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Abstract

The propagation of transverse waves in a two-dimensional particle suspension in a plasma is

studied in the solid and in the liquid phase. The different states of the suspension are realized

by raising the kinetic temperature of the dust particles with a new laser method. An additional

laser beam is used to excite shear waves and the wave is observed by videomicroscopy in terms

of the individual velocities of the dust particles. For recovering the spatial wave patterns the

method of singular value decomposition is applied and compared with the method of spatial Fourier

analysis of complex wavenumbers. In the solid phase, weakly-damped waves are found which follow

the expected dispersion relation. In the liquid phase the existence of strongly-damped waves is

demonstrated. The real part of the wavenumber is in overall agreement with the predictions of

the ’Quasi Localized Charge Approximation’ model for a two-dimensional system. The damping

of the waves is discussed.
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I. INTRODUCTION

Waves in dusty plasmas reveal many inherent features of the interactions in strongly-

coupled Coulomb systems [1]. There was a particular interest in the wave phenomena

in two-dimensional (single layer) suspensions of dust particles in a plasma, which exhibit

compressional and shear modes [2–6], Mach cones [7–9] or dipole radiation from localized

sources [10], which are now well understood. The situation for the liquid phase is quite

different. An ordinary liquid supports compressional (sound) waves but transverse shear

modes can only propagate in the limit of wavelengths as short as a few molecular spacings.

Strongly-coupled dusty plasmas in the liquid phase can support shear waves, as was shown

by Kaw and Sen [11, 12] in terms of a viscoelastic model, which predicted propagating waves

with acoustic dispersion at high frequency and become purely damped at low frequencies.

Recent calculations with the quasi-localized charge approximation (QLCA) [13] show that

the shear mode is also acoustic at low frequencies. Shear waves in the liquid phase were

also studied in molecular dynamics (MD) simulations [14], which show that the waves have

a long-wavelength cut-off that is also found in analytical models [15]. A critical comparison

between the QLCA model and MD simulations was recently made by Kalman et al. [16].

On the experimental side, wave phenomena in the liquid states of the plasma suspension

with particle motion in the horizontal plane were studied by Nunomura et al. [17]. In

these experiments the thermally excited spectra of longitudinal and transverse phonons

were studied in the solid and liquid phase of the plasma suspension. The temperature was

varied by increasing the number of perturbing particles in a lower layer. The color graphs

(in the online version of the article) show that in the solid phase the shear wave dispersion is

acoustic starting at k = 0, ω = 0. In the liquid phase the high frequency part is reduced in

intensity. No long-wavelength cut-off was reported. Instead, the frequency spectrum of the

long-wavelength modes is extremely broadened. The transverse wave that was observed in

Ref. [17], and which we study in the present article, are for particle motion in the horizontal

plane where all the particles are suspended. A different kind of transverse wave in a liquid

phase was reported by Pramanik et al. [18]. These waves incorporate a vertical motion

of the particles, where the restoring force is provided by gravity and the electric field that

levitates the particles.

The present article describes new shear wave experiments for a single-layer particle sus-
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pension in the solid phase, at the melting point, and in the liquid phase. Different from the

study in Ref. [17], the waves are excited with a periodic laser force. For the recovery of the

wave signals from the particle velocities the method of singular value decomposition (SVD)

is used and compared with the spatial Fourier analysis of complex wavenumbers.

The outline of the paper is as follows: In Sec. II we describe the experimental setup

and laser heating method. Section III summarizes the spatial Fourier analysis of complex

wavenumbers. Section IV introduces the SVD method in terms of test data. The dispersion

of externally excited shear waves is studied in Sec. V for the solid phase and in Sec. VI for

the liquid state. The damping of the waves is discussed in Sec. VII. Section VIII gives a

summary and conclusions.

II. EXPERIMENTAL SETUP AND PROCEDURE

The experiments were performed in the modified GEC reference cell at The University

of Iowa [8]. A single-layer suspension consisting of spherical melamine-formaldehyde (MF)

particles with (8.09±0.18) µm diameter is formed in the sheath of a radio frequency plasma.

