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Synchronization mechanism and Arnold tongues for dust density waves
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The nonlinear phenomenon of synchronization is characterized experimentally for dust density waves, i.e.,
dust acoustic waves, which are self-excited due to an ion streaming instability. The waves propagate in a dust
cloud with a natural frequency of 22 Hz. We synchronize these waves to a different frequency using a driving
electrode that sinusoidally modulates the ion density. We study four synchronized states, with frequencies that
are multiples of 1, 2, 3, and 1/2 of the driving frequency. Comparing to phenomena that are typical of the van der
Pol paradigm, we find that synchronization of our waves exhibit the signature of the suppression mechanism but
not that of the phaselocking mechanism. Additionally, synchronization of our waves exhibits three characteristics
that differ from the van der Pol paradigm: a threshold amplitude that can be seen in the Arnold tongue diagram,
a branching of the 1:1 harmonic tongue at its lower extremity, and a nonharmonic state. The latter state appears
to be a nonlinear oscillation; it is neither at the natural frequency nor a synchronized state.
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I. INTRODUCTION

A dusty plasma is a four-component plasma of electrons,
ions, neutral gas atoms, and micron-size particles of solid
matter. Dusty plasmas are found in nature, for example, in
planetary rings, comet tails, interstellar clouds, and Earth’s
ionosphere [1–8]. In a laboratory, dusty plasma can be
produced by introducing dust particles, i.e., small particles
of solid matter, into a glow discharge plasma [7,9]. The dust
particles are much more massive than the electrons, ions, or
neutrals. In a laboratory experiment, the dust particles gain
a negative electric charge by absorbing more electrons than
ions. At sufficiently high dust particle concentrations, the dust
particle can deplete electrons [10].

A collection of dust particles can sustain different kinds
of waves [3,7,8]. The dust acoustic or dust density wave is
a compressional mode that is analogous to the ion acoustic
wave [11]. The concentration of dust particles is modulated,
and due to their large mass the wave has a low frequency, which
in laboratory experiments is typically 10–100 Hz [12]. At such
a low frequency, this wave can be observed by video imaging
[13]. Dust density waves can appear spontaneously, without
any external excitation, as has been observed in the laboratory
[14–43] and under microgravity conditions [44–47].

Dust density waves appear spontaneously because they are
self-excited by an instability that is driven by streaming ions,
similar to a Buneman-type instability in plasma [48–50]. The
waves usually propagate parallel to the ion streaming direction.
Such a streaming of ions is common in glow discharge plasmas,
where it is driven by an ambipolar electric field. The ion-driven
instability must compete with wave damping due to frictional
drag of the dust particles as they move through the neutral
gas [50] (and possibly Landau damping [51] and damping
resulting from charge fluctuations [51–53]). At a sufficiently
low gas density, damping is so weak that it cannot overcome
the instability, and the self-excited dust density waves can grow
to large amplitudes and become nonlinear [43].
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Nonlinear phenomena for these waves have been observed
experimentally, including harmonic generation [43], shocks
[37], wave breaking [36], frequency clustering [47], and
synchronization [30,38,39,46,54]. In theoretical models of the
wave, the nonlinearities can arise in the convective derivative
term of the dust momentum equation or in the electron density
due to either the nonlinearity of the Boltzmann factor or due
to depletion of electrons.

The nonlinear phenomenon we will investigate in this paper
is synchronization, in which a self-excited oscillation or wave
interacts with a driving force, resulting in an adjustment of
the oscillation or wave frequency [55,56]. Synchronization
was observed by Huygens for two pendulum clocks that
were mechanically coupled [55]. Since then, synchronization
has been observed in biological, chemical, electrical, and
mechanical oscillatory systems [55,56].

Plasma physics experimenters have observed several kinds
of waves and oscillations that exhibit synchronization. These
include ion sound waves [57], ionization waves [58,59], drift
waves [60–65], ion cyclotron waves [66], plasma relaxation
oscillations [67–71], and beam plasma oscillations [72–74].

