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Phonons in a one-dimensional Yukawa chain: Dusty plasma experiment and model
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Phonons in a one-dimensional chain of charged microspheres suspended in a plasma were studied in an
experiment. The phonons correspond to random particle motion in the chain; no external manipulation was
applied to excite the phonons. Two modes were observed, longitudinal and transverse. The velocity fluctuations
in the experiment are analyzed using current autocorrelation functions and a phonon spectrum. The phonon
energy was found to be unequally partitioned among phonon modes in the dusty plasma experiment. The
experimental phonon spectrum was characterized by a dispersion relation that was found to differ from the
dispersion relation for externally excited phonons. This difference is attributed to the presence of frictional
damping due to gas, which affects the propagation of externally excited phonons differently from phonons that
correspond to random particle motion. A model is developed and fit to the experiment to explain the features
of the autocorrelation function, phonon spectrum, and the dispersion relation.
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[. INTRODUCTION perimentally, we use a dusty plasma consisting of electrons,
] ) o ) ions, neutral atoms, and small particles of solid matter. These
A one-dimensional1D) chain is a simple form of con- so-called dust particles are polymer microspheres that ac-
densed matter with low dimensionality. Recently, it has beeryuire a negative charge and are confined as a 1D chain in an
studied in the fields of colloids, carbon nanotubes, and dustgxternal potential well7]. Theoretically, we model the chain
plasmas. In colloidal suspensions, particles can be trapped & a single row of charged particles interacting with a
two counterpropagating laser beams to form a 1D couplettukawa potential, moving in a horizontal plane and confined
array that exhibits oscillationdl]. In a carbon nanotube ex- by a harmonic potential, in the presence of a damping that is
periment, gas atoms have been adsorbed in a 1D ¢Bgin proportional to particle velocity.
and the chain’s phonon frequencies have been predicted The chain in our experiment is a driven system. Particles
theoretically[3]. Experimental measurements of phonons inundergo a fluctuating Brownian motion by colliding with gas
this physical system are lacking; therefore, experiments itoms. In addition, the energy of these charged particles is
another physical system are desirable. In the 1D colloidalncreased by electrostatic fluctuations in the plasma, and it is
experimen{ 1] the breathing and sloshing modes were meadissipated by a frictional drag due to the ¢as]. In a steady
sured, but other modes were not. Complete results have be&ffte; the gain and the dissipation of energy are balanced.

reported for 2D lattice$4,5], but the modes are different in . The collective motions of partic[es can be treated as con-
1D sisting of phonons, or modes, which in an experiment can

rise two different ways. First, phonons naturally exist in a

Therefore, we note a broad interest in the oscillations o attice that has a finite temperatUi,5], driven by sponta-
1D chalns_, but a I_ack Of. co'mplgte experimental MeaSUre, eous fluctuations. These motions can be decomposed as
ments, which we will provide in this paper. The experimental

. . . .“"harmonic-oscillator-like modes, which we term natural
system we used is a dusty plasma, with charged mmrpn-sme&ﬁonons_ Here we use the term “natural” to distinguish
particles confined in a single roM8,7]. This type of confined

1D chain h he ad ¢ allowing di X X fphonons that are present naturally from those that are delib-
chain has the advantage of allowing direct imaging 0erately excited by external manipulation. Natural phonons
particle positions and velocities, thereby allowing observa

. ) ‘correspond to random particle motion; we would say that
tions of the phonons. We also note other physical syste P b y

. . ; i ey correspond to thermal motion if our system were in
that consist of chains. In an ion storage ring, a 1D Coulomby, e a1 equilibrium. However, because our system is not in
chain has been formed, which might be used in atomiGyqma| equilibrium, we avoid calling the phonons “thermal”
clocks[8] or guantum computing]. In magnetorheological and instead use the more general term “natural.”
suspensions, submicron magnetic particles dispersed in

. L ! >0 IN @ gecond, phonons can be excited in experiments by ma-
nqnmagnetlc fluid mterapt t'hrough d!pole'moments a“gn'ngnipulations using external forces. Several experiments have
with an external magnetic field, forming dipolar chaji$];

h . h il ; | ical een reported withn situ measurements of externally ex-

these Iisukjpensmkr:s | a\I/e commercial use for electronically. phonons in 1037] and 2D[12,13 dusty plasma crys-

controllable mechanical systems. - tals. In these experiments, phonons were continually stimu-
Here, we study phonons in a chain with a finite numikier

f ch q il fined b h . ol E lated at a specific frequency, making up a wave that
of charged particles, confined by a harmonic potential. X'propagated away from the excitation location. This wave has

the same frequency as the excitation. Due to damping, the
wave’s amplitude decays as it propagates.
*Electronic address: bliu@newton.physics.uiowa.edu This paper presents experimental results and a model for
"Electronic address: john-goree@uiowa.edu phonons in a 1D chain. Section Il presents experimental
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results. We use a method of current autocorrelation functions (a)
(CAF) and the spectrum of the CAF to characterize the natu-
ral phonons, yielding the phonon spectrum and the temporal
decay time of phonons.
Our two chief results are tests of energy equipartition and
the dispersion relation. We observed that the phonon energy

deviates from the equipartition law, indicating the existence (b)

of damping or heating mechanisms other than particle

Brownian motion in a neutral gas medium. We found that, L
for the transverse mode, the dispersion relations for natural ——2mm

and externally excited phonons are not the same; in Sec. IV
we explain the origin of this difference. Our experimental
results presented here were recorded during the same exp
ment as in Ref[ 7], except that in Ref.7] a laser was used to
excite phonons. Here we report data for natural phonons in Our 1D chain was externally confined by the natural elec-
the absence of any external manipulation. Our data, whiclric fields in the sheath above the lower electrode. The sheath
were not previously reported, were recorded after recordingonforms to the shape of the electrode, which had a groove-
data with external manipulation. shaped depression along thelirection. Everywhere along