The discharge is operated at 13.56 MHz in room-temperature argon at 5 mtorr. Fig. 1(a)

shows a side view of the particle suspension, which is levitated above the r.f.-powered elec-

trode, together with two laser beams (B1 and B2) used for heating the plasma crystal. The

symmetrical laser beam arrangement ensures that the heating laser exerts no net force on

the suspension. The footprint of the laser beams are deflected in the x and y directions

using a pair of galvanometer mirrors to form an elongated Lissajous figure with deflection

frequencies fx = 9.0 Hz and fy = 14.5623 Hz. More details of this heating technique are

described in a companion paper [19]. The heating beams at 532 nm wavelength have equal

power and the heated stripe in the suspension is represented by the shaded part in the

camera’s field of view [Fig. 1(b)].

The shear waves are excited by a third laser beam (B3) of an argon-ion laser, which

illuminates a narrow excitation region that is aligned with the y direction and exerts a

periodic force in y direction, as shown in Fig. 1(b). The power of beam B3 is sinusoidally

modulated by means of a galvanometer mirror, which gradually blocks part of the beam.

This resulted in shear waves that propagated in ±x directions, traveling away from the

excitation region. The quality of the sine wave was ensured by monitoring the harmonics
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of the laser power, which together were −25 dB below the fundamental. The modulation

degree is 100%. The excitation-laser power (measured inside the plasma chamber) is chosen

as 0.23 W for the solid phase to minimize bond breaking, and 0.46 W for the liquid phase

for increased wave amplitude in order to improve the signal-to-noise ratio of the wave.

Because our particle suspension has a finite diameter, the shear waves excited by this

excitation laser do not have infinite wavefronts, so that they require a return oscillatory

circulatory flow at large distances. This circulatory shear flow would ideally take place

outside the field of the camera so that we could model the waves as having the properties

of infinite wavefronts in an unbounded suspension. During the course of the experiment, it

appeared that this was achieved, although there was actually a finite shear flow in the field

of view which we detected in subsequent analysis of the velocity data. This shear flow must

be taken into account when considering some of our data, as we explain later.

The camera field of view is 22.7 mm wide (x) by 17.0 mm high (y) at a resolution of 640

× 480 pixel. The camera is operated at a frame rate of 30 fps. Each experiment comprises

2400 frames. The particle positions are measured with sub-pixel resolution. The velocity of

each particle is obtained from the particle displacement in subsequent frames.

The experiments presented here consist of two series. The first series concerns wave

excitation in the solid phase of the particle suspension. The shear waves are studied for

excitation frequencies of 1 Hz, 2 Hz, · · · , 6 Hz. The suspension of particles rotated clockwise

at an angular velocity of ωrot ≈ 1 min−1, which corresponds to a much lower frequency than

any of the waves that we observe. In our data analysis, we will filter out this rotational

motion, as discussed later.

From the mean-square velocities of the particle motion in x and y direction the temper-

atures Tx and Ty are computed as a function of the y position. Figure 2 (a) shows that

the temperature profile is fairly homogeneous in the central part 3.6 mm < y < 12.0 mm.

Therefore the region between the dashed lines is used for evaluating the shear waves. On

the other hand, we find that Tx > Ty. This anisotropy can be attributed to the application

of the laser forces in x direction and the subsequent collisonal scattering of the particle

momentum into the perpendicular y direction. The particle motion is continuously cooled

by dust-neutral friction, which results in the lower value of Ty.

The dust temperature increases with the applied heating-laser power (Fig. 2 (b)). This

graph is used to interpolate the dust temperature at the heating-laser power of 1.9 W. From
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the dust temperatures the coupling coefficients Γx,y = (Zde)
2/(4πε0akTx,y) are calculated.

The coupling coefficient is the ratio of the potential energy of a dust particle to its typical

kinetic energy. Matter is said to be strongly coupled when Γ > 1. For the unit length a

we use the Wigner-Seitz radius defined as in Ref. [16]. We computed its value from the

lattice constant b = 615 µm of the crystal, which we measured for zero laser heating power

as the radius of the first peak of the pair correlation function. This was done using the

relationship a = 31/4(2π)−1/2b for a perfect triangular 2D lattice. We use the Wigner-Seitz

radius in defining the coupling coefficient Γx,y, the shielding factor κ = a/λD, and the 2D

dust plasma frequency ω
(2D)
pd , where the latter is defined as in Ref. [16]. We note that some

authors define the coupling coefficient differently, using the mean interparticle distance as the

unit length [11, 12]. Using values of the dust charge number Zd = −12800 and the screening

length λ, both computed from measurements of the propagation velocity of compressional

and shear wave pulses [9], we find κ = 0.43, ω
(2D)
pd = 72.6 s−1, and the values of the coupling

constant reported in Fig. 2.

