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Collisional and collisionless expansion of Yukawa balls
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The expansion of Yukawa balls is studied by means of molecular dynamics simulations of collisionless and
collisional situations. High computation speed was achieved by using the parallel computing power of graphics
processing units. When the radius of the Yukawa ball is large compared to the shielding length, the expansion
process starts with the blow-off of the outermost layer. A rarefactive wave subsequently propagates radially inward
at the speed of longitudinal phonons. This mechanism is fundamentally different from Coulomb explosions, which
employ a self-similar expansion of the entire system. In the collisionless limit, the outer layers carry away most of
the available energy. The simulations are compared with analytical estimates. In the collisional case, the expansion
process can be described by a nonlinear diffusion equation that is a special case of the porous medium equation.
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I. INTRODUCTION

Yukawa balls are spherical objects containing several
hundred particles that interact by shielded Coulomb fields.
They can be formed using polymer particles of micrometer
size in a radio frequency (rf) discharge, which provides particle
charging and confinement in a suitable potential trap [1,2].
The particles carry large surface charges (q = −10,000 e . . . −
50,000 e) and can be in a strongly coupled state, in which the
particles arrange themselves in a structure of nested spherical
shells [3,4]. Yukawa balls have been used to study structural
and dynamical properties of strongly coupled finite clusters
[5–8], or phase transitions in such systems [9–11].

The free expansion of a densely packed cloud of micropar-
ticles had already been observed in very early experiments
with “complex plasmas” [12]. A complex (or dusty) plasma
is a mixture of solid microparticles, electrons, ions, and gas
[13]. The microparticles accumulate a large negative charge
by absorbing some of the electrons, and they repel each
other by screened Coulomb forces. A rapid expansion of this
microparticle cloud occurred after the plasma discharge that
provides the confining potential trap was switched off.

A model for such a situation in the plasma afterglow, in
which the charge on the microparticles changes with time,
was reported in Ref. [14]. The authors discuss two situations:
(1) At low gas pressure the plasma density decays rapidly and
the shielding of the microparticles is effectively switched off,
which leads to a Coulomb explosion of the microparticles,
which still carry their initial negative charge. (2) At high
gas pressure, the electron temperature, which determines the
charge on the microparticle, drops rapidly while the plasma
density decays more slowly. In this case, the screening of the
interparticle forces prevails in the afterglow.

Experiments on the expansion of Yukawa balls are still
sparse. Recently, the expansion of an initially compressed
cloud of microparticles in a steady-state plasma environment
was studied experimentally in Ref. [15]. There, a cloud of
microparticles was originally confined deep in the sheath of
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a parallel-plate rf discharge by means of a small secondary rf
plasma. After turning the secondary plasma off, the particles
were lifted vertically by the electric field of the sheath
and expanded horizontally under their mutual repulsion. The
particle motion was friction-dominated. The particle charge
was not constant but depended critically on the position in
the sheath, rising from |q| = 900 e at the instant of release to
nearly 3000 e at the final vertical position. Hence, the rising
charge increased the repulsive force during the expansion
process, which complicates the analysis.

On the other hand, very general analytical models for
the expansion of Coulomb systems in plane, cylindrical, and
spherical geometry were recently discussed in Ref. [16].

Outside the field of complex plasmas, Coulomb explosions
are used to study the structure of large molecules and clusters.
This can be done experimentally by impacting them at high
speed upon a thin foil [17]. The term “Coulomb explosions”
has also been used to describe the acceleration of protons or
heavy ions away from a plasma that is suddenly formed by
ultraintense laser-plasma interactions; see, e.g., Refs. [18–21].

The present article is not aimed at the analysis of a
particular experiment. Rather, the expansion of Yukawa balls
is discussed in very general terms. The phenomenon is studied
by molecular dynamics simulations, which are compared with
analytical models. Only Yukawa balls in a disordered (liquid
or glassy) state are considered to exclude correlation effects
from the crystalline order and to facilitate the comparison
with mean-field models. It is shown that there are fundamental
differences in the expansion mechanism of Yukawa and
Coulomb systems. Section II summarizes the properties of
Coulomb explosions. In Sec. III the principle of Yukawa
expansion is demonstrated in a plane stratified system. The
implementation of the Langevin molecular dynamics code is
described in Sec. IV. The expansion of collisionless Yukawa
balls is demonstrated in Sec. V. The influence of collisions is
discussed in Sec. VI, where, in addition, a model in terms of a
nonlinear diffusion equation is introduced. Appendix A gives a
derivation of the sound speed in a system of stratified Yukawa
planes. In Appendix B the potential and electric field for
several spherical geometries of Yukawa matter are derived in
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the mean-field approximation, among them Yukawa bubbles,
Yukawa balls, and Yukawa cavities.

