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Effect of strong coupling on the dust acoustic instability
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In a plasma containing charged dust grains, the dust acoustic instability (DAI) can be driven by ions streaming
through the dust with speed less than the ion thermal speed. When the dust is strongly coupled in the liquid
phase, the dispersion relation of the dust acoustic modes changes in a way that leads to an enhancement of the
growth rate of the DAI. In this paper, we show how strong coupling enhances the DAI growth rate and consider
application to microgravity experiments where subthermal ion flows are in general possible.
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I. INTRODUCTION

Dusty plasmas are plasmas containing small (micron to
submicron) sized dust grains that become electrically charged
in the plasma owing to various processes including the
collection of plasma electrons and ions. In low-temperature
laboratory or microgravity experiments the dust is negatively
charged because of the higher mobility of the electrons.
In these environments the ensemble of grains can often be
strongly coupled, which means the electrostatic interaction
energy between neighboring grains is much larger than the
thermal (kinetic) energy of the grains. Such systems are usually
modeled as Yukawa systems, that is, a system of charged par-
ticles interacting via a screened Coulomb interaction, with the
screening provided by the background plasma. The parameters
that generally characterize the strength of the electrostatic
coupling between dust grains are the bare Coulomb coupling
parameter � = Z2

de
2/aTd and the screening parameter κ =

a/λD . Here Zd is the dust charge state, Td is the thermal
(kinetic) energy of the dust particles, a is the Wigner-Seitz
radius, which is related to the dust number density nd by
a3 = 3/4πnd for a three-dimensional (3D) system, and λD

is the plasma screening length. When the effective screened
Coulomb (Yukawa) coupling parameter, roughly �d = �e−κ ,
is �1 but smaller than that required for crystallization, the
system is in the strongly coupled liquid phase.

A number of theoretical studies have shown how strong
coupling affects the dispersion relation of dust acoustic waves
(DAWs) [1] in dusty plasmas in the liquid phase (see reviews
in, e.g., Refs. [2–5] and references therein). Strong coupling
affects the DAWs via a reduction of the phase speed and
maximum frequency relative to the value they would have
with the same density, charge and mass in the weak coupling
approximation, and the onset of negative dispersion (i.e.,
∂ω/∂k < 0) at shorter wavelengths [6,7]. Here we consider
the effect of strong coupling on the dust acoustic instability

(DAI) in a 3D dusty plasma. In the scenario considered here,
the DAI is driven by ions streaming through the dust with speed
less than the ion thermal speed [8]. We extend our preliminary
analysis of the effect of strong coupling on this instability
[9] by including dust collisional effects, and by considering
application to microgravity experiments where dust wave
activity has been reported (e.g., Refs. [10–12]) and where
subthermal ion flows are in general possible. (The effect of
strong coupling on an ion-dust streaming instability when the
ions are treated in the fluid approximation was considered to
some extent in Refs. [13–15].) Section II outlines the analysis,
which uses the quasilocalized charge approximation (QLCA)
[16]. Section III compares our results with experimental
observations of DAWs in microgravity experiments that may
have subthermal ion flows. Section IV gives a brief summary
and discussion.

II. ANALYSIS

The negatively charged dust grains will be assumed to
interact via a Yukawa interaction, with the screening provided
by the background plasma. The plasma is charge neutral, with
the equilibrium charge neutrality condition

ne + Zdnd = ni, (1)

where nj and Zj are the number density and charge state of
particle species j , with the subscripts e, i, and d denoting
electrons, ions, and dust, respectively. We use the QLCA (for
details, see Refs. [16,17]) to treat the effects of strong coupling
on the DAI, assuming the dust grains are in the strongly
coupled liquid phase. The QLCA is based on the premise that
the quasilocalization of the strongly coupled particles governs
the formation of the collective modes. In this approach, the
dispersion of the longitudinal modes in the strongly coupled
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dusty plasma is described by [6,7]