III. SPATIAL FOURIER ANALYSIS OF COMPLEX WAVENUMBERS

The method used earlier [5] for recovering amplitude and phase of an externally excited

sinusoidal wave from the velocity fluctuations vy(x, t) begins with projecting the time series

on a sine and cosine function at the well-defined exciter frequency ωex. For a shear wave

that propagates in the x direction this is done by estimating the discrete Fourier transform

as vy(x) ≈ ∑N
i=0 vy(x, t)[cos(ωext) + i sin(ωext], N being the number of samples [20]. In

this way the amplitude |vy(x)| and phase ϕ(x) = arctan{Im[vy(x)]/Re[vy(x)]} of the wave

are recovered as a function of position. The spatial evolution of the phase gives the real

part kr = dϕ(x)/dx of the wavenumber and the logarithmic decay of the amplitude gives

the imaginary part ki = d ln(|vy(x)|)/dx. An example for this technique is given below in

Fig. 6. In the following, we will refer to this method as ’spatial Fourier analysis of complex

wavenumbers’ (SFACW). We will use both the SFACW and the SVD analysis described in

the next Section to measure kr and ki; by repeating these measurements as a function of

the exciter frequency we will produce the dispersion relation.
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IV. SVD ANALYSIS

Singular value decomposition (SVD) (also known as bi-orthogonal decomposition) is a

suitable tool to extract wave phenomena in plasmas from spatio-temporal data [21, 22]. The

method was mostly used by the plasma fusion community (see examples in Ref. [22] and

more recently Refs. [23, 24]). It was also used to detect irregularities in the solar cycle [25].

Very recently, it was applied in dusty plasmas to detect the driving modes in the melting

process of a plasma crystal [26].

The method uses a set of spatio-temporal data of any fluctuating quantity, for example

density, temperature, light emission or particle velocities, y(xj, ti) at positions xj, j =

1 . . . M , sampled at times ti, i = 1 . . . N . This data set is arranged into a N ×M matrix Y ,

in which the columns are the time series Yij = y(xj, ti). It is assumed that N > M . The

singular value decomposition transforms the matrix Y into the product

Y = CWT T , (1)

in which C is an N ×M column-orthogonal matrix, W is an M ×M diagonal matrix and

T is an M × M orthogonal matrix. The column vectors of C are called chronos and the

column vectors of T are called topos. The diagonal of the matrix W contains positive weight

factors in decreasing order. In this way the original spatio-temporal data set can be written

as

y(xj, ti) =
M∑

k=1

wk Tk(xj) Ck(ti) (2)

The physical meaning of this decomposition is that the leading members of this sum give

an approximative representation of the original spatio-temporal data. The square of the

weight factor w2
k is called signal energy of the mode k. Different from a Fourier analysis, the

SVD eigenfunctions are in general no Fourier modes but pertinent features of the measured

signals. When the spatio-temporal signal contains travelling waves the weight spectrum

contains pairs of equal weight factors [21, 27]. In the special case of a harmonic wave

y(x, t) = y0 cos(kx − ωt), the pair of chronos and topos associated with this mode become

Fourier modes.

As an example for the recovery of wave signals by the SVD technique and to introduce

the typical representation of the SVD analysis we have analyzed the following surrogate
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signal

y(x, t) = y1 cos(k1x− ω1t) + y2 cos(k2x− ω2t)

+ y3 cos(k3x− ω3t) + y4 gauss(t) , (3)

which consists of three waves with different amplitudes y1 = 1, y2 = 0.1, y3 = 0.01 that

span two decades and with incommensurate frequencies ω1 = 5, ω2 = 7, ω3 = 13. The wave

numbers of these three waves are chosen as k1 = 5/3, k2 = 7/3, k3 = 13/3 to mimic acoustic

dispersion with a constant phase velocity. The waves are embedded in Gaussian noise with

a standard deviation y4 = 2y3, which exceeds the amplitude of the weakest wave.