II. COULOMB EXPLOSIONS

Analytical solutions for the collisionless expansion of a
homogeneously charged sphere were discussed before in
Refs. [22–24]. We give here a simplified derivation to illustrate
the differences between Coulomb and Yukawa systems and to
introduce collisions [16].

Consider a Coulomb ball of radius R that is homogeneously
filled with point-like particles of charge q and mass m.
The initial number density of the particles is n0 and the
particles interact pairwise by repulsive Coulomb potentials.
For times t < 0, this arrangement of particles is assumed to be
confined in a potential trap, which is switched off at t = 0. An
initially homogeneous situation can be generated in a parabolic
confining potential [4].

Let us now consider the dynamics of a thin shell of radius
r(t), which has the initial radius r(0) = r0 < R and thickness
�r � r0. The volume of the sphere bounded by this shell
contains the total electric charge Q(r0) = (4π/3)r3

0 n0q. The
radial electric field at r0 reads

E(r0) = Q(r0)

4πε0r
2
0

= 1

3

n0q

ε0
r0. (1)

Then the initial radial acceleration of a test particle in the
considered shell can be written as

a(0) = q

m
E(r0) = 1

3
ω2

0r0, (2)

with the characteristic frequency ω0 = (n0q
2/ε0m)1/2. Despite

its similarity to the plasma frequency, ω0 here denotes a
characteristic growth rate for the unstable system. The radial
acceleration of the entire shell is the same as that of the test
particle since the shell has the same q/m ratio as the test
particle.

Because the acceleration increases with the radius, the
nesting of the individual shells will be preserved during the
expansion. In particular, the total charge Q(r0) becomes a
conserved quantity for the considered shell, although the
charge density inside the sphere decreases. At a later time,
when this shell has expanded to a radius r(t), the equation of
motion becomes

d2r

dt2
= 1

3
ω2

0
r3

0

r2
− γ

dr

dt
, (3)

with the friction coefficient γ .
Setting ρ = r/r0, τ = ω0t , we obtain the universal equation

of motion for the shells of a Coulomb ball:
d2ρ

dτ 2
= 1

3ρ2
− γ

ω0

dρ

dτ
. (4)

Since this equation only depends on the parameter ν = γ /ω0,
all shells perform a self-similar expansion. Therefore, a
characteristic feature of an expanding Coulomb ball will be
the preservation of its initial homogeneous density profile
during the expansion. For ν = 0, the differential Eq. (4) has
the solution√

ρ(ρ − 1) + artanh

√
ρ − 1

ρ
=

√
2

3
τ. (5)

FIG. 1. Self-similar expansion of a Coulomb ball in the colli-
sionless and collisional case by numerical integration of Eq. (4). The
circles represent the analytical result Eq. (5).

The self-similar expansion of five representative shells is
shown in Fig. 1. The shells were initially spaced equidistantly
within the radius R. The curves were obtained by a numerical
integration of Eq. (3) for the collisionless case γ = 0 and for
a typical value found in experimental situations, γ /ω0 = 0.2.
The self-similarity of the expansion process can be seen in
both cases. For the collisionless case, the analytical solution
[Eq. (5)] for ρ0 = 1 is superimposed (open circles).

III. EXPANSION OF YUKAWA PARTICLES
FILLING A HALFSPACE

Shielded Coulomb interaction is described by a Yukawa (or
Debye) potential


Y (rij ) = q

4πε0rij

exp
(
− rij

λ

)
, (6)

which depends on the distance rij of a particle pair (i,j ) and
contains the shielding length λ. The finite range of this interac-
tion force is the reason for a completely different mechanism
of expansion. In order to avoid geometrical complications that
arise in spherical symmetry, we first consider a plane geometry,
in which the half-space z < 0 is homogeneously filled with
Yukawa particles of charge q and mass m at a number density
n0. This system can be considered as a stack of individual thin
layers of finite thickness �z � λ.

For a numerical treatment of the problem, we replace each
layer by an infinitesimally thin “sheet” in the middle of each
layer, which carries a surface charge density σ = n0�z. These
sheets have initially an equal spacing �z and are infinitely large
in the lateral directions. The electric field produced by one of
these sheets, which is located at position zk , is given by

E(z) = sgn(z − zk)
σ

2ε0
exp

(
−|z − zk|

λ

)
. (7)
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FIG. 2. Expansion of a half-space filled with Yukawa particles for
�z = 0.1λ and 500 mobile sheets. The circles mark the time when a
sheet has been displaced by �z from its original position. The dashed
line represents the sound speed ω0λ.

