeper for largerN, for
both the longitudinal and transverse modes. This is due pri-
marily to a greater compressionf15g of the chain’s center as
particles are added to the end of the chain, where the confin-
ing forces are larger along thex axis. As the chain is com-
pressed,a andk are reduced andG=Q2/4pe0akBTp becomes
larger. These trends can be seen in our parameters. AsN was
increased from 10 to 19 and then 28,G increased from 3325
to 5195 and then 5772, whilek decreased from 1.45 to 0.93
and then 0.84.

Another of our chief results is that there is a difference in
the dispersion relation for natural and externally excited
phonons, visible in our data for the transverse mode, which
we attribute to the role of gas friction. This difference is
prominent at the smallest and largest values ofk in Fig. 3sjd.
We are unable to say whether the longitudinal mode has a
similar difference, because we lack data for externally ex-
cited longitudinal modes at small and largek, due to our
method of excitation. We will develop a model in Sec. IV to
account for the difference between the dispersion relations of
natural and externally excited phonons. This model will re-
veal that gas friction accounts for the observed difference, as
explained in Sec. V.

IV. MODEL

Here we develop a model describing phonons in a 1D
chain. This model is different from previous models
f3,26–29g in two respects. First, it distinguishes how the
phonons are excited and yields dispersion relations for two
cases: natural phonons and phonons excited by an externally
applied sinusoidal force. Second, it yields a CAF and the
spectrum of the CAF for natural phonons, which are suitable
for direct comparison with the experiment.

A. Equation of motion of a 1D chain

The physical system we model has identical charged
spherical or pointlike particles that interact through a
Yukawa potential. The particles are limited in their motion to
a horizontal plane, where they are confined in a single row
by a harmonic potential in the transverse direction. Particles
are uniformly spaced. The particle motion is damped by a
frictional force corresponding to gas drag. Motion is also
excited by a force that varies randomly in direction and time,
corresponding to Brownian motion for a particle in thermal
equilibrium with a gas. However, we do not include a ran-
dom force for the case of externally excited phonons. To
allow a comparison to experiments that have a weak confin-
ing potential in the longitudinal direction in addition to the
required harmonic potential in the transverse direction, we
include a harmonic potential in the longitudinal direction,
characterized by a nonzerovx.

The reader may set the parametervx to zero to obtain
results that are fully consistent with the assumption of uni-

form spacing. A nonzerovx introduces an inconsistency with
our assumption that the particle spacing is uniform, but this
inconsistency can be insignificant. In Sec. V A, we compare
the ratio of the decay length of a longitudinal sound wave in
the presence of damping and the length scale for any gradi-
ent in the interparticle spacing. When this ratio is small, as it
is for the experimentf7g, the inconsistency is insignificant
and our model can be applied locally to a portion of an
infinite chain.

We consider the equation of motion for a single particle,
including the following forces. The interparticle force is
computed by including a particle’s 2M nearest neighbors.
Assuming a small amplitude of particle displacement, we
linearize this force with regard to a particle’s displacement,
thereby neglecting any anharmonic effects. The confinement
force is characterized by a harmonic potential with spring
constantsmvx

2 and mvy
2 in the longitudinal and transverse

directions, respectively. The frictional drag force is propor-
tional to particle velocity,n fitmẋn, wheren fit is a theoretical
damping rate, which can be computed using the Epstein drag
modelf11g for a microsphere moving through a rarefied gas.
The random forcehnstd can be due to any kind of fluctua-
tions; it randomly couples energy to the particle. Finally, if
desired, an externally applied forceFEstd can be included.

Including all the forces listed above, the equation of mo-
tion of a particle is

mẍn = o
l=1

M

Kx,lsxn+l + xn−l − 2xnd − mvx
2xn

+ FEstd − n fitmẋn + hnstd s9d

for the longitudinal mode, and similarly for the transverse
mode by substitutingyn, −Ky,l, and vy for xn, Kx,l, and vx,
respectively. Here, we have assumed that the equilibrium po-
sitions of all the particles lie on a common axis. Equations9d
is for particlen, which interacts withM neighbors on each
side, i.e., the neighbors that have an index fromn−M to n
+M. In this paper, we treat two cases: a three-particle model,
where a particlen interacts only with one immediate neigh-
bor on each side, corresponding toM =1, and a five-particle
model, where a particlen interacts with two neighbors on
each side, corresponding toM =2.