A common mathematical model that exhibits synchroniza-
tion is a periodically forced van der Pol oscillator [75],

ẍ − (α − βx2)ẋ + ω2
0x = Adrcos(2πfdrt), (1)

which describes the position x of a harmonic oscillator with
a natural frequency ω0 = 2πf0, with terms for a nonlinear
damping βx2ẋ, a source of energy for self-excitation αẋ, and
a periodic driving at a frequency fdr. This van der Pol oscillator
can exhibit synchronization not only at fdr/f0 ≈ 1, which is
called harmonic synchronization, but at ratios that are rational
numbers. If fdr/f0 > 1, the synchronization is said to be
“superharmonic,” whereas if fdr/f0 < 1 it is “subharmonic.”

For plasma waves, the van der Pol oscillator has been
used both as a quantitative model and as a qualitative
reference for the characteristic properties of synchronization.
As a quantitative model, Eq. (1) has a limited usefulness
because its nonlinear term does not exactly correspond to
the nonlinearities in most kinds of plasma waves. Moreover,
unlike a wave equation, Eq. (1) is a differential equation only
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in time, not in position. For these reasons, in many cases the
van der Pol oscillator is often best suited only as a qualitative
model, which we will refer to in this paper as the van der Pol
paradigm. In other cases, where the nonlinearity happens to
take the same form as in Eq. (1), it can be used quantitatively, as
has been suggested theoretically for ion sound waves that are
self-excited by ionization [57], ionization waves self-excited
by fluctuations in electron temperature [59], and oscillations
in a beam plasma system [72].

The study of synchronization that we report in this paper is
motivated by previous experiments of self-excited dust density
waves, in the laboratory [30,38,39,54] and in microgravity
conditions [46]. Using a sinusoidal driving voltage, Trotten-
berg et al. [30] observed harmonic synchronization and a
narrower frequency spectrum, and later Pilch et al. [38,54] also
observed subharmonic and superharmonic synchronization.
Even without an external sinusoidal driving, some qualities
of synchronization have been observed in microgravity exper-
iments [46]. Synchronization played a role in earlier experi-
ments with this wave as well; for example, in measurements
of dispersion relations, the wave’s frequency was determined
by an externally applied modulation [18,32,33,41].

To characterize the synchronization of self-excited dust
density waves, we carry out two experiments with a sinusoidal
voltage applied to an electrode that is separate from the
electrodes that sustain the plasma. We vary the driving
frequency and driving amplitude, allowing us to determine the
conditions that result in synchronization and to identify the
mechanism for synchronization. We also observe a nonsyn-
chronized oscillation, which we term a “nonharmonic state,”
at a frequency that is well below both the natural oscillation
frequency and the driving frequency.

The experiments and analysis are discussed in Sec. II. We
present and interpret the results in Sec. III.

II. EXPERIMENTS AND ANALYSIS

A. Dusty plasma

Two experiments are performed under nearly identical
conditions, one for making Arnold tongue diagrams and the
other for identifying synchronization mechanism. The only
difference between these two experiments is the method used
for scanning the driving frequency and amplitudes as discussed
in Sec. II C.