The equation of motion for such a sheet at position zn is given
by the forces exerted from all other sheets at zk = −k �z above
and below the considered sheet, namely

z̈n = 1

2
ω2

0�z

[ ∞∑
k=n+1

exp

(
−|zn − zk|

λ

)

−
n−1∑
k=0

exp

(
−|zn − zk|

λ

)]
. (8)

The numerical solution of Eq. (8) is performed for a set of
500 mobile sheets (k = 0 . . . 499) and by including the force
from immobile sheets k = 500 . . . ∞ in terms of an integral.
The equation of motion of the 500 interacting sheets is solved
by a fourth-order Runge-Kutta algorithm. The dynamical
evolution of the sheets is shown in Fig. 2, where every 50th
sheet is shown. Here, a sheet spacing �z = 0.1λ was chosen.

The striking result is that the outermost layer blows off
much faster than the other layers. Further, the inner layer
apparently begin their expansion only after a delay time. These
“starting times” are marked by small circles and are defined as
the time at which the considered sheet has been displaced by
�z from its original position. This effect can be understood by
comparing these times with the propagation of a longitudinal
wave, which has a group velocity vg = ω0λ (dashed line).
The proper dispersion relation for a set of coupled equidistant
charge sheets is shortly derived in the Appendix. A nearly
identical group velocity for long-wavelength modes was
reported in the frame of the QLCA-treatment of Yukawa
particles in Ref. [25].

The mechanism behind this delayed detachment can be
explained as follows: Initially, sheets that are deeper than a
shielding length λ inside the system are essentially in a force

balance with their neighbors above and below. As soon as the
rarefactive wave reaches the position of the considered sheet,
this force balance is destroyed and a net force pushes this
sheet upwards. In the end, a cascade of delayed detachments
describes the expansion of the Yukawa halfspace. These
arguments hold for any finite value of λ and the choice of
the ratio �z/λ only affects the numerical accuracy.

On the other hand, the transition from a Yukawa system
to a Coulomb system can be performed by taking the limit
λ → ∞. The effect on the speed of the expansion process can
be seen from the electric field at the surface of the half-space,
which is given in the mean-field approximation by

Ez(0) = ndqd

2ε0
λ . (9)

The electric field increases with λ and in the end leads to the
well-known Coulomb singularity. Therefore, the discussion
will be shifted to finite spherical clusters in the following.

IV. MOLECULAR DYNAMICS SIMULATIONS

In this section we describe the simulation code, which is
used to study the collisionless and collisional expansion of
Yukawa spheres. The artificial aspects of the stratified layer
model in Sec. III, namely the mean-field approximation and
the grouping into representative “sheets” can be overcome by
molecular dynamics (MD) simulations that take the correct
Yukawa interaction force between all particles into account.

The fundamental difference between Coulomb and Yukawa
systems is the fact that for a spherical shell the electric field
due to Coulomb interaction vanishes inside the shell, whereas
for Yukawa interaction it does not.

For later reference, the analytical results for the potential
and electric field of spherical Yukawa systems are compiled
in Appendix B. Yukawa bubbles, solid Yukawa spheres,
and spherical cavities in Yukawa matter are considered. The
potential and electric field at the surface of a homogeneous
Yukawa ball are needed for discussing the energy of the surface
layer. The potential and field inside a Yukawa cavity provide
the confinement of a homogeneous start configuration in the
simulation.

The expansion of a Yukawa ball is studied by filling a sphere
of radius R homogeneously with Yukawa particles. This filling
procedure uses random positions but rejects all new particles
that come closer than 1.1aWS to any of the previously injected
particles. This procedure results in a weak excess of potential
energy over the ground state, which is typically 5% of the total
potential energy.

In the collisionless limit, the motion of each individual
particle is calculated using a Verlet algorithm with the actual
Yukawa forces obtained from all pair interactions in the cloud
of particles. The force calculation is based on a modified
N -body routine [26] that is executed on an NVIDIA graphics
card (GTX 660Ti) by means of the CUDA extension of
the C-language. A total of N = 216 particles are used in
this calculation. Typically, a run with 1000 time steps and
single-precision arithmetic takes 3 minutes with an 80% share
of GPU time.