εL(k,ω) = 1 +
∑

j

αj = 0, (2)

where αj are the susceptibilities of the charged particles.
In our model plasma, the ions and electrons are assumed

to flow with subthermal speeds relative to the dust due to
an external electric field. Taking into account collisions,
using a number conserving Krook collision operator, and
assuming one-dimensional propagation along the direction
of ion streaming, the susceptibility of the weakly coupled
electrons and ions would be given in standard plasma theory
by [18–20]

αj = 1

k2λ2
Dj

[1 + ζjZ(ζj )]

[1 + (iνj /
√

2kvj )Z(ζj )]
, (3)

where

ζj = ω ∓ kV0j + iνj√
2kvj

,

where the upper (lower) sign refers to ions (electrons). Here
the Debye length λDj = (Tj/4πnjZ

2
j e

2)1/2 where Tj is the
temperature, vj = (Tj/mj )1/2 is the thermal speed with mj

being the mass, νj is the collision frequency, V0j is a streaming
velocity, and Z(ζ ) is the plasma dispersion function [21].
The phase speed of a DAW is generally orders of magnitude
smaller than the ion thermal speed in laboratory dusty plasmas.
We consider the kinetic limit ζj � 1, which also implies
that the mean free path for electron and ion collisions is
much larger than the wavelength of the DAW. Expanding the
plasma dispersion function in (3) and neglecting collisional
corrections, we have simply for the electrons and ions,

αj ≈ 1

k2λ2
Dj

[
1 + i

√
π

2

ω ∓ kV0j

kvj

]
. (4)

In (4), the real, static response is responsible for the screening
of the dust grains, and will be absorbed into the dust
susceptibility in order to model dust interacting via a Yukawa
interaction. The imaginary part of (4) includes the subthermal
streaming that can drive wave growth.

We assume that the dust, which interacts via a Yukawa in-
teraction, is cold and stationary, and that the dust susceptibility
can be modeled as a Drude model with strong coupling (see,
e.g. [6,7],). Then the dispersion relation (2) can be written as

1 + i
∑
j=e,i

λ2
D

λ2
Dj

√
π

2

(ω ∓ kV0j )(
1 + k2λ2

D

)
kvj

− �2
L0

ω(ω + iνd ) − DL(k)
≈ 0. (5)

Here �L0 is the longitudinal DAW frequency in the weakly
coupled phase, �L0 = kλDωpd/(1 + k2λ2

D)1/2, where ωpd =
(4πZ2

dnd/md )1/2 is the dust plasma frequency, md is the
dust mass, and λD = (λ−2

Di + λ−2
De)−1/2. In addition, νd is

the dust collision frequency, and the upper (lower) sign
in the summation term in (5) refers to ions (electrons). The
effect of strong coupling appears in the Drude model for the
dust via DL(k), the longitudinal projection of a dynamical

matrix, akin to that in the harmonic theory of lattice phonons
[3]. It is given by [3,7]

DL(k) = −kμkν

k2

nd

md

∫
d3r[∂μ∂νφ(r)](eik·r − 1)h(r),

where φ(r) = (Z2
de

2/r)e−r/λD is the Yukawa potential and
h(r) is the equilibrium pair correlation function. (Explicit
expressions for DL(k) for a Yukawa potential are given in
Refs. [3,7].) Because it is proportional to the correlation energy
of the strongly coupled particles for small k, the function DL(k)
is <0. We will use a local field function DL(k) for arbitrary
k, which is computed numerically as a functional of the
equilibrium pair correlation functions obtained from molecular
dynamics simulations for a given combination of � and κ . The
neglect of dust thermal effects in (5) is justifiable since � � 1
in the strongly coupled phase. While thermal effects can affect
wave dispersion in the liquid phase (see Refs. [22,23]), these
effects are more important in the Vlasov (weakly coupled)
phase where thermal effects can lead to an increase in the
DAW frequency at larger k as well as dust Landau damping.
We will neglect thermal effects for simplicity, in order to focus
on how strong coupling affects the DAI.