We prepare a plasma that has a dc electric field that can
levitate dust particles against the downward force of gravity in
a plasma sheath. The plasma is formed in a vacuum chamber
(Fig. 1) with argon gas at 120 mTorr. A low power radio-
frequency (rf) voltage, with a 57 V peak-to-peak amplitude
is applied between two electrodes, one which is a horizontal
lower electrode and the other which is the grounded wall of
the vacuum chamber. This rf voltage produces an rf electric
field that sustains the plasma by accelerating electrons that can
partially ionize the gas. The 13.56 MHz frequency is so high
that only electrons respond to it. In addition to the rf electric
fields, there is also a dc electric field that arises naturally due to
ambipolar transport of electrons and ions. In the sheath, imme-
diately above the lower electrode, this dc electric field is mostly
downward with a smaller horizontal component, and there is
a significant ion flow in the direction of this dc electric field.
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FIG. 1. (Color online) (a) Schematic of the vacuum chamber,
shown without flanges. The high-speed camera is used for imaging
the dust cloud. The lower electrode is inserted into the chamber
during experiments. (b) Electrical and mechanical configuration.
The 13 MHz rf oscillator is used to generate the plasma. By
shaking a dispenser, we introduce dust particles so that they fall
through the plasma. They collect a negative charge and become
levitated and confined in a 3D cloud inside a glass box resting
on the lower electrode. The plasma ion density is modulated by
a ring-shaped driving electrode powered by a sinusoidal voltage,
with an amplitude Adr and a frequency fdr. A Langmuir probe
at a location outside the dust cloud, as marked ∗ is used to
measure the ion density fluctuation due to driving. This probe
is removed prior to adding dust. A photograph can be viewed
in the Supplemental Material [78]. Note that the rf voltage and
the driving voltage values are specified in peak-to-peak volts
(Vpp).
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FIG. 2. (Color online) Side-view images of the dust cloud
(a) showing its position inside the glass box (b) as recorded by the
high-speed camera in Fig. 1. Charged dust particles are levitated
by the upward electric force, QE, in balance with the downward
gravitational force, mg. Self-excited dust density waves, which
propagate downward, are visible as compressions and rarefactions. A
measure of dust number density is obtained by averaging the image
brightness within the sample region indicated by the rectangle. A
movie that shows the propagation of self-excited dust density waves
in the dust cloud is available in the Supplemental Material [78].

Dust particles, which are monodisperse melamine
formaldehyde microspheres of diameter 4.83 μm, are intro-
duced into the plasma with a dust dispenser that is similar to
a salt shaker with a single hole. Once they are immersed in
the plasma, the dust particles acquire a negative charge. In the
presence of the downward dc electric field, they experience
an upward electric force that can balance the downward force
of gravity, so that the dust particles are levitated (Fig. 2).
To confine the dust particles in the horizontal direction, we
enhance the horizontal component of the dc electric field by
placing a glass box on the lower electrode, as in previous
experiments [42,43,76,77]. The box has an open top, and its
dimensions are 3 × 3 × 3 cm. A three-dimensional dust cloud,
with a size of about 1 cm, is confined in the center of this box.
We control the number of particles introduced so that in both
experiments the dust cloud fills the same volume.

The wave fronts are easily visible in the images [Fig. 2(b)].
Bright and dark regions correspond to compressions and
rarefactions of the wave, with a wavelength of about 2.5 mm.
A movie can be viewed by online readers; see Ref. [78]. The
waves propagate in the direction of the ion flow. The waves
also grow in amplitude as they propagate because the energy
gain from the ion-driven instability exceeds the dissipation
due to frictional drag on the neutral gas atoms. We chose a gas
pressure of 120 mTorr so that the frictional drag would be small
enough to allow the waves to grow to nonlinear amplitudes
after traversing only one-sixth of the cloud’s height.

The natural frequency of the dust density waves, i.e., the
frequency in the absence of any periodic driving, is f0 = 22
and 21 Hz in the first and second experiments, respectively. We
determined these frequencies not only by viewing the video
but also by using the spectral analysis methods described in
Sec. III A.

B. Illumination and image capture

The dust cloud is illuminated by a vertical sheet of 577-nm
laser light, and it is imaged from the side with a digital camera

[Fig. 1(a)]. The illumination power of 0.9 W is low enough
that it did not visibly perturb the dust cloud.

The camera records images at a rate of 256 frames per
second, which is chosen to provide an adequate temporal
resolution for the waves and their harmonics. The camera,
with a 105-mm focal length lens and a doubler, provides a
spatial resolution of 78 pixels/mm. At this resolution, a typical
wavelength of 2.5 mm is resolved with about 200 pixels. The
camera’s field of view includes the entire cross-section of
the dust cloud that is illuminated, as shown in Fig. 2(b). In
the image, a single particle spreads over about 25 pixels.