For the numerical simulation we use normalized quantities
for time τ = ω0t , radius x = r/R, and shielding parameter
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κ = R/λ. Then, the equation of motion for particle i under the
action of (N − 1) other shielded particles in the collisionless
limit becomes

d2 �xi

dτ 2
= 1

3N

∑
j �=i

(1 + κxij )

x3
ij

e−κxij (�xi − �xj ), (10)

with xij = |�xi − �xj |. This problem has only two parameters,
the total number N of particles and the shielding factor R/λ.

In addition to the collisionless MD simulation, we will
also use a collisional simulation taking into account two
effects of neutral gas collisions with the microparticles, i.e.,
a random force from gas molecules impinging on them and
a frictional force. The latter has the form −νd �xi/dt . For
our collisional simulation, we include these two forces using
the Langevin-MD method with the Brünger-Brooks-Karplus
(BBK) algorithm [27]:

�x(t + �t) = �x(t) + 1 − ν
2 �t

1 + ν
2 �t

[�x(t) − �x(t − �t)]

+ (�t)2

1 + ν
2 �t

[�a(t) + �L(t)]. (11)

Here, ν = γ /ω0 is the normalized friction frequency, �a(t) the
acceleration by the other particles, and �L(t) = L0�ζ (t) is the
Langevin acceleration, which involves independent Gaussian
random processes ζ (t) with zero mean and unit variance
for each of the coordinates. The standard expression for
the Langevin acceleration, L0 = [2γ kBT /(m�t)]1/2 reads in
normalized units:

L0 =
(

2

3
N−2/3�−1 ν

�τ

)1/2

. (12)

The coupling factor � = q2/(4πε0aWSkBT ) takes the role of
the (inverse) temperature in these normalized units. aWS =
N−1/3R is the Wigner-Seitz radius.

A final remark concerns the proper initial condition for
the simulation. The simplest approach, namely to fill the
simulation sphere with Yukawa particles at random positions,
leads to an often unwanted high electrostatic energy in some
particle pairs, which appear as “hot” particles afterwards.
This phenomenon is known as disorder-induced heating in
the context of ultracold photoionized plasmas (see, e.g.,
Refs. [28,29]). For careful investigations of the conversion
from potential to kinetic energy we seek to minimize these
initial correlations.

Using the BBK algorithm, a well-defined start configuration
can be established by confining the N discrete simulation
particles in the potential well of a cavity of Yukawa matter
[see Eq. (B10)] and letting the system relax to a state
with prescribed value of �. The cavity radius is chosen as
R + 0.5aWS. A spatially homogeneous filling is obtained for a
liquid state with � = 3. For this starting condition, the system
has a similar excess energy as with the random filling. For large
values of the coupling factor, � = 200, the excess potential
energy is negligible, but a distinct outer shell is formed, which
is induced by the confining electric field that acts at the surface.
The expansion process is started by suddenly switching the
confining potential off.

FIG. 3. Short-time expansion of a Yukawa ball (N = 216, R/λ =
40.3). The inner part of the Yukawa ball maintains its unperturbed
homogeneous density while the rarefaction wave propagates radially
inwards.

V. COLLISIONLESS EXPANSION OF A YUKAWA BALL

In order to see the delayed blow-off effect of a Yukawa
ball, we consider large spheres with R/λ � 1. Experimental
situations for Yukawa balls in many cases have a Wigner-Seitz
radius that is comparable with the shielding length, aWS/λ ≈ 1.
When we restrict the discussion to this special case, the number
of particles inside the simulation sphere defines the ratio R/λ.
For N = 216 particles, this corresponds to R/aWS = N1/3 =
40.3, which gives the desired large sphere radius.

In this section we use the collisionless MD simulation,
which solves Eq. (10). An external confining force that
previously provided a force equilibrium is assumed to be
turned off at time τ = ω0t = 0. We record the profiles of the
energy and density of the microparticles to study how they
develop in the expansion.

Density profiles are calculated by sorting the particle
positions into radial bins of width �x and using the proper
volume of the shell of finite thickness. The normalized density
profile then is nk/n0 = (1/3N )Nk/[k(k + 1) + 1/3]�x3 for
Nk particles in bin k. Near the origin of the sphere, the resulting
density values show fluctuations, which are a tribute to the
small number of particles in the central bins.

A. Short-time evolution of the density profile

An example for the early expansion phase of such a
Yukawa ball is shown in Fig. 3. These results and those shown
in Figs. 4–6 are from our collisionless MD simulation for
N = 216.

The short-time expansion of the Yukawa ball is governed
by the inwards propagating rarefactive wave. Note that the
inner part of the density profile remains homogeneous until
the rarefactive wave has reached that position. When the
rarefactive wave reaches the center, the density profile becomes
almost triangular.
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FIG. 4. Expansion of a Coulomb ball (N = 216, λ → ∞). The
density profile remains homogeneous during the expansion.