In the following section, we will numerically solve (5). Here
we show the form of the solution for νd = 0. We assume that
Te � Ti , as is generally the case in laboratory dusty plasmas,
so that the linearized Debye length λD ≈ λDi . In addition, we
consider that the instability is driven by ion streaming, with
V0i/vi � V0e/ve. The latter condition often holds in laboratory
dusty plasmas where the streaming is due to an electric field
(ions and electrons stream in opposite directions) and the
stream speed is given by balancing the electrostatic force with
the drag force due to collisions with neutrals. Taking V0i �
ω/k and ω = ωr + iγ , where |γ | � ωr , the real and imagi-
nary parts of the frequency are obtained as (see also Ref. [24])

ω2
r

ω2
pd

≈ k2λ2
D

1 + k2λ2
D

+ DL(k,�,κ)

ω2
pd

, (6a)

γ

ωpd

≈
√

π

8

k2λ2
D(

1 + k2λ2
D

)2

V0i

vi

ωpd

ωr

. (6b)

From (6), noting that DL < 0, we see that strong coupling leads
to a decrease in the dimensionless real frequency ωr/ωpd ,
which suggests that the growth rate, which is inversely
proportional to ωr/ωpd , increases as compared with the case
when the dust is weakly coupled. [Note that for constant Zd

and nd (i.e., ωpd ), an increase in coupling corresponds to a
decrease in the dust thermal energy.] The physical reason the
growth rate increases may be that, as the frequency of the
dust acoustic wave decreases due to strong coupling, a larger
portion of the ion velocity distribution could participate in
inverse ion Landau damping, which drives this instability. We
should also point out that (6) was obtained assuming the dust
is cold: if dust thermal effects were included, the growth rate
could be reduced due to dust Landau damping effects.

III. NUMERICAL RESULTS

First we illustrate how strong coupling can increase the
growth rate of the DAI, neglecting dust collisional effects.
Figure 1 shows the real and imaginary parts of the frequency
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(a)

(b)

FIG. 1. (Color online) (a) Real frequency ωr and (b) growth rate
γ normalized to ωpd versus kλDi obtained by solving (5). Parameters
are νd = 0, Te/Ti = 100, ni/ne = 2, V0i/vi = 0.2, V0e/ve = 0, and
ωpd/ωpi = 1 × 10−4. With strong coupling, � = 725, κ = 3 (ma-
genta, dashed curves), � = 300, κ = 2 (red, solid curves), and the
weakly coupled fluid case, obtained by setting DL(k) = 0 (black,
dot-dash curves).

obtained by solving (5) for the following parameters: νd =
0, V0i/vi = 0.2, V0e/ve = 0, Te/Ti = 100, ni/ne = 2 and
ωpd/ωpi = 1 × 10−4. The solid and dashed curves show
results with strong coupling. For comparison, the dot-dashed
curve shows the behavior obtained by setting DL(k) = 0,
which we refer to as the weakly coupled fluid case, appropriate
for cold, weakly coupled dust.

Next we include dust collisional effects in an effort to
consider possible application of our results to microgravity
experiments where dust waves have been observed (e.g.,
Refs. [10,12]). In microgravity experiments, subthermal ion
flows are in general possible. Though the waves observed may
be nonlinear, linear theory should give conditions for the onset
of self-excited waves [11]. The motivation here is to see if the
inclusion of strong coupling effects would predict a DAI even
when it would be quenched by dust collisional damping in a
weakly coupled fluid model.