In Fig. 3 the decomposition into chronos and topos and the distribution of weights are

compiled. The three waves of the original signal are now represented by the first six SVD

modes (c1t1− c6t6). These modes form pairs of sine and cosine-like functions. A pair of such

functions is necessary to describe the proper amplitude and phase of the original wave. The

wave with amplitude y1 is now represented by the pair c1t1 and c2t2. The SVD modes c7t7

and c8t8 and higher modes appear as noise. Note that the weakest wave mode, represented

by c5t5 and c6t6, can be clearly recovered although its amplitude is weaker than the standard

deviation of the gaussian noise. In this sense SVD can be used to separate coherent and

stochastic aspects of a signal.

In Table 1 the weight factors of the first ten modes and their percent fraction of total signal

energy are compiled. The first two modes represent already 99.1% of the signal energy. The

successful recovery of the weakest wave mode from the noise background becomes evident

from comparing the weights of modes 5/6 with any of the individual higher modes (7-256).

The power fraction of noise in the original signal was 0.04%. Hence these higher modes,

which comprise 0.078% of the total signal energy, contain both noise and residues from the

orthogonalisation of the low order modes.

We have performed additional tests to simulate the experimental situation with damped

shear waves excited by a line source. For negligible damping we find a pair of SVD modes

with equal weights, when a pair of waves emanates symmetrically but with opposing phase

velocity from the central source region. The situation changes slightly, when the waves are

damped. Then the leading two SVD modes show different weights and the ratio of the

weights, w2/w1, decreases monotonically from 1 to 0.49 when the imaginary part of the

wavenumer ki is increased from 0 to 80% of the real wavenumber. The tests show further
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that this asymmetry has practically no influence on the recovery of the wavenumber and

damping, which were found within < 3% of their exact values.

V. SHEAR WAVES IN THE SOLID PHASE

The excitation laser exerts a periodic shear force to the crystal in the y-direction that

is localized to a narrow stripe in the center of the field of view. While the particle motion

in the wave is in y direction, the shear waves propagate in the ±x directions. Because our

method of exciting waves is steady in time, the frequency ω is real, whereas the wavenumber

k is complex corresponding to the damping of a wave that propagates away from the spatial

region where it is excited.

For recovering the shear wave, the velocities of all particles are determined for 2048

subsequent video frames. Since we are interested in the velocity field vy(x, t) in each frame,

the x-axis is divided into 256 bins and the particle velocities are assigned to the bins using

linear interpolation according to the cloud-in-cell technique [28]. In this way the original

movies at excitation frequency ω are converted to matrices Y (ω) with 2048 rows and 256

columns.

To prepare for the SVD analysis, we first perform a bandpass filtering on the time series.

This serves two purposes: it eliminates the effect of crystal rotation, which is not interesting

for the purposes of studying the wave, and it suppresses broadband noise associated with

the thermal motion of the particles. This filter has 0.058 Hz total width and the central

component is chosen closest to ω. The filtered matrices are then analyzed by the SVD-

algorithm [20].

The leading pairs of topos resulting from the SVD analysis are compiled in Fig. 4 for

the frequencies f = 1 − 6 Hz. Because the bandpass filtering uses three FFT components,

the SVD analysis yields exactly six non-zero modes. The weights of the SVD modes are

compiled in Table II (see Appendix). The nearly same weight factors in the first pair of

modes indicate a propagating wave. The small difference of the weights can be attributed

to the damping of the wave, as described above. The amplitude of the leading pair of

modes decreases with excitation frequency. The signal energy of the leading pair of modes

is 93.5% at 1 Hz and decreases to 81.5% at 6 Hz. This high fraction of signal energy justifies

using only the leading pair of SVD modes for the further analysis. Because of the bandpass
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filtering the chronos of the leading pair of modes are practically sinusoidal and therefore are

not displayed here.

The topos 1 and 2 in Fig. 4 are approximated by a model function that describes spatially

damped sinusoidal waves of the type

f(x) = A sin(kr|x− x0|+ δ) exp(−ki|x− x0|) (4)

The center point x0 of the wave excitation region is prescribed and a four-parameter least-

squares fit is used to determine the amplitude A, the real part of the wave number kr, the

phase shift δ and the damping rate ki. Plotting the fit parameter kr versus the independent

parameter ω for the laser excitation frequency yields a dispersion relation.

The measured wave dispersion is shown in Fig. 5. The circles and crosses represent the

results from topos 1 and 2. For comparison we have applied the SFACW method described

above to the unfiltered data. The result of this method is shown as squares. There is a close

agreement with the wavenumbers determined by the SVD technique described above. This

shows that the SVD analysis automatically finds the proper frequency of the wave within

the bandwidth of the bandpass filter. Contrariwise, for the SFACW method, the frequency

must be prescribed.