In Sec. IV, we develop a model to describe the phonons ithe groove’s length, it had a parabolic shape in yhdirec-
a 1D dusty plasma chain. This model might also be applition, Fig. 1a). Because this groove was narrow, we formed a
cable to 1D chains in colloids, storage rings, nanotubes, andD chain, rather than a 2p16] or 3D [17] suspension of
other 1D systems. This model distinguishes how the phonongarticles in dusty plasmas. _
are excited. It yields dispersion relations for two cases: natu- Compared with a 2D dusty plasma crystal, our 1D chain
ral phonons and phonons excited by an externally app"e@as.several differences. First, the eqqmbr_lum positions of
sinusoidal force. For natural phonons, this model aiso yield®articles do not change significantly with time, unlike in a
a CAF and the spectrum of the CAF. All these results arerD dusty plasma crystal, where the crystal might rotate. Sec-
suitable for direct comparison to the experiment. 822{|;h§o:10pr|]gItt%dg:éhag?hg?njx;ialzzeinmgdzeg gﬁsr:;tpf’;%mfg

Another modelf which is also suitable for direct compari- crystal, where pure shear or compressional modes do not
son to the experiment, was reported recently by Piacent

. %xist due to the circular boundary of the crydftal. Third,
Peeters, and Betour@4]. As in our model, that model be- o yransverse mode in our 1D chain is a backward wave,
gins with the equation of motion for a 1D chain and it yields it 4 frequency that decreases with wave number.

dispersion relations like ours presented in Sec. IV. The model The experimental procedure, summarized below, was re-
we develop in Sec. IV yields not only a dispersion (elation,peated for three different numbers of particléés 10, 19,
but also two other results that can be compared directly tQnq 28. First, we introduced a single particle into the groove,
experiment: a CAF and the spectrum of the CAF. and used the laser manipulation method of R&%] to mea-
Il EXPERIMENTAL METHOD sure thg c_onfining potential. Tr_\e particlg motion was har—
monic, indicating that the confining potential has a parabolic
In the experimental setup, which is described in detail inshape in all three directions, characterized by the frequencies
Refs. [7,15], a plasma was produced in a capacitivelywxzz_e,wy=19_0, andw,=94.2 st in thex, y, and vertical
coupled radio frequendyf) discharge, using a 13.56 MHz rf directions, respectively. The high value ©f shows that our
voltage with a peak-to-peak amplitude of 94 V and a self-confinement in the vertical direction is very strong, so that
bias of —48 V. Xenon gas was used at a low pressure ofparticle displacements from equilibrium positions are prima-
about 5 mtorr. A small number of melamine-formaldehyderily 2D, in the horizontal plane. From the motion of a single
microspheres were shaken into the plasma. These particlggirticle, we also measurdd] the frictional damping rate,
had a diameter of 8.09+0.18m and a mass density of =35 g1,
1.514 g/cm. They gained a large electric charge due to ex- Second, we introduced the desired number of additional
posure to the plasma, so that they were levitated by the elegarticles, which self-assembled into a chain. Our camera’s
tric field in the plasma sheath above a lower electrode.  field of view included only the central portion of the chain,
We tracked particles from one frame to the next, calculatas shown in Fig. (b) for N=28, except that for our shortest
ing their velocities. This was done by illuminating them with chain, N=10, it included the entire chain. We recorded the
a HeNe laser sheet and viewing them from above with ajata reported in Ref.7] for phonons externally excited by
video camera at 29.97 frames per second, and a field of viewthe manipulation laser. Then, we turned the manipulation la-
of 13x 10 mn¥. Particle positiongx;,y;) were measured in ser off, and after waiting 30 min to allow equilibration, we
each frame with subpixel spatial resolution, and velocitiesecorded 270 s of data. The average interparticle distance, for
were calculated by subtracting the positions in consecutivell particles in the field of view, waa=0.72, 0.8, and 1.25
frames. We then subtracted the center-of-mass velocity of theim for N=28, 19, and 10, respectively. The interparticle
chain, yielding(vy;,0y,); this subtraction has the effect of spacing was not uniform; it was 15% smaller in the center
excluding the sloshing mode, which is a rigid-body motionthan at the chain’s end, with a gradientdaf/ 9x~=0.01, for
of all particles in the confining potential. N=28.

FIG. 1. (a) Sketch of a chain of particles levitated in a plasma
sheath above a groove in the lower electrode of the appair@us.
eﬂ)p view image of the central portion of a chain of lendgjtk28.
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Charged particles in this trap are believed to interactation function and then Fourier transforming to yield a spec-

through a Yukawa potential, trum, as we do in this paper. The dynamic structure factor
Q? Sk, w) corresponds to a density autocorrelation function, and

$p=——e"o, (1) it is calculated based on particle position only. We computed

Amreyr Sk, w) for our experimental data, but we found that it was

as demonstrated in Ref18] under similar conditions, for a Noisy, and in any case it provides data only for the longitu-
monolayer of particles of charg® levitated in a plane per- dinal and not the transverse mode. We therefore must choose

pendicular to the ion flow. Tests with our apparatus are als@etween the method of Reff4] and the method beginning
consistent with a Yukawa poten“dn_S] The Screening with the CAF. We chose the latter because it offers a Straight-

length \p is attributed to the free electrons and ions sur-forward normalization of the energy units and because it
rounding the particles. yields correlation functions that have a low noise level,
We measurechp=0.86 mm andQ=7600e. As in Refs. thereby allowing an accurate characterization of the decay
[7,15], the value for\p was obtained using a method basedrate of phonons. We note that the longitudinal CAF is related
on the equilibrium particle position; this method also yieldedto S(k,») by a continuity equatioh20].
a range of values fo®. An additional method is required to ~ The current autocorrelation functions are
determineQ accurately. Throughout this paper, as in Réf, 1
we use a value of) that was found by fitting experimental Cr(k,t) = =(j1(k,0)j (- k,0)) (2)
data for an externally excited longitudinal wave to the corre- N
sponding theoretical dispersion relation, which will be pre-for the transverse mode and
sented in Sec. IV C. L
In this experiment, we use the current autocorrelation _ T e
function (CAF) and the spectrum of the CAF to characterize Gk = N<JL(k’t)JL( k0 ®
natural phonons. This is different from methods previously - :
used in dusty plasma experiments: the Fourier spectra of thfé’r the longitudinal mode. We computed the correlation func-
velocity field in Ref.[4] and the normal mode spectra in Ref. tions over arange &t=<r, where we chose= 68.27 s. Here
[5]. Both yielded a power spectrum of a collective currentk is the wave number, and the currents are defined as
that was calculated directly from the velocity data without N
using a correlation function. Here, we first calculate the au- jr(k,t) = X Byi(H)eks® (4)
tocorrelation function of a collective curre(@AF), yielding i=1
information in the time domain such as how spontaneous,
fluctuations decay with time. We then calculate the Fourier
tranform of the CAF, yielding spectra for various values of N _
the wave number, which we combine to yield a phonon spec- k) = 2 (1), )
trum. For a stationary random process, according to the =1
Wiener-Khintchine theorem, the power spectrum is equal t@yhereN is the number of particles arids an index for the
the Fourier tranform of the autocorrelation function. Thus,particle number. In the experiment, if our camera field of
our method provides information similar to the phonon specview does not include aN particles in the chain, we replace
trum as in RefS[4,5], plUS it also prOVideS additional infor- N by the number of partides that we actua”y view.
mation in the time domain. As is common for MD simulations, we replace the en-
Correlation functions are used extensively in the analysisemble averagé--) in Egs.(2) and(3) with a time average
of noise and fluctuations of statistical systefS], in theo-  over a finite interval[22,23. The entire time series for a
retical analysis[20], and as a diagnostic for molecular- cyrrentj(k,t) is broken intoM, segments, each of duration
dynamics simulationf21]. For a Yukawa system intended t0 Each segment, indexed hyis started after a deldyAt. It is
model dusty plasmas, correlation functions have been used ghmmon[22] to chooseAt< r so that the segments overlap
a theoretical study of the properties of 2D liqui@D]. Cor- in order to increase the number of segmeitsentering into