The spring constantsKx,l andKy,l in Eq. s9d depend on the
particular physical system. Here we will assume a Yukawa
potential, although the reader could use our model for other
potentials simply by substituting an appropriate expression
for the spring constants. Calculating the interparticle force
based on Eq.s1d with equally spaced particles, and then lin-
earizing for small amplitudes, yields the spring constants

Kx,l =
Q2sl2k2 + 2lk + 2d

4pe0l
3a3elk , s10d

Ky,l =
Q2s1 + lkd
4pe0l

3a3elk s11d

for a Yukawa interaction between a particle and its neighbor
at a distancela.
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B. Natural phonons

In this section, we will model the natural phonons as
damped harmonic oscillators, which are abstract representa-
tions of collective particle motion.

In the absence of an external forceFE, Eq. s9d becomes

mẍn = o
l=1

M

Kx,lsxn+l + xn−l − 2xnd − mvx
2xn − n fitmẋn + hnstd

s12d

for the longitudinal mode. A similar expression can be writ-
ten for the transverse mode.

Applying a discrete spatial Fourier transformation to Eq.
s12d yields

Q̈kstd + vk
2Qkstd + n fitQ̇kstd =

hkstd
m

s13d

for every wave numberk. Here,Qkstd=onxnstde−ikna/ÎN for
the longitudinal mode; for the transverse mode one should
substituteynstd for xnstd. The natural frequencyvk is

vk
2 = vx

2 + o
l=1

M
4Kx,l

m
sin2lka

2
s14d

for the longitudinal mode, and

vk
2 = vy

2 − o
l=1

M
4Ky,l

m
sin2lka

2
s15d

for the transverse mode. In Eq.s13d, hkstd is the Fourier
transform of the random force,hkstd=onhnstde−ikna/ÎN.

In Eq. s13d, the allowed values of the wave numberk are
determined by the length of the chain. For a chain ofN
particles,k hasN discrete values. If we assume that the chain
is infinite, i.e.,N→`, k can have any value. This assumption
should not prevent us from comparing our model with a
chain of finite length, because the discrete modes of a finite
chain are points along the same dispersion relation curve as
for an infinite chain.

Fourier transforming Eq.s13d yields

s− v2 + vk
2 − in fitvdQksvd =

hksvd
m

, s16d

whereQksvd andhksvd are Fourier transformations ofQkstd
andhkstd, respectively. Equations16d will be used to obtain
first a dispersion relation and then a power spectrum.

First, we obtain the dispersion relation

v = vr + ivi =Îvk
2 −

n fit
2

4
− i

n fit

2
, s17d

where the frequencyv is a complex number. Note that in the
real part, the frequency of the peak is shifted downward from
vk by the offset of damping.

Second, the power spectrumC̃sk,vd is calculated using

C̃sk,vd=vk
2uQksvdu2, where v is a real number. The final

form of the spectrum is

C̃sk,vd =
hk

2svd
m2

vk
2

sv2 − vk
2d2 + svn fitd2 . s18d

The spectrum has a peak atv1;Îvk
2−n fit

2 /2, with a line-
width Dv. We define the linewidthDv as the full width at
half maximum of the peak, withsDv /v1d2=2−2s1−n fit

2 /v1
2

−n fit
4 /4v1

4d1/2. The amplitude of the spectrum is determined
by hksvd. For a chain of particles that are in thermal equi-
librium with an ambient gas,hk

2svd=mn fitkBTp/p.
Fourier transforming Eq.s18d to the time domain yields a

corresponding current autocorrelation functionsCAFd
Csk,td. For a system that is in thermal equilibrium, we obtain
a model CAF

Csk,td =
kBTp

m
e−nfitt/2ScossVktd +

n fit

2Vk
sinsVktdD , s19d

which applies separately for each mode. From Eq.s19d, the
CAF exhibits damped oscillations, with a frequency ofVk
=svk

2−n fit
2 /4d1/2 and a decay rate ofn fit /2.