The transit time of a sound wave is given by Tt = R/cs with
a sound speed cs = ω0λ. Then the normalized transit time
becomes τt = ω0Tt = R/λ. A small-amplitude wave would
reach the center of a homogeneous sphere at τt = 40.3, which
compares with τ ≈ 30–35 for the large-amplitude wave in the
present example.

FIG. 5. (Color online) Evolution of the total potential energy
(solid line) and kinetic energy (dashed line) in the Yukawa ball
expansion (N = 216, R/λ = 40.3). The dotted curves represent the
corresponding Coulomb ball expansion. All energies are normalized
to the initial potential energy Epot(0).

B. Expansion of a Coulomb ball

For comparison, the same simulation program was used
to explore the expansion of a Coulomb ball. Again we use
N = 216 particles but the shielding factor is set to κ = 0, which
gives the Coulomb limit. The result is shown in Fig. 4. The
vertical axis is logarithmic to separate the density profiles more
clearly.

It becomes immediately evident that the density profile of
the Coulomb ball remains homogeneous during the expansion.
For τ < 3, the expansion is still governed by an increasing
speed. For τ � 3, the expansion speed has reached a nearly
constant value and the density decays as n(t) ∝ t−3, accord-
ingly.

C. Energy evolution

The evolution of the total potential and kinetic energy of
the Yukawa ball with N = 216 particles are shown in Fig. 5.
The energies are normalized by the initial potential energy
Epot(0) = ∑

i �=j q
Y (rij ) with the Yukawa potential from
Eq. (6). The total energy at τ = 40 is Etot = 0.9997Epot(0),
which is a remarkably good value for the single-precision
arithmetic in the fast N -body routine. The potential energy
of the Yukawa ball has dropped to the 1/e value at τ0 = 25.6.
For comparison, the Coulomb expansion is considerably faster
with τ0 = 4.1.

D. Density profile evolution

The long-time evolution of the density profile of the Yukawa
ball with N = 216 particles is shown in Fig. 6.

At τ = 10 only the outer layers have separated from the
bulk. The dotted box indicates the initial configuration, which
has a 3% smaller density than the ideal normalized density
n/n0 = 1 with n0 = 3N/(4πR3). This difference is caused
by the arbitrariness in the definition of the proper “surface”
of a discrete arrangement of particles. To minimize the initial
correlation energy, we had chosen the procedure described at
the end of Sec. IV with a radius of the confining cavity of
R + 0.5aWS.

At τ = 10 only particles in the outer layer have gained
energy from the repulsion by inner particles. This outer layer
is subsequently blown off and moves at higher radial speed
than particles that start from an inner layer, as can be seen in
the energy distribution at τ = 30.

At τ = 30, the rarefactive wave has nearly reached the
center of the sphere. At this time, the density profile has
an approximately triangular shape and the Yukawa ball has
reached a radius of ≈2.1. At τ = 50, the total potential energy
of the Yukawa ball is only 10% of its initial value. Therefore,
the further expansion of the low-density outer part of the
expanding cloud is simply a ballistic radial motion. This
becomes evident from the fact that the kinetic energy of the
particles at the leading edge remains practically constant for
50 < τ < 100.

The triangular density profile at τ = 50 gradually trans-
forms into a plateau at τ = 100. One could imagine that this
transformation is a rarefactive wave that propagates outward
after being reflected at the center.
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FIG. 6. (Color online) Long-time expansion of a Yukawa ball of initial radius R (dotted box) up to τ = 100 (N = 216, R/λ = 40.3).
Density profiles (solid lines) and kinetic energy per particle (red dashed lines).

Since the blow-off of the outer shell of a large Yukawa
ball carries away a substantial fraction of the total kinetic
energy it is tempting to compare the decay time τ0 of a Yukawa
ball with the dynamics of a test particle at the surface. The
potential energy of a particle of charge q at the surface r = R

is obtained from Eq. (B8), which for R/λ � 1 approaches
the limit Epot,1 = (1/2)mω2

0λ
2. When this potential energy

is converted to kinetic energy of the test particle, its speed
v = ω0λ is just the sound speed.

Therefore, the characteristic time for the expansion process
can be defined as the (absolute) transit time through the
characteristic size R, Tt = R/v. The normalized transit time
is then τt = R/λ, i.e., the transit time of the rarefactive wave
in Sec. VA. In Fig. 7 the decay times of Yukawa balls with
fixed number N = 216 but varying R/λ are compared with this
transit time. The Coulomb decay time from Fig. 5 is marked
by the short dashed line. For R/λ � 5 the linear increase of
the asymptotic behavior is well reproduced. A best fit gives
τ0 ≈ 0.7τt .