First we consider the microgravity experiments reported
by Arp et al. [10]. The following set of parameters may be
roughly representative of those given in relation to Fig. 3
in Arp et al. [10] : argon pressure P ∼ 15 Pa, density of
argon ions ni ∼ 2 × 108 cm−3, Te ∼ 4 eV, Ti ∼ 0.026 eV,
dust radius R ∼ 3.4 μm, and an average distance d between
grains of about d ∼ 270 μm. With these values, the ion Debye
length is estimated to be about λDi ∼ 85 μm. In addition,
assuming that the Wigner-Seitz radius a ∼ (3/4π )1/3d we
estimate nd ∼ 5 × 104 cm−3. Using a dust mass density of
about 1.5 g/cm3, the dust mass is estimated to be about
md ∼ 1.4 × 1014 times the proton mass mp. To estimate the
dust charge state, we note that standard orbit-motion-limited

(OML) theory (see, e.g., Ref. [25]) would give too large a
value for the dust charge, with the Zdnd > ni . Thus there may
be electron depletion effects (see, e.g., Ref. [25]) to limit the
dust charge to Zd < 4000. (It should also be pointed out that
OML can overestimate the grain charge state when there are
significant ion-neutral collisions [11].) Thus we use a nominal
value of Zd ∼ 3500. Then ωpd ∼ 87 rad/s and the ratio of
the dust to ion plasma frequencies is ωpd/ωpi ∼ 3 × 10−5.
The ion-neutral and electron-neutral collision frequencies
are modeled as νj ∼ σjnnnvj , where j = e,i for electrons
and ions, respectively, σjn is the cross section for collisions
with neutrals, and nn is the neutral density. Using σin ∼ 5 ×
10−15 cm2 and σen ∼ 5 × 10−16 cm2 we have that νi/ωpi ∼
0.16 and νe/ωpi ∼ 53. The dust-neutral collision frequency is
given by

νd = η
8
√

2π

3

mn

md

R2nnvn,

where mn and vn are the neutral mass and thermal speed,
respectively, and η is a numerical factor, which ranges from
about ∼1 to 1.4 depending on whether the scattering is specular
or diffuse and depending on the accommodation coefficient
(see, e.g., Ref. [26]). In the following we use η = 1.4 [26],
so that νd/ωpd ∼ 0.3. The ion stream speed is given in Arp
et al. [10] as being on the order of 104 cm/s, so that using
V0i = 1 × 104 cm/s yields V0i/vi ∼ 0.4. However, this flow
speed is estimated from simulation results but not measured,
so we will also consider ion flow speeds comparable to vi as
indicated in Ref. [10]. If the ion streaming is due to an electric
field, V0i would result from balancing the electrostatic force
with the neutral drag force on the ions, that is, V0i = eE/miνi .
In this scenario, the electrons would stream in the opposite
direction, with V0e/ve ∼ (σinTi/σenTe)(V0i/vi). Although we
do not know what the dust coupling parameter � is for this
system, we note that if Td were about 0.35 eV (corresponding to
a dust thermal speed of about 0.5 mm/s), � would be about 300.

Figure 2 shows the solution to (5) using the parameters in
the previous paragraph. Note that the curves begin at values
of kλDi where |ζi | < 1, which roughly corresponds to the
approximation in (4). The result for the weakly coupled fluid
case with V0i/vi = 0.4 is shown by the dot-dashed curves in
Fig. 2, which is obtained by setting DL(k) = 0. Note that the
cold dust approximation used here should be appropriate when
the dust acoustic speed csd ∼ λDiωpd is much greater than the
dust thermal speed vd . As can be seen, the weakly coupled
fluid dust model does not predict growth for these parameters,
although it is near marginal. If the dust collision frequency
were somewhat smaller, due for example to a smaller value of
η, or if ion collisional effects enhance the growth somewhat, or
if the ion flow speed were larger, there might be growth even
in the weakly coupled fluid dust case. For example, the dashed
curves in Fig. 2 show the corresponding solution for the fluid
dust model with the same parameters but with V0i/vi = 0.8,
which does show DAI growth. On the other hand, if we assume
the dust is strongly coupled in the liquid phase, with κ ∼ 2
and � ∼ 300, the effect of strong coupling appears to predict
substantial growth as shown by the solid curves in Fig. 2
even if the ion flow is V0i/vi = 0.6. As noted above, � ∼ 300
would correspond to a dust (kinetic) temperature of about
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(a)