relation functions can be computed from our experimentathe calculation of the average--). We thus compute the
data, in the same way as from molecular-dynamics data, bexpyrelation functions in Eq¢2) and(3) as

cause our experiment provides the same measured results:
particle position and velocity.

There are several methods that can be used to obtain a
phonon spectrum. In most experimental systems, one uses
X-ray or neutron scattering to measure a spectrum, and from/e choseAt=1/v, the decay time due to gas damping. The
this it is possible, if desired, to compute correlation func-entire time series had a duratibhAt=270 s, which is much
tions. In our experimental system, direct imaging of particledonger than the most important time scales for particle mo-
yields a completely different kind of data to begin with: the tion: 1/v=0.3 s, and the period of a moder2w, which is
positions and velocities of individual particles. With these=2.4 s for the slowest mode in our chain.
data, we have a choice of either computing a spectrum di- To verify that our time average yields a good ensemble
rectly as in Ref.[4], or computing the dynamic structure average, we checked that CAF does not depend sensitively
factor S(k, w) as in Ref.[20], or computing a current corre- on the value oM,. Repeating the calculation of Eq®) and

M-1

1
Clt) =J0r 2 i(kt+1ADj (K, LAY, (6)
t ;=0

046410-3



B. LIU AND J. GOREE PHYSICAL REVIEW E71, 046410(2009

(6) with five different intervalsM At for the time series, 0.03 —————————
M,=200, 400, 600, 800, and 900, we found tatk,t) al- F @ 0004 o —
ways looked like the same damped oscillation. To make the . > ° ﬁ;‘pgg_"(‘g;t

test quantitative, we verified that three parameters describing 0.02F
Cq(k,t) were essentially unchange@i(k, 0), the decay rate, s
and the oscillation frequency. These tests give us confidence
that our averaging method yields a good ensemble average.
Hereafter, we will always uskl;=900.

The spectra of the CAF are calculated using the Fourier
transform of the CAF. For example, the spectrum of the CAF r
for the transverse mode i€(k,w)=27"1[7Cr(k,t)e“dt. 0.00 £ {
This spectrum is calculated for a given valuekofypically, £
we repeat the calculation of the spectra for various values of
k.

transverse ]
o experiment |]
—fit, Eq. (7)

001 b v

Ill. EXPERIMENTAL RESULTS 0.03

(c). I .o.o.o4l

Here we report results recorded during the same experi-
ment as in Ref[ 7], except that in Ref.7] a laser was used to
excite phonons. Here we report data for natural phonons in 0.02 |

O experiment
— fit, Eq. (8)

the absence of any external manipulation; these data were %‘
not previously reported. ~
s 0011
A. Time series 53 r
g

Particles in our chain were immersed in a neutral gas, b
which causes a particle to undergo Brownian motion. The 0.00 b
particles might not be in thermal equilibrium, however, be- 3
cause they can also be accelerated by electrostatic fluctua-

O experiment

tions related to ion flow and the plasma sheath. The tempera- E —fit, Bq. ()
ture T,=(no2) =(iv2), as calculated from the time series for B T —
particle velocities, is 0.02+0.01 eV. Herr is the particle time (s)

mass. As we mentioned earlier, we have subtracted the
center-of-mass motion in obtaining this temperature; the ac- FIG. 2. (a) and(c) Current correlation functionéCAF). Both
tual particle energy was higher. The uncertairt®.01 eV  Cy(k,t) and C (k,t) exhibit damped oscillations. He@r, (k,t) is
arises from random errors in particle position measurementomputed from Eqs2) and(3) and then multiplied by the particle
These errors prevent us from calculating a velocity distribu-mass, giving it units of energyb) and(d) The spectra of the CAF.
tion function, but they do not adversely affect the spectraMost of the energy is concentrated around a peakyalhe experi-
methods we report next. mental spectreCr(k,w) are the Fourier transform oEy (k,t).
The theoretical curve is a fit with three free parametexsand v,
which yield one data point for the real and imaginary parts of the
dispersion relation, respectively, as wellka3,. Data shown are for
Our chain exhibits harmonic-oscillator-like collective the modes wittk=1.13 mm; we measured the spectra of the CAF
modes, i.e., natural phonons. On a time scale of 2 s, wéor other values ok also, to find the dispersion relations.
observe a rapidly decaying phonon, as indicated by the
damped 9150'"at'°”§ in the CAF for the modes Rt  gimilary, for the longitudinal mode, at the sarkewe find
=1.13 mm-, shown in Figs. £a) and Zc) for the transverse =142 ', v,=7.8s%, and keT,=0.017 eV. The decay

and Iongitud_inal_ modes, respectively. To fit the_ first _few rate vy, is of the order of the gas-damping coefficient,
damped oscillations, we use a damped harmonic-oscillator 3 5 s, indicating that natural phonons are significantly

B. Current autocorrelation function (CAF)

model of phonons in a chain, damped by gas drag.
C(k,t) = kB—mTEe_Vﬁtt’Z(COS(th) + %sin(ﬂg)). (7) C. Spectra of the CAF
k