At last, the dispersion of the shear wave (Fig. 5) is found to agree with theory for

a triangular lattice of particles interacting with a Yukawa potential [29]. There are two

theoretical curves describing wave propagation along the two principal axes of a triangular

lattice (0◦ and 90◦). The experimental data are a mixture of both principal modes because of

the angular averaging due to the slow crystal rotation and bearing in mind that the plasma

crystal consists of domains with different orientations.

VI. SHEAR WAVES IN THE LIQUID STATE

For studying shear waves at reduced values of the coupling parameter the suspension

is heated by the two heating beams. At 2.3 W a liquid state with (Γx = 128, Γy = 158)

is obtained. In performing the experiments, care is taken that the laser forces are exactly

balanced and that the areas covered by the two Lissajous figures match exactly. Any small

imbalance would have introduced an unwanted net flow of particles in x-direction. In order

to use only the region of homogeneous dust kinetic temperature, only particle positions
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102 ≤ y ≤ 338 pixels are used. Since the shear waves become now strongly damped, only

the central section of the image frame 200 ≤ x ≤ 440 pixels is evaluated. For improving the

statistics this x-interval is subdivided into 64 bins and the length of the time series is 2048

frames. Again, the assignment of the particle velocities to the bins vy(xj, ti) is performed

by interpolation with the cloud-in-cell formula.

The situation for recovering the waves in the presence of the enhanced random motion

of the liquid state can be quantitatively described in terms of the power spectrum of the

velocity fluctuations P (f), which consists of a broad continuum on which the excited wave

is superimposed with a sharp frequency peak as shown in Fig. 6(a) for the case of fex = 3 Hz

exciter frequency. The total kinetic energy of the wave motion, as represented by the three

FFT components marked by circles, is only 2.3% of the total kinetic energy. This corresponds

to a signal to noise ratio of -16.5 dB. On the other hand, the intensity of the sharp peak in

the spectrum is about 10 dB above the neighboring continuum.

In a first step we have recovered the wave by the SFACW method, which uses the fre-

quency of the highest peak in the power spectrum. The resulting spatial distribution of the

Fourier amplitudes |vy(x)| are shown in Fig. 6(b) together with fit functions according to

Eq. (4). This example shows that a damped wave emanates from the excited region to both

sides. The wave number kr and damping rate ki are determined from the linear fits to the

phase evolution and to the logarithmic decrement as shown in Fig. 6(c,d).

The SVD analysis follows the approach used in the case of the solid phase. Obviously, the

low signal-to-noise ratio requires bandpass filtering of the velocity data. For this purpose,

only the three components of the FFT in Fig. 6(a) that exceed the background of random

fluctuations are used to provide a good signal-to-noise ratio. For comparison with the solid

phase the first pair of topos of the SVD analysis is shown in Fig. 7 for excitation frequencies

f = 1 − 6 Hz . The measured wave signals are fitted by the function in Eq. 4. Now the

shape of the topos is slightly different with respect to oscillatory structures, which are more

pronounced in topos 2 while the topos 1 show less modulation. For 1 Hz and 2 Hz, a

single hump is seen in topo 2, which can be identified as representing half a wavelength of

a strongly-damped wave. For f = 3 − 6 Hz the wavelength becomes shorter and further

maxima and minima appear. The shapes of the topos 2 have a close similarity with the

signals recovered by the SFACW method as shown in Fig. 6(b).

The distribution of the weight factors of the 6 SVD modes and the fraction of signal
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energy of the first two modes are compiled in Table III (see Appendix). First, we see that

the wave amplitude has practically doubled according to the power increase of the excitation

laser from 0.23 W to 0.46 W. Second, we find again that the signal amplitude decreases with

excitation frequency. Different from the solid phase, the first two modes for excitation

frequencies f = 1− 6 Hz now have unequal weights that differ by a typical factor of 2. This

observation can be explained by the damping of the wave, as described in Sec. IV.

We have also tried to study the shear waves in the solid phase at conditions close to the

expected melting point. For this purpose the heating-laser power was set to 1.9 W, which

resulted in a state with Γx = 194, Γy = 266 when the excitation laser was turned off. The

SFACW shows that the signals have very similar shapes as those in the liquid case. The

damping rate is found much stronger than in the solid when no heating is applied. The

SVD analysis also shows close similarities with the shape of the topos in Fig. 7 concerning

the different degree of modulation in topos 1 and 2. Again the ratio of the weights in the

leading mode pair are asymmetric by the same factor as in the liquid case.