(b)

FIG. 2. (Color online) (a) Real frequency ωr and (b) imaginary
part of frequency γ normalized to ωpd versus kλDi obtained by solving
(5). The parameters are: mi/mp = 40, Te/Ti = 154, ni/ne = 8,
ωpd/ωpi = 3 × 10−5, and νd/ωpd = 0.3. The weakly coupled case,
setting DL(k) = 0, is shown for V0i/vi = 0.4 (black, dash-dot curves)
and V0i/vi = 0.8 (blue, dashed curves). The strongly coupled case
with � = 300, κ = 2, is shown for V0i/vi = 0.6 (red, solid curves).

0.35 eV. Unstable wavelengths appear to range from about
1.2 mm (corresponds to kλDi ∼ 0.45) at the longer end, while
the observed wavelengths reported in Arp et al. [10] are 2 mm.

Next we consider the PK-4 microgravity experiments
reported by Fortov et al. [12] (see also Khrapak et al. [11]).
We consider a set of parameters with higher pressure and
smaller dust grains than that considered above. These nominal
parameters may be roughly representative of parameter ranges
given in Ref. [12]: neon P ∼ 50 Pa, neon ni ∼ 3 × 108 cm−3,
Te ∼ 7 eV, Ti ∼ 0.03 eV, R ∼ 0.6 μm, and nd ∼ 105 cm−3

(giving a ∼ 130 μm). With these values, the ion Debye length
is λDi ∼ 0.007 cm, so that κ ∼ 2. The dust charge is estimated
to be Zd ∼ 1500 from Fig. 7(a) in Khrapak et al. [11], which
takes into account the reduction of the dust charge from the
OML value due to ion-neutral collisions at higher pressure.
Assuming the dust mass density is ∼1.5 g/cm3, the dust mass
is estimated as md ∼ 8.2 × 1011mp. Thus ωpd ∼ 690 and the
the ratio ωpd/ωpi ∼ 1.35 × 10−4. At this larger pressure, we
estimate νi/ωpi ∼ 0.5 and νd/ωpd ∼ 0.58. If we assume that
an electric field of order 2 V/cm drives the ion streaming,
we obtain an ion flow speed of about V0i/vi ∼ 0.9. Again,
we do not know the dust temperature, but if we assume Td ∼
0.085 eV (vd ∼ 0.3 cm/s) we have that � ∼ 300. It should be
noted, however, that in the ground-based PK-4 experiments
reported in Ref. [11] the dust was streaming with speed
∼5 cm/s. While this would lead to a Doppler shift in
the observed wave frequency, fluctuations in the speed of
individual dust grains could also lead to an increased effective
dust temperature.

(a)

(b)

FIG. 3. (Color online) (a) Real frequency ωr and (b) imaginary
part of frequency γ normalized to ωpd versus kλDi obtained by solving
(5). The parameters are: mi/mp = 20, Te/Ti = 233, ni/ne = 2,
ωpd/ωpi = 1.35 × 10−4, νd/ωpd = 0.58, and V0i/vi = 0.9. Weakly
coupled case, setting DL(k) = 0 (black, dashed curves). Strongly
coupled case, with � = 300 and κ = 2 (red, solid curves).

Figure 3 shows the solution to (5) using the parameters in
the previous paragraph for the smaller dust grain case. Note
that here again the curves begin at values of kλDi where |ζi | <

1, very roughly corresponding to the approximation in (4). The
weakly coupled fluid model with DL(k) = 0 (black, dashed
curves) shows that no DAI growth is predicted. Growth of the
DAI is shown in the strongly coupled case (red, solid curves)
where κ = 2 and � = 300, with the latter condition implying
Td ∼ 0.085 eV as mentioned above. The wavelength of the
unstable mode at the longer end, kλDi ∼ 0.6 is about 0.8 mm.