Surprisingly, for R/λ < 1, the Coulomb limit is not
monotonically approached. Rather, a minimum decay time of
a Yukawa ball is found at R/λ = 1 with 68% of the Coulomb
decay time.

VI. THE INFLUENCE OF COLLISIONS ON THE
EXPANSION OF A YUKAWA BALL

We now investigate the effects of gas atom collisions on the
microparticles during the expansion. Two effects are taken into
account in our Langevin-MD simulation: the random forces
due to the impingement of gas molecules and the friction
as the solid particles move through the gas. We perform our
simulations for varying values of the gas friction coefficient
γ , which we express in the dimensionless form ν = γ /ω0. A
uniform Yukawa ball containing N = 216 particles is assumed
again to be confined in an equilibrium by an external force,
which is suddenly switched off at τ = 0 to begin the expansion.

We first investigate the blow-off of the outermost layer.
For this purpose, we choose a representative sample of 500
randomly selected particles from the outermost bin of the
initial density histogram. The long-term evolution up to
τ = 400 of the mean radial position of this group is shown
in Fig. 8 for the collisionless and two collisional cases.

In the collisionless case, the trajectory becomes a straight
line for τ > 50. This is the ballistic motion of this leading
group discussed in the previous section. In the collisional
cases, the particle speed diminishes. The trajectory, how-
ever, has not the limited range that is known for initially
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FIG. 7. Decay time (in normalized units τ = ω0t) of the Yukawa
ball as a function of the shielding strength R/λ in comparison with
the normalized transit time τt = R/λ (full line). The Coulomb decay
time is given by the short dashed line.

monoenergetic particles in a medium with velocity-dependent
friction, such as the famous α particles in air. Rather, the
expansion of the outer layer seems to be governed by a
continuously acting mechanism that is governed by a force
equilibrium between frictional drag applied by the gas and a
repulsive electric force from the inner particles.

FIG. 8. Mean trajectory of 500 randomly selected particles in the
outermost bin of the density histogram in collisionless and collisional
expansions of a Yukawa ball (N = 216, R/λ = 40.3).

We first consider the case of weak friction, ν = 0.03. As in
the collisionless case, the expansion begins with a blow-off of
the outer layer (Fig. 9, τ = 10). The inward propagation of the
rarefactive wave becomes evident at τ = 20. The rarefactive
wave reaches the center at τ ≈ 30 and a triangular profile
similar to the collisionless case is found. Initially, the kinetic
energy is concentrated in the outermost shell. Because the
friction is velocity-dependent, the fastest particles experience
the strongest deceleration, which can be seen in the height
reduction of the initial sharp peak at the leading edge.

While, in the collisionless case, the speed of the outer layer
increased until τ = 50, in the present weakly damped situation
the outer layer suffers a reduction of the peak energy by a
factor of ≈5. Moreover, the radial distribution of kinetic energy
becomes a convex function, whereas it was concave in Fig. 6.

For larger friction, ν = 0.1, the rarefactive wave is still seen,
but after passing the triangular state at τ = 30, the density
profile rapidly evolves into a kind of inverted parabola at τ =
100 (Fig. 10) and continuously expands while maintaining this
shape. This observation can be confirmed by a simple model.

A large Yukawa ball consisting of a set of nested shells
and being confined in a potential trap has a simple static
construction principle [30]. Because we consider the limit
R/λ � 1, each shell experiences a repulsive force from its
immediate neighbors, which gives a net outward-directed force
that is proportional to the density gradient. This net force is
balanced by the restoring force from the trap. Therefore, a
parabolic confinement leads to a density profile that consists
of an inverted parabola plus an offset.

The same local approximation can be used to derive a
simple analytic model for the expansion against friction. For
this purpose, we assume that the instantaneous electric field
from neighboring shells is proportional to the density gradient.
In the collisional case the velocity �v of a microparticle is
mobility-limited:

�v = −μ �E(x) = −A �∇n(x). (13)

This is not Fick’s law for diffusion, which states that
n�v = −D �∇n. Rather, combining Eq. (13) with the continuity
equation ∂n/∂t + �∇ · (n�v) = 0, we obtain a nonlinear differ-
ential equation for the density evolution