C. External driving

The self-excited dust density waves are altered by applying
an external sinusoidal disturbance at a chosen frequency fdr

and amplitude Adr. To do this, we disturb the overall ion density
in the plasma by applying sinusoidal voltages to a negatively
biased electrode located 2 cm above the top of the glass box
[Fig. 1(b)]. This “driving electrode” is a flat copper ring with
a surface area of 15 cm2.

The external driving modulates the overall ion density
in the chamber. We verify in a test that the sinusoidal ion
density modulation varies linearly with the amplitude of the
sinusoidal driving voltage at the same frequency. This linearity,
shown in Fig. 3, extends over the entire range of driving
amplitudes used in the experiments, including the lowest
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FIG. 3. Test of linearity in the response of the plasma to the
driving. We measure the ion saturation current drawn by a negatively
biased Langmuir probe, as a proxy for the ion density, at a location
shown in Fig. 1. While applying a sinusoidal waveform at fdr =
20 Hz to the driving electrode, we measure the fluctuation in ion
density, at that same frequency, using a lock-in amplifier. The
inset is a magnification for the lowest driving amplitudes. This test
demonstrates a linear plasma response to the driving over the entire
range of driving amplitudes used in our experiments.
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driving amplitudes, so that we are confident that the wave
observations we will interpret as signatures of synchronization
are not instead artifacts of a nonlinear response of the plasma
to the driving. This linearity test is performed using lock-in-
amplifier detection of current in a Langmuir probe biased for
ion saturation.

Because harmonics can play an important role in nonlinear
synchronization, we also verify that there is no detectable
harmonic content in the ion density modulation. This test,
which is also performed using our Langmuir probe, gives us
confidence in our observations of harmonic content in dust
density waves. These observations, presented in Sec. III, are
not merely due to any harmonics present outside the dust cloud,
but instead due to the more interesting physics of nonlinearities
in the dust cloud.

The ion density modulation has the effect of modulating the
Debye length and, therefore, the thickness of the sheath above
the lower electrode [79]. Since the dust cloud is levitated by
the dc electric field in this sheath, the small modulation of the
ion density leads to a vertical shaking of the entire dust cloud,
with a maximum displacement of ≈1 mm, as measured at
fdr � 20 Hz and Adr = 46 Vpp. Thus, our external modulation
can affect the dust cloud in more than one way: a modulated ion
density, a modulated dc electric field, and a resulting vertical
shaking. We cannot identify which of these is responsible for
the synchronization that we will observe.

We vary the driving frequency from 2 to 55 Hz. The upper
limit of this range is chosen because we found in a test no
signatures of synchronization at higher frequencies. Our two
experiments differ in the procedures used for scanning the
frequency fdr and amplitude Adr. In the first experiment,
we slowly sweep the frequency, while in the second we
hold the frequency constant. In both experiments the driving
amplitude is held steady during the recording of a movie, and
movies are repeated for various amplitudes starting with 2 Vpp.

In our first experiment, we sweep the frequency, which
allows us to measure wave conditions over many values of the
driving parameters, Adr and fdr. These two parameters will
be the axes of the Arnold tongue diagram that we discuss
in Sec. III C, so that it is necessary to record wave data for
many values of these two parameters in order to populate the
diagram. Those data must be recorded for many values of Adr

and fdr rapidly enough so that the number of particles within
the dust cloud does not vary significantly. If we operate over a
longer time, we would encounter the difficulty that the number
of dust particles would diminish with time, especially when
large-amplitude driving is applied. These requirements led us
to use the method of Brandt [80]: sweeping the frequency fdr

at a constant amplitude, for a succession of amplitudes. We
record data for the highest amplitudes at the end, so that the
low-amplitude data are not affected by a loss of dust particles.
The frequency is swept at a steady rate, from 2 to 55 Hz, over
145 s. One movie is recorded during this sweep, with its first
frame triggered at the start of the sweep.