_ _ _ o Next, we Fourier transfornC(k,t) and C,(k,t), for a
\C;Yf;r\]’\(’:')l/l Q(?(eigvreelggéd(?oI?hesi(;tuléler;;Leer?&ng?t:nn ufrr]e giverl value ofk, yielding the spectra of_ the CAIE_T(k,w)
damped phonon and the decay rageby szwi_ V?n/4- we andCi(k,w). We then subtract a sloping bgsellne, corre-
fit our results to Eq(7), yielding values forw,, v, and the  sponding to instrumental noise, @(k, w) andC, (k, w).
temperaturegT,,. For the transverse mode lat 1.13 mm?, The sloping baseline is intended to account for instrumen-
we find &=18.7 s*, 1;=5.0 s, and kgT,=0.013 eV. tal noise in the particle velocity data. This noise arises as
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follows. We calculate a particle’s velocity as the difference innonuniform particle spacing and the finite chain length in the
the particle’s position in two consecutive frames. The posi-experiment. Whichever of these effects is largest, it neverthe-
tion is determined from a camera image using the momeness has a weaker effect than gas damping, because the fric-
method[24] to find the center of the multiple pixel region tional damping ratev=3.5 s* accounts for more than half
corresponding to a particle. Each pixel has some randomlthe observed decay ratg;=5.3 s*.
varying electronic noise, so that the pixel's brightness fluc-
tuates, and this affects the calculated particle positions and
therefore velocities. Empirically, we find that the effect of
the random noise is to displace the spectrum upward, and Combining the spectra of the CAF for all values lof
this displacement is larger at higher frequencies. By modelyields a phonon spectrum. Results for the longitudinal and
ing this displacement as a baseline, with two parametergfansverse modes are shown in Figéa)3and 3b) for N
slope and intercept, we are able to fit the experimental spec28. The vertical axis is the phonon energy in a frequency
trum. This method of correcting data for the instrumentalpand sw=2#/7, i.e., m~CT(k,w)5w and m~CL(k,w)5w for
noise in the frequency domain is much more effective tharfransverse and longitudinal modes, respectively. The values
attempting to correct the data in the time domain. Consepf k were chosen ak=sw/L,, wheres=1,2.... Here,L, is
quently, the particle temperature computed using this spectrghe distance between the two outer particles that were in-
method is more precise than when computed from the tim@|yded in the image. The maximum valuesofias the num-
series. ber of particles we viewed minus two; it was less tivfor
Results for the spectra of the CAF are shown in Figs) 2 two reasons. First, foN=19 and 28 our camera’s field of
and 2d). The spectra have most of their phonon energy conyiew did not include every particle. Second, we excluded the
centrated in a frequency band centered around a peak at sjoshing modes=0.
example in Fig. &) for the transverse mode),/Aw=3.3.  motivation for this choice is that it is convenient, and that
Effects that contribute tdw include damping of phonons by there is no unique choice for the wave numbefor each
friction in the neutral gas, anharmonic effects, and the nonmgde, because tHe modes forN particles overlap in wave-
uniform particle spacing which has the effect of making thenymber space. In Ref7], we reported a lack of reflected

D. Phonon spectrum

resonance frequenay, not a single pure frequency. waves from the chain’s end, as observed in the chain’s center
We fit the experimental spectra to a model spectrum,  \where we make our measurements, for an experiment with
externally excited waves. In the absence of such reflections,
~ virkgT, w? -
K o) = Nt8 p k 8 we cannot expect to distinguish one mode from another. In
C( ,(1)) - 2 22 2" ( ) .. .
M7 (0 - w)° + (ovg) wave-number space, each mode has a finite width, overlap-

ping with the next mode. For these reasons, it is acceptable
We will derive Eq.(8) in Sec. IV B. There are three free to perform a Fourier analysis assuming modes of the form
parameters in the fity, vy, andkgT, describe the spectrum. &*X even though the chain is finite and the particle spacing is
This fit was our method of measuring, = \/wﬁ—vﬁtlz, ex-  not regular. Another method, which would also be accept-
cept for the portion of our longitudinal-mode data wkh  able, would be a normal-mode analygig, which results in
< 0.5, where the fit was poor due to an extra peakwat a spectrum where the horizontal axis has a depiction of dis-
~2 s'%; for that portion we measureg, instead by finding crete mode numbers rather than a continuous varying wave
the maximum of a smoothed spectrum. For Figd) 2and  numberk.
2(d), which show the spectra of the CAF computed for the  One of our chief results is that the observed phonon spec-
modes atk=1.13 mm?, fit results were as follows. For the trum is broadband, and its energy is not partitioned equally
transverse mode,w;=20.1$%, v;=6.2s', and kgT,  among modes.
=0.016 eV. For the longitudinal modey;=15.0 $%, vy The phonon spectrum is broadband in frequency. Our time
=8.2 51, andkgT,=0.018 eV. Fitting the spectra of the CAF series included 2048 frames, so that our measured frequency
for all values ofk (but excluding the longitudinal mode with spectrum was computed for a correspondingly large number
ka<0.5) for three chainsN=10, 19, and 28, yields an aver- of frequencies. We find that our observed spectrum is
aged value okgT,, which is 0.018 eV, and;=5.3 st smooth, not consisting ob functions, and it has a finite

The phonon decay rate is not one of chief experimentalinewidth. The largest contribution to this linewidth is pho-

results, but it is useful to discuss the discrepancy between theon decay arising from gas friction.
measurement of the phonon decay ragg=5.3 s* for a 1D The energy in the phonon spectrum in our experiment was
chain and the gas damping rate3.5 s* for a single par- not equally partitioned among phonon modes; instead, it was
ticle. This discrepancy is presumably due to interparticle in-somewhat concentrated at smaller valuek.dfor the longi-
teractions. Otherwise, if phonon decay is due to only gasudinal mode, this is seen in Fig(c3, which is a graph of the
damping, both measurements would yield the same resultphonon energy distribution versus wave number. This graph
because nothing was changed other than the number of pasas computed by integrating the phonon spectrum in Fig.
ticles. One type of interparticle interaction is an anharmonic3(a) over frequency. Note the peak at smki0.5 mnT?,
effect arising from nonlinear terms in the interparticle inter-corresponding to a wavelength ef13 mm, which is of the
actions; such an effect causes a wave’s frequency to changame order as the 20 mm length of tRe28 chain. There
as it propagates along a chain. Other possible causes are tweuld be a similar peak for the transverse mode if we did not