∂n

∂t
= A

2
�(n2), (14)

with the Laplacian �. This is a special case of the “porous
medium equation” (PME) ∂n/∂t = �(nm) [31], which allows
arbitrary exponents m > 1 and describes nonlinear diffusion
processes. The solutions n(r,t) of this equation are known
as “Barenblatt profiles” [32], which undergo a selfsimilar
evolution with characteristic exponents. For m = 2 and a
spherically symmetric expansion the solution has the form

n(x,t) = t−3/5[C − kx2t−2/5]+. (15)

The index “ + ” means that only positive values of the
expression in brackets are valid. For any fixed time, the profile
has the shape of an inverted parabola. This model makes three
predictions, which we can test in the simulation results: (1)
the profile is always an inverted parabola, (2) the maximum
density decays ∝ t−3/5, and (3) the free boundary of the
particle cloud expands as t1/5.
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FIG. 9. (Color online) Early evolution of the density profile (solid line) and kinetic energy per particle (red dashed line) in the weakly
collisional case (ν = 0.03, N = 216, R/λ = 40.3). The dotted box indicates the initial density profile.

The first test is performed in Fig. 10, where the simulation
results for the long-term evolution are compared with best

FIG. 10. (Color online) Fit of the density profiles for ν = 0.1,
N = 216, R/λ = 40.3 by Barenblatt profiles (fine red lines).

fits by inverted parabolas. The close agreement confirms the
validity of the exponent m = 2 in the PME, which resulted
from the assumption of a local mobility [Eq. (13)].

The other tests are made in Fig. 11, where the height and
width of the best-fit parabolas are shown. The decay of the
maximum density is close to the t−3/5 law and the expansion
is very slow and follows nearly the t1/5 law. In conclusion, the
collisional expansion of a Yukawa ball approaches the limit of
nonlinear diffusion described by the PME for m = 2.

VII. SUMMARY AND CONCLUSIONS

The dynamics of Coulomb explosions was shortly sum-
marized and the self-similarity of the expansion process
became evident for the collisionless and the collisional case.
In particular, an initially homogeneous density profile stays
homogeneous for all times. For Yukawa balls we use the
terminology “expansion” to distinguish the process from an
explosive process that acts simultaneously in all parts of the
system.

In a system of stratified layers of “Yukawa matter” the
collisionless expansion is characterized by an ablation process,
in which the outermost layer is blown off at a higher speed than
subsequent layers. The ablation of subsequent layers is delayed
by a time that is given by the propagation speed of a rarefactive
wave, v = ω0λ. For the points of weak displacement, a linear
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FIG. 11. Test of the Barenblatt model for nonlinear diffusion.
Expansion of the free surface (circles) in comparison with power law
∝ (ω0t)1/5 (dotted line). Decay of the central maximum (squares) in
comparison with power law ∝ (ω0t)−3/5 (dashed line).

rarefactive wave is found to propagate exactly at the sound
velocity for a system of equidistant sheets interacting by
Yukawa forces. This sound speed is not the dust acoustic
wave speed, which describes weakly coupled systems, but the
long-wavelength limit of compressional phonons [25].

The electric field and potential for “Yukawa bubbles,”
solid Yukawa spheres, and spherical cavities in an extended
(homogeneous) medium of Yukawa particles were derived.
The potential of a Yukawa cavity can be used to confine a
homogeneous system of Yukawa simulation particles and is
part of an “annealing” routine that allows us to prescribe
a proper coupling factor � for the start configuration. The
methods for MD simulations in the collisionless and collisional
case were described in detail.

The fundamental processes remain similar for spherical
objects, as could be demonstrated by MD simulations of
collisionless systems. The large amplitude rarefactive wave
reaches the center of the sphere at τ ≈ 30–35, which is close
to the predicted transit time of a linear wave, τt = R/λ = 40.3,
in a system of N = 216 particles.

The decay time of a Yukawa ball can be defined as the 1/e

value in the decay of the total potential energy. After this time,
the particles from the outer layer perform a ballistic expansion,
which can be seen as the constant speed of the free boundary of
the density profile and agrees with the constant kinetic energy
of this group. The decay time of a large system is determined
by the speed of the particles in the outermost layer, which is
just the sound speed. Therefore, the decay time of the total
potential energy in large Yukawa balls is of the order of the
transit time of the rarefactive wave to reach the center.

In the collisional case, the early evolution of the Yukawa
ball is still governed by the blow-off of the outer layer and
the inward propagation of a rarefactive wave. For large R/λ

and in the mobility-dominated regime, the motion of a dust

particle is determined by the local electric field. This leads to a
nonlinear diffusion process that can be described by the PME
and leads to self-similar Barenblatt profiles and power-law
behavior. In this way, the collective expansion of a collisional
Yukawa system ends up in a nonlinear diffusion process.