All these findings at 1.9 W heating-laser power give a hint that the system was already in

a liquid state. An analysis of the time averaged velocities v̄y(x) shows that at 1.9 W heating-

laser power the maximum flow velocity in the excitation region is practically the same as

in the liquid state at 2.3 W. Hence, the similarity with the liquid case can be attributed to

shear induced melting by the excitation laser.

A. Comparison with theory

The observed wavenumbers in the melting and liquid state are similar to the case of the

solid phase. This is an additional hint that the observed waves are the shear waves we were

searching for. In the following we compare the measured dispersion with the 2D QLCA

model [16].

The experimental points in Fig. 8(a) represent the evaluation by SFACW. For comparison

the results for 1.9 W (plus with circle) and 2.3 W (crosses) are shown. The 2D QLCA model

is plotted for κ = 0 and κ = 1, which represent a lower and an upper bound for the experi-

mental situation with κ = 0.43. Because the comparison is made in absolute quantities, the

overall agreement between experiment and 2D QLCA model is quite satisfying. Closer in-

spection shows that the two different values of dust temperature allow no conclusions about
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a trend for the dependence on Γ.

The results from the SVD analysis are compiled in Fig. 8(b). The heating-laser powers

of 1.9 W (circles) and 2.3 W (squares) are compared. Open and filled symbols represent

the evaluation of topos 1 and 2. The results from the SVD analysis are very similar to

the SFACW method although the scatter of the data points is larger. There is a gen-

eral agreement with the QLCA model but the same tendency of deviation towards smaller

wavenumbers is found for the highest frequencies as observed above in the SFACW method.

The error bar for the wavenumber was estimated as follows. For the SFACW method,

the error bar comprises the uncertainty of the slope of the best fit by a straight line in

Fig. 6(c) as well as the influence of the choice of frequency used for the projection on Fourier

modes. The latter was varied within a range of ±1% about the most probable value. The

two sources of error have same magnitude.

For the nonlinear fits by Eq. (4), first the optimum fit was determined, which yielded the

most probable value for kr,opt. In a second step, the fit was repeated for given values of kr

in the range 0.5kr,opt < kr < 2kr,opt. The other parameters (A, δ, ki) were left as free fit

parameters. For each of these fits the correlation coefficient was calculated. The error bar

was estimated from the point where the correlation has dropped to 90% of its maximum

value. This was the same degree of decorrelation as found when the slope m of the straight

line in the SFACW method was set to m± σm.

VII. DAMPING OF THE WAVES

In this Section we compare the observed damping rates of the shear waves with theoretical

expectations (Fig. 9). In the solid phase the damping is caused by dust neutral collisions,

which were incorporated in the dispersion relation for the elastic response of a triangular

lattice with a binary Yukawa potential [29]. The observed damping for propagation in the

0◦ direction (crosses), however, is stronger than the theoretical prediction (full line). This

feature was checked by comparing the SVD result with the SFACW method, which gave

identical damping constants. Hence, the disagreement with the theoretical damping is not

a flaw of the SVD analysis. Higher damping rates are found in theory for the 90◦ direction

(dotted line), which strongly increases when the group velocity becomes small for frequencies

of about 3.5 Hz (see Fig. 5). Part of the difference between experiment and theory might
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be explained by the fact that the crystal rotation leads to a time average over different

orientation angles. However, the fact that the wavenumbers in Fig. 5 coincide with the 0◦

dispersion does not suggest an influence from the enhanced damping of the 90◦ direction.

For the liquid state and close to the melting point, the damping is significantly increased

above its value in the solid phase. The results of the Fourier method and the SVD analysis

give very similar results for the damping. Again, there is no clear trend that distinguishes

the results at 1.9 W and 2.3 W.