046410-5



B. LIU AND J. GOREE

S 04
<
3
)
X
15
g
0
© d
3 014 AN=$§: 9 .N_fg-
o] E v N=10| ] 0.018 eV o
3 1a2 ] ]
£ {°" 2a, ] ]
g ] %o "Asaanasan] i
S Ty eporvsoprg| [Fungfvstpempape
%0.01 3 v 9 3 =
S 1 longitudinal 7 transverse
""""" [BRAATE 2= BERRATERE L
30
(e) longitudinal
©
S
Q
30
3
N=19
gl w peak, Eqg. (8) fit
30
(j) transverse
e
3

v peak, Eq. (8) fit
B ext. excited [7]

FIG. 3. (a), (b) Phonon spectrum, made by combining the spec-
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We can propose a possible reason for the deviation from
energy equipartition. The heating mechanig], which in-
cludes both Brownian motion due to collisions with gas at-
oms and electrostatic fluctuations, might favor depositing en-
ergy into long-wavelength phonons, if, for example, the
heating mechanism intrinsically has low frequencies. We
note that the experimental spectrum in Figd)2zhas an ad-
ditional peak aw=~2 s*. We speculate this peak is coherent
noise due to low-frequenciw=~2 s) fluctuations present
in the plasma, although we made no other measurements to
observe such fluctuations. This possibility requires further
study.

Another measurement d;T,, in addition to those we
have presented using the time series and the spectra of the
CAF, can be obtained by averaging the phonon energy for all
wave numbers. We do this by averaging all the data points in
Figs. 3c) and 3d). This result, 0.018 eV, matches both the
value from fitting the spectra and the less precise value from
the time series. We note that all three results exclude the
sloshing mode’s energy, because we removed the center-of-
mass motion as the first step in our data analysis. Therefore,
there is no reason that our measurements must yield a tem-
perature greater than room temperature, 0.025 eV.

E. Dispersion relation

To reveal the dispersion relations for the longitudinal and
transverse modes, we prepared Fig®)-3(j), which were
computed by normalizing the color separately for each value
of k. This was done by normalizing the spectra of the CAF
for each value ok. The denominator is the same quantity
plotted in Figs. &) and 3d). We did this normalization
separately for the longitudinal and transverse modes. This
yields plots of the phonon spectrum as if energy were parti-
tioned equally among the modes. This “normalized phonon
spectrum” allows the viewer to easily see the dispersion re-
lation. The data for the normalized phonon spectra shown in
Figs. 3e)-3(j) include the first Brillouin zone. Also shown
with the normalized phonon spectra are triangle symbols rep-
resenting the value of the peak frequeney these symbols
are our experimental measurement of the dispersion relation
of natural phonons.

Examining the dispersion relations, we can identify fea-

tures that we attribute to the confining potential, the value of

tra of the CAF as in Figs. () and 2d) for variousk. (c), (d) _ - : )
Phonon energy variation with wave number, computed by integratf(_a/)‘D' and the role of gas friction. We will examine each

ing the data in(@ and(b) over w. In (c), note the concentration of of these three eﬁe_c’_[s next. Lo . .

phonon energy at long wavelengths, indicating a lack of equiparti- DU t0 the confining potential in thedirection, the trans-

tion. (€)—(j) Normalized phonon spectra, computed by normalizingVersé mode has a frequency that decreases with wave num-
the color separately for each value kyfas in(a) and (b), by the ber, i.e., it is a backward wave. This is different from the
energy per mode as ift) and (d). Note that the experimental dis- dispersion relation of transverse phonons in a 2D dusty
persion relation for natural phonofisiangles differs from that for ~ plasma crystal, where the transverse wave is forward, i.e., its
externally excited phononsquares frequency increases with wave numiér.

Due to the confining potential in thedirection, the lon-
subtract the center-of-mass motion. This result is differengitudinal mode has a minimum nonzero frequenckas0.
from earlier observations in a 2D dusty plasma crygfdl ~ This minimum frequency corresponds to the longitudinal
where the phonon energy was almost equally distributed witlsloshing mode. A minimum frequency should also occur in a
respect to wave number. Our observation of a lack of equi2D dusty plasma crystal, for the same reason as in 1D, al-
partition offers a clue to some unexplored problems in thehough the authors of Ref4] for a 2D experiment did not
physics of dusty plasmas, which we discuss next. comment on this observation. Unlike the transverse mode,
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the longitudinal mode is forward, because the restoring forcéorm spacing. A nonzera, introduces an inconsistency with
for a particle arises mainly from interparticle interactionsour assumption that the particle spacing is uniform, but this
rather than the confining potential. inconsistency can be insignificant. In Sec. V A, we compare
The effect of varying« is a change in the slope of the the ratio of the decay length of a longitudinal sound wave in
dispersion relation. This slope is steeper for larberfor  the presence of damping and the length scale for any gradi-
both the longitudinal and transverse modes. This is due prient in the interparticle spacing. When this ratio is small, as it
marily to a greater compressi¢h5] of the chain’s center as is for the experimenf7], the inconsistency is insignificant
particles are added to the end of the chain, where the confirand our model can be applied locally to a portion of an
ing forces are larger along theaxis. As the chain is com- infinite chain.
presseda and« are reduced anE:Q2/47reoakBTp becomes We consider the equation of motion for a single particle,
larger. These trends can be seen in our parametefd.was  including the following forces. The interparticle force is
increased from 10 to 19 and then 28jncreased from 3325 computed by including a particle’sM2 nearest neighbors.
to 5195 and then 5772, while decreased from 1.45 to 0.93 Assuming a small amplitude of particle displacement, we
and then 0.84. linearize this force with regard to a particle’s displacement,
Another of our chief results is that there is a difference inthereby neglecting any anharmonic effects. The confinement
the dispersion relation for natural and externally excitedforce is characterized by a harmonic potential with spring
phonons, visible in our data for the transverse mode, whicltonstantsme? and mw? in the longitudinal and transverse
we attribute to the role of gas friction. This difference is directions, respectively. The frictional drag force is propor-
prominent at the smallest and largest valuek of Fig. 3(j).  tional to particle velocityys;mX,, wherevy; is a theoretical
We are unable to say whether the longitudinal mode has damping rate, which can be computed using the Epstein drag
similar difference, because we lack data for externally ex-model[11] for a microsphere moving through a rarefied gas.
cited longitudinal modes at small and large due to our The random forcey,(t) can be due to any kind of fluctua-
method of excitation. We will develop a model in Sec. IV to tions; it randomly couples energy to the particle. Finally, if
account for the difference between the dispersion relations alesired, an externally applied forég(t) can be included.
natural and externally excited phonons. This model will re- Including all the forces listed above, the equation of mo-
veal that gas friction accounts for the observed difference, agon of a particle is
explained in Sec. V.