Again, the local-field approximation gives a simple expla-
nation of the underlying physical process. It had been the key
to understanding the density profile of a Yukawa ball confined
in a potential trap [30]. Here, it governs the force balance
between frictional drag and electric repulsion between the
charged particles that drives the nonlinear diffusion process.
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APPENDIX A: THE SOUND SPEED IN A SET
OF CHARGED PLANES

We consider a system of plane sheets of surface
charge density σ at positions zj = j �z + ζj , which interact
by a shielded electric field E(zn) = (σ/2ε0)

∑
j �=n sgn(z −

zj ) exp(−|z − zj |/λ). Assuming a wavelike displacement
ζ (z) = ζ0 exp[−i(kz − ωt)] and setting κ̄ = �z/λ, the disper-
sion relation for longitudinal waves reads

ω2 = 2ω2
0κ̄

∞∑
j=1

exp(−j κ̄) sin2

(
j
k�z

2

)
. (A1)

In the long wavelength limit (k → 0), the dispersion is acoustic
ω ∝ k and the phase velocity equals the group velocity. The
sound speed then becomes

cs = ω0λ

⎛
⎝ κ̄3

2

∞∑
j=1

j 2e−j κ̄

⎞
⎠

1/2

. (A2)

It turns out that for experimental situations, which typically
have κ̄ < 2, the square-root factor is practically equal to
1 within 2% accuracy. Therefore, the group velocity is
practically vg = ω0λ.

APPENDIX B: ELECTRIC FIELD AND POTENTIAL
OF NESTED SPHERICAL SHELLS

We first consider thin spherical shells (“bubbles”) of radius
R consisting of particles with Yukawa interaction and use a
mean-field approach. The electric potential inside a single shell
of radius R and surface charge density σ is given in spherical
coordinates by


(r) = σ

2ε0

∫ π

0

R2 sin θ

s(r,θ )
exp

(
− s(r,θ )

λ

)
dθ, (B1)
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with s(r,θ ) = (R2 + r2 − 2Rr cos θ )1/2. The resulting poten-
tial and electric field are


in(r) = σ

ε0
R e−R/λ λ

r
sinh

(
r

λ

)
, (B2)

Ein(r) = σ

ε0
e−R/λ R

r

[
λ

r
sinh

(
r

λ

)
− cosh

(
r

λ

)]
. (B3)

Outside of the spherical shell the electric potential and field
are given by


out(r) = σ

ε0
R sinh

(
R

λ

)
λ

r
e−r/λ, (B4)

Eout(r) = σ

ε0
sinh

(
R

λ

)
R

r

(
λ

r
+ 1

)
e−r/λ. (B5)

For large values of R/λ, the electric field near
the spherical shell approaches the behavior of a plane
shell, E(r − R) ≈ sgn(r − R)(σ/2ε0) exp(−|r − R|/λ) [see
Eq. (7)].

The electric potential outside of a solid sphere of Yukawa
matter can then be obtained by integration over a set of nested
shells and we obtain for r � R


sph(r) = ρcλ
2

ε0

[
R

λ
cosh

(
R

λ

)
− sinh

(
R

λ

)]
λ

r
e−r/λ,

(B6)

Esph(r) = ρcλ

ε0

[
R

λ
cosh

(
R

λ

)
− sinh

(
R

λ

)]

×
(

λ2

r2
+ λ

r

)
e−r/λ, (B7)

with the initial mean charge density ρc = 3Nq/(4πR3). For
large values of R/λ the potential attains the limiting case


sph(r) ≈ 3

2

λ2

R2

Nq

4πε0r
e(r−R)/λ. (B8)

The surface potential of a Yukawa sphere is used in the
discussion of the potential energy of a test particle in the
surface layer in Sec. V.

With a similar integration over nested shells we obtain the
potential inside a spherical cavity of radius R of an infinitely
extended region of Yukawa matter, which for r � R reads


cav(r) = ρcλ
2

ε0

(
R

λ
+ 1

)
e−R/λ λ

r
sinh

(
r

λ

)
, (B9)

Ecav(r) = ρcλ

ε0

(
R

λ
+ 1

)
e−R/λ

× λ

r

[
sinh

(
r

λ

)
− λ

r
cosh

(
r

λ

)]
. (B10)

This cavity potential is a very useful result for the confine-
ment of a homogeneous distribution of Yukawa particles with
a minimum of correlation energy that can be used as the start
situation for our MD simulation (Sec. IV).
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