In our second experiment, we hold the frequency constant,
so that the system is in a steady state during the recording
of a time series. We rely on this second experiment for two
purposes: to verify the validity of the results from the first
experiment and to identify the synchronization mechanism.
For the mechanism identification, we use the method of

Balanov [56], who held the frequency fdr constant and then
repeated for a series of driving amplitudes Adr. Since this
method of holding the frequency constant does not allow us
to make observations over a wide a range of parameters, as
does the sweeping method in the first experiment, in this
second experiment we record data primarily for lower values of
driving amplitudes, as is needed to identify the synchronization
mechanism.

D. Image analysis

While in some dusty plasma experiments the positions of
individual particles are measured from images, in this paper
our analysis centers on a smoothed quantity, the dust number
density nd . In particular, we will determine the spectra of
fluctuations of nd . We can characterize nd using images of the
dust cloud because the camera’s sensor has a linear response
to incident light, and very little scattered laser light is absorbed
within the dust cloud. To obtain the spectra of the fluctuations
of nd , we Fourier transform the time series of the brightness.
In particular, we use the brightness averaged over a thin
rectangular sample region in the image, indicated by a box
in Fig. 2(b). This sample region is chosen to be only 0.25 mm
in the z direction, i.e., about one-tenth of a wavelength in
the direction of wave propagation, but a much wider 2.5-mm
range in the x direction. We are able to average over such a
wide range of x because the wavefronts are nearly planar in
the center of the dust cloud.

III. RESULTS

A. Time series and spectra of nd

Examples of the time series of dust number density nd

are shown in Figs. 4(a) and 4(b), for two different driving
frequencies fdr, but the same large driving amplitude Adr =
46 Vpp, as obtained from our first experiment. In Figs. 4(a)
and 4(b), the fluctuation of dust number density is large, with
a peak-to-peak fluctuation of about 50%, as compared to the
time-averaged dust number density.

We calculate a spectrum of dust number density fluctuations
from an interval within the time series. This is done by
subtracting the time average and using a fast Fourier transform
(FFT). We denote the frequency variable for this FFT, i.e., the
spectral frequency, as fsp, to avoid confusion with the driving
frequency, fdr. Our time interval for computing an FFT has
a duration of 2 s, consisting of 512 frames. This duration is
chosen to be short enough so that fdr can be considered as
a constant during that interval, but long enough so that the
corresponding frequency resolution of 0.5 Hz allows us to
distinguish the various synchronized states. Example spectra
are shown in Figs. 4(c) and 4(d), computed for the time series
data when the slowly swept fdr was about 20 and 40 Hz,
respectively.

We combine spectra for various driving frequencies, yield-
ing Fig. 5(a). Such a graph of power as a function of the two
frequencies, fdr and fsp, is useful for identifying synchronized
states. The data in Fig. 5, as in Fig. 4, are for our highest
driving amplitude, Adr = 46 Vpp.
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FIG. 4. (Color online) Brightness time series and spectra. Rep-
resentative time series (a) and (b) of brightness, which is a measure
of the dust number density nd . The corresponding power spectra
(c) and (d), calculated by fast Fourier transforming the fluctuations
of nd . The 2-s time interval used for the FFT is short enough that the
slowly swept driving frequency fdr can be considered to be constant.
Two different synchronized states are shown: in (c) the observed
wave at 20 Hz is synchronized to the 20 Hz driving frequency and
a small harmonic is also present, while in (d) the wave at 20 Hz is
synchronized to one half the 40 Hz driving frequency. These data
from the first experiment are for Adr = 46 Vpp.

B. Features in the spectra

The spectra in Fig. 5 have a richness of detail, including
three kinds of strong features that we will discuss, as well as
some weaker features that we will not attempt to explain in this
paper. The strong features are labeled in Fig. 5(b) according to
our interpretation: the natural oscillation at f0, synchronized
states, and a nonharmonic state. We will discuss the natural os-
cillations and the synchronized states next. The nonharmonic
state is a feature that is neither at f0 nor has signatures of
synchronized states, and we will discuss it in Sec. III F.