M
mx, = 2 K><,I(Xn+l + Xy — 2Xg) — mw>2<Xn
IV. MODEL =1
Here we develop a model describing phonons in a 1D + Fe(t) = vigmX, + 77,(t) 9

chain. This model is different from previous models
[3,26—29 in two respects. First, it distinguishes how the o =
phonons are excited and yields dispersion relations for wanode l;)_y ?Ubjt'tu“ng’”’h Ky,, and a, df?r: )'Ent’th'h a.r:.g“.’x'

cases: natural phonons and phonons excited by an externa@?SpeC IVely. Mere, we have assumed that tné equitibrium po-

. . . o tions of all the particles lie on a common axis. Equatign
applied sinusoidal force. Second, it yields a CAF and this for particlen, which interacts withM neighbors on each

Side, i.e., the neighbors that have an index fromM to n
+M. In this paper, we treat two cases: a three-particle model,
where a particlen interacts only with one immediate neigh-
A. Equation of motion of a 1D chain bor on each side, correspondinghb=1, and a five-particle
d’nodel, where a particle interacts with two neighbors on

for the longitudinal mode, and similarly for the transverse

spectrum of the CAF for natural phonons, which are suitabl
for direct comparison with the experiment.

The physical system we model has identical charge 1 ch side. corresponding k=2
spherical or pointlike particles that interact through a Th \ae, pt Ilsg aK. in Eq.(9) d don th
Yukawa potential. The particles are limited in their motion to € Spring constants, | andiy, in £4. epend on the

a horizontal plane, where they are confined in a single rOV\'})"m'CUI"’lr physical system. Here we will assume a Yukawa

by a harmonic potential in the transverse direction. Particleggtzm:::’s i}&om:ghbthgurggiﬁ:iﬁou;(:‘ l;fe ?ourrirgt%diforreg;?oer:
are uniformly spaced. The particle motion is damped by Ply Dy 9 pprop p

frictional force corresponding to gas drag. Motion is also or the spring constants. Calculating th(_a interparticle fqrce
excited by a force that varies randomly in direction and timeg:zs%0r;o?l(r}q)a\ll\l”:]meclliltﬁljlgsspailgﬁji Ft)r?glgler?r; agg;gg:ﬂ';n'
corresponding to Brownian motion for a particle in thermal 9 P Y pring

equilibrium with a gas. However, we do not include a ran- Q%122 + 2 ic + 2)
dom force for the case of externally excited phonons. To Ky = e (10
allow a comparison to experiments that have a weak confin- Ameola‘e
ing potential in the longitudinal direction in addition to the
required harmonic potential in the transverse direction, we _ Q*(1+lk)
include a harmonic potential in the longitudinal direction, e
characterized by a nonzeta,.

The reader may set the parametgr to zero to obtain for a Yukawa interaction between a particle and its neighbor
results that are fully consistent with the assumption of uni-at a distancéa.

(11
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B. Natural phonons ~ 2(w W2
Elkw) = KL k

In this section, we will model the natural phonons as (18)

qamped harmc_;nic osc_illators, _which are abstract representa- o _
tions of collective particle motion. The spectrum has a peak a{= Vo~ v;/2, with a line-

In the absence of an external forEg, Eq (9) becomes width Aw. We define the linewidti\w as the full width at
half maximum of the peak, withAw/w,)?=2-2(1-v%/w;
=S 5 _ - i,/ 4w])Y?. The amplitude of the spectrum is determined
mX, = = Kot O & Xt = 26) = My = vieMXy + 70(1) by n(w). For a chain of particles that are in thermal equi-
librium with an ambient gasy(w)=mpy;ksT,/ 7.
(12) i | ) ime domain vi
Fourier transforming Eq.18) to the time domain yields a
for the longitudinal mode. A similar expression can be writ-corresponding  current autocorrelation functiofCAF)
ten for the transverse mode. C(k,t). For a system that is in thermal equilibrium, we obtain
Applying a discrete spatial Fourier transformation to Eq.2 model CAF
(12) yields

3 2 :
(o - )+ (wvg)?

M

kgT .
2 - (1) C(k,t) = imﬂe-wnﬂz(cosmkt) + %sin(ﬂkt)) ., (19
QD) + 0 QUD) + QD) =~ — (13) “
m which applies separately for each mode. From @§), the

for every wave numbek. Here, Q,(t) =3, x,(t)e kna/ VN for CAF2 exzhibits damped oscillations, with a frequency (df
the longitudinal mode; for the transverse mode one should (@~ vii/4)"? and a decay rate ofy/2.
substitutey,(t) for x,(t). The natural frequency, is

M C. Phonons excited by an external sinusoidal manipulation
2_ 2 Ky . Hlka . . . .

wp =+ X 2 sint— (14 In this section, we consider phonons excited by an exter-

= m 2 : . ; .
nally applied sinusoidal force. Here, we only consider the
for the longitudinal mode, and longitudinal mode. For the transverse mode, the correspond-
" ing model and experimental results were presented in Ref.
4Ky, . lka [7].