C. Phonons excited by an external sinusoidal manipulation

In this section, we consider phonons excited by an exter-
nally applied sinusoidal force. Here, we only consider the
longitudinal mode. For the transverse mode, the correspond-
ing model and experimental results were presented in Ref.
f7g.

We assume that a sinusoidal force, with a frequencyV, is
applied only to a single particle, as it was in the experiment
of Ref. f7g. We label this particle asn=0. The phonons that
are excited will have the same frequency as the excitation
frequencyV. Phonons are continually excited, making up a
wave in the chain that propagates in both directions away
from the excitation location.

The frequency of this externally excited wave is real, be-
cause the amplitude of the externally applied force remains
constant with time. The wave number, however, is complex.
When the wave is excited at a specific location using an
externally applied force, the wave propagates away from the
excitation location and its amplitude decays with distance,
accounting for the imaginary part of the wave number. We
note that this situation for an externally excited wave is dif-
ferent from that of natural phonons, which are commonly
modeled with a complex frequency and a real wave number.

The motions of particles can be described by Eq.s12d,
except for particlen=0. The motion of particlen=0 is pri-
marily determined by the external forceFE~cosVt, so that
its velocity is

ẋ0 = A sinVt, s20d

whereV is the known frequency of the excitation. We use
the symbolV to distinguish this case from that of the natural
phonons.

Here, we solve Eq.s12d, but with the boundary condition
given by Eq.s20d. We assume that the solution has the form
xn=B expfisVt−nkadg, whereB=−A/V, determined by the
boundary condition Eq.s20d. Thus, Eq.s12d is transformed
to
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SiVn fit − V2 + o
l=1

M
Kx,l

m
s2 − e−ikla − eiklad + vx

2DB = 0,

s21d

where we have neglected the random forcehnstd, as is ap-
propriate if the external force is large,FEstd@hnstd.

The wave dispersion relation is determined from Eq.s21d.
As discussed above, the frequencyV is real, and the wave
number is a complex numberk=kr + iki. We obtain the dis-
persion relation by numerically solving these two equations,
which are functions ofV, kr, andki,

V2 = vx
2 + o

l=1

M
2Kx,l

m
s1 − coskrla coshkilad, s22d

V = o
l=1

M
2Kx,l

mn fit
sinkrla coshkila. s23d

V. COMPARISON OF MODEL WITH EXPERIMENT

A. Criterion for validity of the vxÅ0 assumption

As was mentioned in Sec. IV A, when our model is used
with a nonzero value ofvx for the longitudinal confining
potential, we must check a criterion for the validity of the
assumption. To do this, we compare two distances: the decay
length Cs/n for a propagating sound wave, and the length
scaleas]a/]xd−1 for the gradient in the interparticle spacing.
The longitudinal sound speedCs=]v /]k was approximately
11 mm s−1 in the experiment, based on Fig. 3sid. We then
calculate the distance traveled by a sound wave before it is
damped significantly, yieldingCs/n<3 mm. For compari-
son, the gradient scale lengthas]a/]xd−1 was approximately
70 mm. The ratio of these two distances is small, 0.04. Thus,
the criterion for the validity of assumingvxÞ0 is satisfied,
and our model can be locally applied to a portion of chain in
our experiment. Here, we apply the model to the central por-
tion of the chainN=28, comprised of the 18 particles that
were imaged in the experiment.

B. Phonons excited by external sinusoidal manipulation

As we reported in a previous paperf7g, the dispersion
relation can also be measured for externally excited waves.
This was done by launching a wave at the midpoint of the
chain by pushing it transversely at a specified real frequency.
Waves propagating outward from the point of excitation
were measured, using a Fourier-transform technique, yield-
ing a complex wave number. In this way, we measured the
real and imaginary dispersion relation. The externally excited
waves are not translationally invariant, unlike the natural
phonons. To analyze natural phonons, we use a correlation
function CAF that is translationally invariant. The external
excitation method did not employ any correlation functions
in its analysis.