We can make a rough estimate of the damping rate that is expected for the fluid phase as

follows. For the case of weak damping, ki ≈ Im(ω)/vph, where vph is the phase velocity for

the real part of the dispersion relation. We conjecture that for a 2D liquid Im(ω) ≈ 1/(2τR)

as was reported previously for a 3D liquid [11, 14], where τr is a relaxation time associated

with the viscoelastic response of the liquid. We further conjecture that τR for a 2D liquid can

be estimated using the 3D theoretical result τR = (0.13 ω
(3D)
pd )−1 [11, 14] by simply replacing

ω
(3D)
pd with the 2D plasma frequency ω

(2D)
pd for our suspension. In this way, we obtain an

estimate kia/π = 0.13 for our experiment, which is shown as a dashed line in Fig. 9. A more

reliable theoretical estimate could be made based on a GH (Generalized Hydrodynamic)

model for a two-dimensional Yukawa liquid, but such a theory is lacking in the literature.

VIII. SUMMARY AND CONCLUSIONS

We have demonstrated that shear waves in the liquid state of a two-dimensional particle

suspension in a plasma can be excited with laser forcing. The dispersion and damping of

these waves are compared with the solid phase, where the shear wave is weakly damped and

can be observed with a high signal-to-noise ratio. In the liquid phase, the signal-to-noise

ratio is much lower because of the higher random motion of the particles. We find a spatially

oscillatory wave pattern for exciter frequencies f = 3 − 6 Hz. These waves are moderately

damped with ki ≤ kr. For smaller frequencies (f = 1 Hz and f = 2 Hz), corresponding to

longer wavelengths, the wave is found to be strongly damped (ki > kr).

The SVD analysis of particle velocities turns out to be a reliable tool for extracting wave

phenomena in the solid phase of the particle suspension. Propagating waves in the solid

phase can be identified as a pair of topos with similar weights, which make up 81.5%−93.5%

of the signal energy and can thus be considered as representative for the wave. The dispersion
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derived from SVD analysis is in close agreement with the SFACW technique. The difference

of the two methods is the prescribed wave frequency in the SFACW technique whereas

the SVD automatically selects the most probable wave frequency within the width of the

bandpass filter.

The performance of the SVD method for the strongly damped waves in the liquid phase

was compared with the SFACW method. We find that SVD that uses all three FFT compo-

nents that exceed the neighboring continuum limit gives similar results for the wavenumber

and damping rate as the SFACW method, but results in a larger scatter of the data.

The behavior of the shear wave close to the melting point and in the liquid phase is

quite similar in dispersion and in the response amplitudes. This unexpected result can

be explained by the observation that at 1.9 W heating-laser power the excitation laser is

sufficiently strong to break bonds and to establish a mean flow. Unfortunately, this effect

was not visible on the video monitor during the experiments but only turned out in the data

analysis. Hence, the waves observed at 1.9 W heating power also propagate in a local liquid

state, which arises from shear-induced melting.

The comparison with the 2D QLCA model [16] is made with absolute wavenumbers and

gives an overall agreement with the predicted dispersion. This confirms that the excited

waves are really the expected shear modes in a liquid. The estimated error bar at 3 Hz

includes the κ = 0 curve. The error bars, however, increase with frequency because of the

reduced signal-to-noise ratio.

The observed damping of the shear wave in the liquid phase is much larger than the

damping of shear waves in the solid phase. An estimate based on the relaxation time for

the viscoelastic response of the liquid supports this observed trend.

In summary, we have presented a first comprehensive comparison of theory and exper-

iment for laser-excited shear waves in the solid and liquid phase of single-layer particle

suspensions.
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APPENDIX: WEIGHT FACTORS AND SIGNAL ENERGY

The following Tables give the weight factors of all six SVD modes for the solid and liquid

phase. The top row of this table indicates the wave frequency applied by the laser excitation.

The bottom row is the percentage of the signal energy contained in the first pair of modes;

note that most of the signal energy is in the first pair of modes.
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FIG. 1: (a) Side view of the single-layer particle suspension. Two laser beams (B1,B2) are used

for heating by exerting a quasi-random force. The waves are observed with a CCD camera. (b)

Top view. The waves are excited with a sinusoidally modulated Ar+ laser beam (B3). The shear

waves propagate in the ±x directions. The camera field of view and the heated stripe are marked.

The excitation region for shear waves is shown as the thick black line along the y-axis.

FIG. 2: (a) Dust temperature profiles Tx(y) and Ty(y) across the laser heated stripe at 1.9 W

heating power. The central part between 3.6 mm and 12 mm is homogeneous within ±10%. (b)

Increase of the dust temperatures with laser power. The dust temperature Tx is larger than Ty.