1. Natural frequency

The natural frequency f0 can be identified as the dominant
frequency in the spectrum in the absence of driving, i.e., at
Adr = 0 Vpp. Using data recorded without any driving, we were
able to determine f0 = 22 Hz. This same natural frequency can
also be present without, and even with, high-amplitude driving,
provided that the driving frequency is either very low or high,
as marked in Fig. 5(b).
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FIG. 5. (Color online) (a) Power spectra, as in Fig. 4, plotted with
color representing power, for various driving frequencies. Data shown
are from our first experiment for our highest driving amplitude, Adr =
46 Vpp. Synchronized states, when they are present, are revealed by
a line that extrapolates to the origin and has a constant slope, which
is later referred to as the winding number. (b) Guide for interpreting
the spectra in (a). At extremely low and high driving frequencies,
oscillations are observed at the same natural frequency f0 as without
any driving. Features of interest include: subharmonic 3:1 and 2:1 syn-
chronization for 5 < fdr < 12 Hz, harmonic 1:1 synchronization for
12 < fdr < 25 Hz, and superharmonic 1:2 synchronization for 35 <

fdr < 47 Hz. The strongest spectral features are usually accompanied
by their second harmonic, which is indicated by dashed lines in (b).
Additionally, we observe a state marked f∗, termed the nonharmonic
state in the text; it is neither a synchronized state nor an oscillation
at the natural frequency, f0. The presence of a lower sideband at a
frequency fls ≡ fdr − f∗, marked by a dotted line, and the presence
of a second harmonic 2f∗ indicate that this state is nonlinear.
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2. Synchronized states

At least four synchronized states are seen in Fig. 5. These
appear as straight lines with an upward slope passing through
the origin. The various synchronized states are distinguished
by their slopes in Fig. 5. For example, the line marked 1:2
corresponds to oscillations at a frequency fsp that is one half
of the driving frequency, fdr. This feature can be seen in the
upper portion of Fig. 5. The 3:1, 2:1, 1:1, and 1:2 synchronized
states are easily seen in Fig. 5. Synchronized states of 4:1 or
higher may also be present, but their signatures at the bottom
of Fig. 5 are too weak for us to identify them conclusively.

We now discuss the various synchronized states that we
identify in Fig. 5. The synchronized state labeled 1:1 is termed
the harmonic synchronized state. In this state, the external
driving frequency fdr is near, but not necessarily the same, as
the natural frequency f0, and the wave oscillates at the driving
frequency fdr. The synchronized states at an integer multiple
of the driving frequency, labeled 2:1 and 3:1, are termed
subharmonic synchronized states. In these states, the wave
oscillates at a harmonic of the driving frequency. Finally, in
the state 1:2, which is a superharmonic synchronized state, the
wave oscillates at one half the frequency of the external driving.

All of these synchronized states are visible in Fig. 5 as a
main spectral peak as well as peaks at integer multiples, i.e.,
at harmonics of the main peak. We have marked the second
harmonics in Fig. 5(b) as dashed lines. Weaker features for
third and higher harmonics can also be detected in Fig. 5(a).
All these harmonics are present because the waves are non-
sinusoidal, due to nonlinearities when the wave amplitudes are
large [43]. We consider the peaks at the second- and higher-
order harmonics as essentially part of the same synchronized
state as the main peak, even though they can be distinguished
in Fig. 5. For example, we consider the solid and dashed lines
labeled 2:1 as both belonging to the same feature, which in
this case is a subharmonic synchronized state.

Usually there is only one main peak for a given driving
frequency, fdr. The reader can confirm this by drawing a
horizontal line across Fig. 5(a) and noting that this horizontal
line intercepts only one peak with significant power, along with
harmonics of that peak. For example, at fdr = 20 Hz, almost
all the wave power is concentrated at fsp = 20 Hz, i.e., the 1:1
synchronized state.