W= w§ -> m’ smz? (15 We assume that a sinusoidal force, with a frequefi¢ys

I=1

applied only to a single particle, as it was in the experiment

transform of the random forcey(t) ==, 7,(t)ekna/ JN. are excited will have the same frequency as the excitation
In Eq. (13), the allowed values of the wave numbeare frequency(). Phonons are continually excited, making up a

determined by the length of the chain. For a chainhof Wave in the chain that propagates in both directions away

particles k hasN discrete values. If we assume that the chainfom the excitation location. _ _
The frequency of this externally excited wave is real, be-

is infinite, i.e.,N— o0, k can have any value. This assumption : ) )
should not prevent us from comparing our model with gcause the amplitude of the externally applied force remains

chain of finite length, because the discrete modes of a finit§onStant with time. The wave number, however, is complex.

chain are points along the same dispersion relation curve a¥/nen the wave is excited at a specific location using an
for an infinite chain. externally applied force, the wave propagates away from the

Fourier transforming Eq(13) yields excitation location and its amplitude decays with distance,
accounting for the imaginary part of the wave number. We

5 o . (W) note that this situation for an externally excited wave is dif-
(-o +wk_|Vfitw)Qk(w)=—m : (16)  ferent from that of natural phonons, which are commonly
modeled with a complex frequency and a real wave number.
whereQy(w) and 7 (w) are Fourier transformations @, (t) The motions of particles can be described by ER),
and n(t), respectively. Equatiofil6) will be used to obtain except for particlen=0. The motion of particlen=0 is pri-
first a dispersion relation and then a power spectrum. marily determined by the external forég o cos()t, so that
First, we obtain the dispersion relation its velocity is
/ 2 . Xo=AsinQt, 20
W= tio = wﬁ—m—im, (17) . ° o 29
4 2 where Q) is the known frequency of the excitation. We use
the symbol(} to distinguish this case from that of the natural

where the frequency is a complex number. Note that in the
real part, the frequency of the peak is shifted downward fro
wy by the offset of damping.

rrPhonons.

Here, we solve Eq(12), but with the boundary condition
~ ) ] given by Eq.(20). We assume that the solution has the form
~ Second, the power spectru@(k, w) is calculated using x,=B exli(Qt-nka)], whereB=-A/Q, determined by the
C(k, w) = 0| Q((w)|?, where » is a real number. The final boundary condition Eq(20). Thus, Eq.(12) is transformed
form of the spectrum is to
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M K 30 T ! \
(inm -02+ |21 FX"(Z —gkla _ gkia) 4 w>2<> B=0, longitudinal o :'
o -2
(2D) o
where we have neglected the random forggt), as is ap- 20r Ry ’
propriate if the external force is largEg(t) > 7,(t). — &2
The wave dispersion relation is determined from &4). E‘;% ,89(

As discussed above, the frequer@yis real, and the wave ry -
number is a complex numbé=k, +ik;. We obtain the dis- 10 } o model-ext. e;cneg F;honogsli .
persion relation by numerically solving these two equations, Py _— 5::;:,1:;2 mgdzl
which are functions of}, k;, andk;, y

M 7 O experiment-ext. excited

szw§+2&(1—coskrlacoshkila), (22 o b s bt
=1 M 0 1 2 3
kra
M
0= 2 2Kx,lsin k.la coshkila. (23) FIG. 4. Dispersion relation for externally excited longitudinal
1=1 Mg phonons. The frequency is real, and the wave number is complex.

Dissipation is the cause for a nonzero valuépfand it might also
affect the curve fok, shown here. In this experiment, we measured
the real part of the longitudinal mode’s wave number, shown here,
V. COMPARISON OF MODEL WITH EXPERIMENT by manipulating a particle to excite a sinusoidal wave. The charge

A. Criterion for validity of the w,# 0 assumption Q used throughout this paper was measured by fitting the experi-

. . . mental data to the model with a five-particle model, E§®) and
As was mentioned in Sec. IV A, when our model is used(zs) with M=2.

with a nonzero value ofv, for the longitudinal confining

potential, we must check a criterion for the validity of the
assumption. To do this, we compare two distances: the dec
length C,/v for a propagating sound wave, and the length
scalea(da/ 9x)™* for the gradient in the interparticle spacing.

dinal mode is a forward wave. Only the real part of the

Ispersion relation is shown in Fig. 4. We were unable to
measure the imaginary part &fbecause the wave was too
I _ , weak to accurately measure the scale length of its exponen-
The longitudinal sound spedt,=dw/dk was approximately tial decay. Figure 4 shows the longitudinal mode’s dispersion

11 mms? in the experiment, based on Fig(i)3 We then . . . . .
: .. relation; the corresponding dispersion relation for the trans-
calculate the distance traveled by a sound wave before it is

damped significantly, yielding,/»~3 mm. For compari- verse mode, including the experiment and model, was pre-

. z . sented in Ref[7].
son, the gradient scale lengtka/ 9x)~* was approximately X " . .
70 mm. The ratio of these two distances is small, 0.04. Thu We find the charg®) by fitting the experimental disper-

S,. . . . .
the criterion for the validity of assuming, # 0 is satisfied, sion relation to the five-particle model. This was the only

: . . free parameter in the fit. Other parameters used wgrand
and our model can be locally ?pprl]'ed toda Iporur?n of chalm N3, which were obtained from the equilibrium positiph5]
our experiment. Here, we apply the model to the central por=- : _ o
tion of the chainN=28, comprised of the 18 particles that The resuilting valueQ=760(, was used throughout this pa

) ) . er as the experimental measuremenQof
were imaged in the experiment. P P Qo

B. Phonons excited by external sinusoidal manipulation C. Natural phonons

As we reported in a previous papgf], the dispersion The model CAF Eq(19) is compared to experiment in
relation can also be measured for externally excited wavestigs. 4a) and Zc), for the modes ak=1.13 mn1’. The the-
This was done by launching a wave at the midpoint of theoretical curve in Figs. @ and Zc) is a fit using Eq.(19),
chain by pushing it transversely at a specified real frequencyvith three free parameters, as mentioned in Sec. Ill. We find
Waves propagating outward from the point of excitationthat the CAF for the experimental data and the model fit
were measured, using a Fourier-transform technique, yieldreasonably well. Both of them exhibit a damped oscillation.
ing a complex wave number. In this way, we measured thdhis indicates that a phonon in the experiment can be mod-
real and imaginary dispersion relation. The externally excitecled as a damped harmonic oscillator.
waves are not translationally invariant, unlike the natural The model spectra of the CAF are compared to experi-
phonons. To analyze natural phonons, we use a correlatiament in Figs. 2b) and 2d), by fitting the experimental data
function CAF that is translationally invariant. The external points to the theoretical curve E@.8). In fitting the data, we
excitation method did not employ any correlation functionsfirst subtract a sloping baseline, as discussed in Sec. Ill. The
in its analysis. example shown is for the modeskat 1.13 mnit. The fit is

The theoretical dispersion relation exhibits the same trengood enough to yield useful values fof; andkgT, as dis-
as in the experiment with external excitation, i.e., the longi-cussed in Sec. Ill.
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FIG. 5. Dispersion relation for natural phonons. The frequency is a complex number, and the wave number is real. Theoretical curves for
the real and imaginary parts af were computed from Eq17), with no free parameters. The experimental data points were obtained from
the spectra of the CAF; for each valuelgfwe determined the peal and the linewidthAw of the spectra of the CAF, yielding, and w;,
respectively. Dissipation, for example due to gas damping, is the cause of a honzero vaglua dfie model, we used experimental values
of a and\p obtained from equilibrium particle positions and a valu&bbtained by fitting separate experimental results of the dispersion
relation for externally excited waves.