The graph also includes the resulting values of Γx,y. Note that at 1.9 W the system is close to

melting (Γ ≈ 200).

FIG. 3: SVD analysis of surrogate data representing three independent waves embedded in noise.

The pairs of weights (bottom panel) are an indicator for propagating waves. The relative amplitudes

of the three waves are quantitatively recovered. Chronos and topos 1, 3, 5, 7 are displayed as full

lines, modes 2, 4, 6, 8 as dashed lines.

FIG. 4: The leading pair of topos 1 and 2 from the SVD analysis of shear waves in the solid phase

excited at frequencies f = 1− 6 Hz (symbols). The fit functions according to Eq. (4) are shown as

lines. The horizontal axis gives the position in bins (1bin = 0.086 mm). The topos are normalized

to unity.
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FIG. 5: Dispersion relation of shear waves in the solid phase. The measured wavenumbers from

topo 1 (circles) and topo 2 (crosses) are compared with the results of the SFACW method (filled

squares). For comparison the dispersion curves for shear waves in a triangular lattice at propation

angles 0◦ and 90◦ are shown.

FIG. 6: (a) Power spectral density P (f) of the velocity fluctuations in the observed region of wave

propagation at 2.3 W heating power and 3 Hz exciter frequency. The excited shear wave has three

FFT components (circles) that exceed the broadband noise. (b) Real and imaginary part of the

wave functions recovered by the SFACW method and fit by Eq. (4). (c) The phase evolution of the

signal propagating to the right. The slope of the fitted straight line gives kr. (d) The logarithmic

decrease of the amplitude. The slope of the fitted straight line gives ki. The horizontal axis in

(b-d) gives the position in bins (1 bin = 0.13 mm).

FIG. 7: The first pair of topos from the SVD analysis of shear waves in the liquid phase (2.3 W

heating-laser power) excited at frequencies f = 1− 6 Hz (symbols). The horizontal axis gives the

position in bins (1 bin = 0.13 mm). The topos are normalized to unity.

FIG. 8: (a) Comparison of the results from the SFACW method with the 2D QLCA model [16]

for two different values of κ. (b) Comparison of the SVD results with the 2D QLCA model. The

symbols are defined in the insets.

FIG. 9: Damping rate of the shear wave in the solid phase (0W) and in the liquid phase. The

results from the SFACW method and topo 2 of the SVD are compared. The expected damping

of the shear wave in the solid phase by dust-neutral collisions [29] is shown as solid line (0◦) and

dotted line (90◦). An estimate of the damping rate expected for the fluid phase, as explained in

the text, is shown as a dashed line. The symbols are defined in the inset.
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TABLE I: Weight factors and signal energies of the SVD modes in Fig. 3.

mode number weight

factor

signal energy

1 264.4 53.3%

2 245.3 45.8%

3 22.58 0.38%

4 23.90 0.43%

5 2.710 0.0055%

6 2.614 0.0052%

7 0.938

8 0.935

9 0.928

10 0.919

11-256 0.078%

TABLE II: Weight factors in the solid phase (no laser heating) and fraction of signal energy of the

first 2 modes.

mode 1Hz 2Hz 3Hz 4Hz 5Hz 6Hz

1 144.8 104.9 95.4 67.7 57.5 62.7

2 127.2 82.9 87.2 47.0 39.0 55.7

3 31.7 28.7 30.9 23.7 15.8 27.1

4 26.4 24.2 25.5 22.5 13.5 24.4

5 23.1 15.4 13.5 18.1 12.2 12.7

6 19.1 12.6 12.3 11.4 10.0 10.2

fraction 93.5% 90.8% 89.7% 81.8% 87.6% 81.5%
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TABLE III: Weight factors at 2.3 W heating-laser power and fraction of signal energy of the first

2 modes.

mode 1Hz 2Hz 3 Hz 4 Hz 5 Hz 6 Hz

1 267.8 156.7 166.4 104.4 88.9 69.8

2 138.3 75.9 60.4 50.3 41.3 34.5

3 36.4 38.1 28.1 27.9 23.1 20.6

4 32.0 33.0 25.0 23.3 22.3 16.6

5 26.7 31.4 21.9 19.4 17.7 16.1

6 23.4 29.1 20.4 17.6 14.6 13.0

fraction 96.2% 87.4% 88.2% 87.0% 86.0% 84.3%
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