IV. SUMMARY AND DISCUSSION

We have considered the effects of strong coupling on the
DAI in a dusty plasma in the strongly coupled liquid phase.
The DAI is driven by ions streaming through the dust with
speed less than the ion thermal speed. Due to strong coupling,
growth of the DAI can be substantially enhanced due to a
decrease in the wave frequency, particularly at k values where
the frequency of the dust acoustic modes decreases and exhibits
negative dispersion. We have also applied the predictions
of the theory to parameters that may be representative of
microgravity experiments where subthermal ion flows are in
general possible. Although it appears that κ may be larger
than unity in those experiments we do not know what � is
primarily because we do not know what the dust temperature is.
Assuming that the dust is in the strongly coupled liquid phase,
though, it was found that strong coupling effects could lead
to dust acoustic instability even when theory using a weakly
coupled fluid model for the dust would predict stability due to
dust collisional damping.
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FIG. 4. Real frequency ωr and imaginary part of frequency
γ normalized to ωpd versus kλDi obtained by solving (2), using
(3) for all three charged species. The parameters for the dashed
curves are: mi/mp = 40, Te/Ti = 154, Te/Td = 0.1, Zd = 3500,
nd/ni = 2.5 × 10−4, md/mp = 1.4 × 1014, νd/ωpd = 0.3, νi/ωpi =
0.16, νe/ωpi = 53, V0i/vi = 0.8, and V0e/ve = 0.05. The parameters
for the dotted curves are: mi/mp = 20, Te/Ti = 233, Te/Td = 0.58,
Zd = 1500, nd/ni = 3.3 × 10−4, md/mp = 8.2 × 1011, νd/ωpd =
0.58, νi/ωpi = 0.5, νe/ωpi = 85, V0i/vi = 0.9, and V0e/ve = 0.06.

However, in order to better compare with the Vlasov theory
for the weakly coupled phase, we should take dust thermal
effects into account. In order for the dust to be in the weakly
coupled phase, with �d < 1, the dust kinetic temperature for
micron size grains generally should be large. In this case,
the cold dust approximation, which implies csd � vd , may
not be appropriate. Because csd/vd ∼ √

3�/κ , the conditions
csd/vd � 1 and �d < 1 may not be mutually compatible [27].
Therefore, when the dust is in the weakly coupled phase, we
roughly model the dust susceptibility using the full kinetic

expression (4) for all three charged particle species, in the dust
rest frame with V0d = 0. This was done for the parameters
corresponding to Fig. 2, taking Td = 40 eV (�d ∼ 0.35), and
the solution of (2) for the weakly coupled gaseous phase is
given by the dashed curves in Fig. 4. This was also done for
the parameters corresponding to Fig. 3, taking Td = 12 eV
(yielding �d ∼ 0.3), and the corresponding solution of (2) is
given by the dotted curves in Fig. 4. As can be seen, it appears
that DAI growth is quenched in the weakly coupled gaseous
phase for these parameter sets.

Although the present study does indicate trends of strong
coupling effects on the DAI, there are a number of improve-
ments that should be made in future work. This includes an
investigation of the role of ion collisional effects along with
better modeling of the ion susceptibility as V0i approaches
vi . Another issue to be investigated is whether there is some
correlation between the ions and the dust grains. As regards
experiments to study these strong coupling effects on the
DAI, the desirable parameters of microgravity experiments
would include liquid phase systems with large κ in addition to
measurable subthermal ion flow. For example, � = 725 and
κ = 3 might be achieved in a system with ni ∼ 5 × 108 cm−3,
Ti ∼ 0.03 eV, Te ∼ 4 eV, a ∼ 170 μm, R ∼ 5 μm, Zd ∼ 104,
and Td ∼ 1 eV.
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