The theoretical dispersion relation exhibits the same trend
as in the experiment with external excitation, i.e., the longi-

tudinal mode is a forward wave. Only the real part of the
dispersion relation is shown in Fig. 4. We were unable to
measure the imaginary part ofk because the wave was too
weak to accurately measure the scale length of its exponen-
tial decay. Figure 4 shows the longitudinal mode’s dispersion
relation; the corresponding dispersion relation for the trans-
verse mode, including the experiment and model, was pre-
sented in Ref.f7g.

We find the chargeQ by fitting the experimental disper-
sion relation to the five-particle model. This was the only
free parameter in the fit. Other parameters used werelD and
a, which were obtained from the equilibrium positionf15g.
The resulting value,Q=7600e, was used throughout this pa-
per as the experimental measurement ofQ.

C. Natural phonons

The model CAF Eq.s19d is compared to experiment in
Figs. 2sad and 2scd, for the modes atk=1.13 mm−1. The the-
oretical curve in Figs. 2sad and 2scd is a fit using Eq.s19d,
with three free parameters, as mentioned in Sec. III. We find
that the CAF for the experimental data and the model fit
reasonably well. Both of them exhibit a damped oscillation.
This indicates that a phonon in the experiment can be mod-
eled as a damped harmonic oscillator.

The model spectra of the CAF are compared to experi-
ment in Figs. 2sbd and 2sdd, by fitting the experimental data
points to the theoretical curve Eq.s18d. In fitting the data, we
first subtract a sloping baseline, as discussed in Sec. III. The
example shown is for the modes atk=1.13 mm−1. The fit is
good enough to yield useful values forn fit andkBTp, as dis-
cussed in Sec. III.

FIG. 4. Dispersion relation for externally excited longitudinal
phonons. The frequency is real, and the wave number is complex.
Dissipation is the cause for a nonzero value ofki, and it might also
affect the curve forkr shown here. In this experiment, we measured
the real part of the longitudinal mode’s wave number, shown here,
by manipulating a particle to excite a sinusoidal wave. The charge
Q used throughout this paper was measured by fitting the experi-
mental data to the model with a five-particle model, Eqs.s22d and
s23d, with M =2.
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Finally, we test theoretical dispersion relations for both
longitudinal and transverse modes, Fig. 5. Both the real and
imaginary parts of the dispersion relation are shown in Fig.
5. The data shown for the real part of the experimental dis-
persion relations are the same as the triangle symbols in Figs.
3sid and 3sjd. The imaginary part of the dispersion relation is
the variation ofvi with wave numberk, shown in Figs. 5scd
and 5sdd. For the experimental data,vi was calculated from
the measured linewidthDv asvi =−Dv /2. In the theoretical
dispersion relations,vr andvi were calculated from Eq.s17d.

For the transverse mode, the real parts of theoretical and
experimental dispersion relations agree well, as seen in Fig.
5sad. The agreement is good even for the three-particle model
sM =1d.

For the longitudinal mode, the real parts of theoretical and
experimental dispersion relations agree roughly, when a
three-particle model is used in the model, as seen in Fig.
5sbd. This agreement is improved by using a five-particle
model sM =2d.

For both the longitudinal and transverse modes, the theo-
retical imaginary part,vi =−n fit /2, is independent of wave

numberk. In using this expression to calculatevi, for n fit we
used the experimental valuen=3.5 s−1, which was obtained
using a single particle. Results are shown in Figs. 5scd and
5sdd. Theoretical and experimental values of the imaginary
part agree roughly. The experimental values, although they
have some scatter, are mostly larger than the model assuming
the single-particle damping rate.

D. The difference between natural and externally excited
phonon dispersion relations

As we demonstrated experimentally in Sec. III, the real
part of the dispersion relationvr versusk for natural phonons
is different from that for externally excited phonons. This is
different from the result that would be expected in the ab-
sence of any dissipation; in that case, the dispersion relations
would be purely real, and they would be the same regardless
of the excitation mechanism. The role of dissipation, such as
frictional gas damping in our experiment, is twofold. First,
dissipation is responsible for an imaginary part. This imagi-
nary part is different for natural and externally excited