Finally, we test theoretical dispersion relations for bothnumberk. In using this expression to calculatg for v we
longitudinal and transverse modes, Fig. 5. Both the real andsed the experimental value=3.5 s, which was obtained
imaginary parts of the dispersion relation are shown in Figusing a single particle. Results are shown in Figs) and
5. The data shown for the real part of the experimental dis5(d). Theoretical and experimental values of the imaginary
persion relations are the same as the triangle symbols in Figpart agree roughly. The experimental values, although they
3(i) and Jj). The imaginary part of the dispersion relation is have some scatter, are mostly larger than the model assuming
the variation ofw; with wave numbek, shown in Figs. &) the single-particle damping rate.
and 3d). For the experimental datay was calculated from
the measured linewidtAw asw;=-Aw/2. In the theoretical
dispersion relationsy, andw; were calculated from Eq17).

For the transverse mode, the real parts of theoretical and
experimental dispersion relations agree well, as seen in Fig. As we demonstrated experimentally in Sec. Ill, the real
5(a). The agreement is good even for the three-particle modedart of the dispersion relation, versusk for natural phonons
(M=1). is different from that for externally excited phonons. This is

For the longitudinal mode, the real parts of theoretical andlifferent from the result that would be expected in the ab-
experimental dispersion relations agree roughly, when aence of any dissipation; in that case, the dispersion relations
three-particle model is used in the model, as seen in Figwould be purely real, and they would be the same regardless
5(b). This agreement is improved by using a five-particleof the excitation mechanism. The role of dissipation, such as
model(M=2). frictional gas damping in our experiment, is twofold. First,

For both the longitudinal and transverse modes, the theddissipation is responsible for an imaginary part. This imagi-
retical imaginary partw;=-v/2, is independent of wave nary part is different for natural and externally excited

D. The difference between natural and externally excited
phonon dispersion relations
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phonons: as discussed in the previous section, for naturaitioned equally among phonon modes. Instead, it is concen-
phononsw is complex and is real, while for the externally trated in the longest wavelengths. This result offers a hint
excited phonons in our experimeatis real andk is com-  that may be useful for gaining an understanding of an unex-
plex. Second, dissipation also affects the real part of the digslained phenomenon: how particles in a monolayer dusty
persion relation. For natural phonons, this produces a dowrplasma can be heated beyond the temperature expected for
ward shift in the real frequency, of the peak of the spectra Brownian motion, as was reported in Ref]. Second, in the
of the CAF, as we discussed in Sec. IV, where we presentegresence of frictional gas damping, the dispersion relation is
Eq. (17). different for externally excited and natural phonons. This dif-
ference is seen most strongly at small and large wave num-
VI. CONCLUSION bers.

) . A model was developed for a 1D chain interacting via the

Experimental results and a model for a 1D chain werey,kawa potential. This model takes into account gas friction
presented. Phonons were observed for a 1D chain of chargeghq gistinguishes how phonons are excited. Dispersion rela-
microspheres, levitated in a plasma above a groove in afions were obtained for phonons excited by an externally
electrode.. Ampdel was d_eveloped to desr_:nbe the phonon_s Boplied sinusoidal force, and for phonons corresponding to
a 1D chain; this model might also be applicable to 1D chaingandom particle motion. For the latter case, we also obtained
in colloids, storage rings, nanotubes, and other 1D systemg, CAF and the spectrum of the CAF. These theoretical results
in addition to our dusty plasma. _ allow a direct comparison to our experiment.

The phonon spectrum is broadband and characterized by a 1 compare the model and our experiment requires three
dispersion relation. The longitudinal mode is a forwardparametersa, \p, and Q. We obtaineda and Ay, directly
wave; however, the transverse mode is a backward wavésom the experimental data. We obtain€d by fitting the
with a frequency that decreases with wave number, due t@yperimental dispersion relation to the model for an exter-
the conﬁnin_g potential._The confining potential also affectsna”y excited longitudinal phonon. After choosing these pa-
the longitudinal mode; it cannot have a zero frequency, butameters, we can then test the dispersion relation for natural
!nstead has a nonzero frequency corresponding to the 5|°SBhonons using no free parameters.
ing mode. o For natural phonons, calculating the dispersion relation

In this paper, we primarily report results for phonons cor-yith no free parameters, we found that it agrees well with the
responding to random particle motion, in the absence of exaxperiment for the transverse mode. For the longitudinal
ternal manipulation. We term these natural phonons to disyode with our value ok, we find that agreement with ex-
tinguish them from externally excited phonons, which wereperiment requires including a five-particle interaction, not
studied experimentally and theoretically in Rgfl. To char- st three.
acterize natural phonons, we used the current correlation \we also compared the model and experimental CAF and
function (CAF) and the spectrum of the CAF. We compute the spectrum of the CAF. In these comparisons there were
the spectra of the CAF for various values of the wave numypree free parameter@ mode’s amplitude, frequency, and
ber, and combine them to yield a phonon spectrum. From thgamping ratg A good fit to the experiment was achieved,
phonon spectrum, we can determine how energy is partingicating that the model's assumption of damped harmonic

tioned among modes. We also found the temporal decay fscillators is suitable for describing the natural phonons in
phonons two ways: from the decay time of the CAF and theyyr 1D chain in the presence of damping.

linewidth of the spectra of the CAF.
Our two surprising experimental results for the phonon ACKNOWLEDGMENTS
spectrum and dispersion relation are a lack of energy equi-
partition and a dispersion relation that is different from what = We thank V. Nosenko and F. Skiff for helpful discussions.
was previously reported. First, the phonon energy is not parfhis work was supported by NASA and DOE.
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