FIG. 5. Dispersion relation for natural phonons. The frequency is a complex number, and the wave number is real. Theoretical curves for
the real and imaginary parts ofv were computed from Eq.s17d, with no free parameters. The experimental data points were obtained from
the spectra of the CAF; for each value ofk, we determined the peakv1 and the linewidthDv of the spectra of the CAF, yieldingvr andvi,
respectively. Dissipation, for example due to gas damping, is the cause of a nonzero value ofvi. In the model, we used experimental values
of a andlD obtained from equilibrium particle positions and a value ofQ obtained by fitting separate experimental results of the dispersion
relation for externally excited waves.
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phonons: as discussed in the previous section, for natural
phononsv is complex andk is real, while for the externally
excited phonons in our experimentv is real andk is com-
plex. Second, dissipation also affects the real part of the dis-
persion relation. For natural phonons, this produces a down-
ward shift in the real frequencyvr of the peak of the spectra
of the CAF, as we discussed in Sec. IV, where we presented
Eq. s17d.

VI. CONCLUSION

Experimental results and a model for a 1D chain were
presented. Phonons were observed for a 1D chain of charged
microspheres, levitated in a plasma above a groove in an
electrode. A model was developed to describe the phonons in
a 1D chain; this model might also be applicable to 1D chains
in colloids, storage rings, nanotubes, and other 1D systems,
in addition to our dusty plasma.

The phonon spectrum is broadband and characterized by a
dispersion relation. The longitudinal mode is a forward
wave; however, the transverse mode is a backward wave,
with a frequency that decreases with wave number, due to
the confining potential. The confining potential also affects
the longitudinal mode; it cannot have a zero frequency, but
instead has a nonzero frequency corresponding to the slosh-
ing mode.

In this paper, we primarily report results for phonons cor-
responding to random particle motion, in the absence of ex-
ternal manipulation. We term these natural phonons to dis-
tinguish them from externally excited phonons, which were
studied experimentally and theoretically in Ref.f7g. To char-
acterize natural phonons, we used the current correlation
function sCAFd and the spectrum of the CAF. We compute
the spectra of the CAF for various values of the wave num-
ber, and combine them to yield a phonon spectrum. From the
phonon spectrum, we can determine how energy is parti-
tioned among modes. We also found the temporal decay of
phonons two ways: from the decay time of the CAF and the
linewidth of the spectra of the CAF.

Our two surprising experimental results for the phonon
spectrum and dispersion relation are a lack of energy equi-
partition and a dispersion relation that is different from what
was previously reported. First, the phonon energy is not par-

titioned equally among phonon modes. Instead, it is concen-
trated in the longest wavelengths. This result offers a hint
that may be useful for gaining an understanding of an unex-
plained phenomenon: how particles in a monolayer dusty
plasma can be heated beyond the temperature expected for
Brownian motion, as was reported in Ref.f4g. Second, in the
presence of frictional gas damping, the dispersion relation is
different for externally excited and natural phonons. This dif-
ference is seen most strongly at small and large wave num-
bers.

A model was developed for a 1D chain interacting via the
Yukawa potential. This model takes into account gas friction
and distinguishes how phonons are excited. Dispersion rela-
tions were obtained for phonons excited by an externally
applied sinusoidal force, and for phonons corresponding to
random particle motion. For the latter case, we also obtained
a CAF and the spectrum of the CAF. These theoretical results
allow a direct comparison to our experiment.

To compare the model and our experiment requires three
parameters:a, lD, and Q. We obtaineda and lD directly
from the experimental data. We obtainedQ by fitting the
experimental dispersion relation to the model for an exter-
nally excited longitudinal phonon. After choosing these pa-
rameters, we can then test the dispersion relation for natural
phonons using no free parameters.

For natural phonons, calculating the dispersion relation
with no free parameters, we found that it agrees well with the
experiment for the transverse mode. For the longitudinal
mode with our value ofk, we find that agreement with ex-
periment requires including a five-particle interaction, not
just three.

We also compared the model and experimental CAF and
the spectrum of the CAF. In these comparisons there were
three free parameterssa mode’s amplitude, frequency, and
damping rated. A good fit to the experiment was achieved,
indicating that the model’s assumption of damped harmonic
oscillators is suitable for describing the natural phonons in
our 1D chain in the presence of damping.
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