Pilch et al. [38,54] have previously reported observing
synchronization of dust density waves. They used a different
kind of plasma source, an anode glow, which they modulated
externally using the electrode that also sustains the plasma.
Using video imaging similar to ours, they prepared time
series of the brightness within spatially localized regions,
analogous to our Figs. 4(a) and 4(b). From these time series,
they computed frequency spectra, like our Figs. 4(c) and
4(d). By inspecting these spectra, they identified subharmonic,
harmonic, and superharmonic synchronization.

C. Arnold tongues

1. Calculation method

We will next explore how the synchronization depends on
the driving amplitude. This effort allows us to prepare a plot,
known as an Arnold tongue diagram, which is a traditional
characterization of nonlinear synchronization.

We will use data for the power as a function of frequency
fsp and driving frequency fdr, as shown in Fig. 5(a). While
the spectrum in Fig. 5(a) is prepared for only one driving
amplitude, we also prepare similar spectra over a range
of amplitudes. Altogether, these spectra represent power
P recorded in a three-dimensional parameter space, with
120 values of spectral frequency fsp, 105 values of driving
frequency fdr, and 29 values of driving amplitude Adr.

An Arnold tongue is an indication, in the two-dimensional
parameter space of driving amplitude versus driving frequency,
of whether synchronization occurs. In our case, the parameter
space for the Arnold tongue consists of 105 values of fdr

multiplied by 29 values of Adr, for a total of 3045 elements.
For each of these elements, we must make a binary decision
whether the synchronization occurs, and if it does occur, we
will darken that element in the parameter space. In this manner
we draw an Arnold tongue.

One step in this process of drawing an Arnold tongue is
often not described by practitioners: the manner of making the
binary decision of whether synchronization occurs, for a given
element of parameter space. We choose a specific procedure,
with a quantifiable criterion for making the decision, which
we now describe. First, using spectra data as in Fig. 5(a), we
plot Devil’s staircases (Fig. 6). The vertical axis in a Devil’s
staircase is a so-called winding number [56], which is the
ratio of fdr to the peak frequency, while the horizontal axis
is the driving frequency, fdr. To understand what we mean by
the peak frequency, consider a horizontal profile of Fig. 5(a);
this will be a line graph similar to the spectrum shown in
Fig. 4(c). This spectrum has a distinctive peak, and it is the
frequency of this peak that is used in calculating the winding
number. To gain greater precision in determining the peak
frequency, instead of merely selecting the spectral frequency
with the highest power, the peak frequency is calculated [56]
as a weighted mean f̄ ,

f̄ =
∑

fspP
∑

P
. (2)

Here, P is the spectral power as a function of fsp, as in
Figs. 4(c) and 4(d). In using Eq. (2), we use values of the
spectral frequency in the range 0.5 � fsp � 30 Hz.

We now inspect the resulting Devil’s staircase for a specific
value of the driving amplitude, as in Fig. 6, and identify flat
spots as a signature of synchronization. A quantifiable criterion
is needed to decide whether a data point in the Devil’s staircase
is part of a flat spot. We make this decision by requiring that
the winding number for the data point must be within 2% of the
value of the data point to its left as well as within 2% of the
data point to its right.

We now generate a graph of the Arnold tongues by repeating
this decision for all 105 values of fdr and all 29 values of
Adr, for a total of 3045 elements of the graph. Darkening
an element when it was determined that it belonged to a flat
spot in the Devil’s staircase, we obtain the desired graph of
Arnold tongues (Fig. 7). We use this method of generating
Arnold tongues because the parameter space for a tongue is
marked using only quantitative criteria, without any subjective
interpretation to draw a tongue’s boundary.

Our Arnold tongue diagrams are based on data from our first
experiment, in which we sweep the driving frequency fdr. This
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FIG. 6. (Color online) Devil’s staircases, for measuring the range
of driving frequencies for the synchronized states. (a) Data shown
are from our first experiment for Adr = 46 Vpp . This staircase plot
is prepared using spectra as in Fig. 4 to calculate the frequency f̄ of
the strongest peak, as in Eq. (2). The four flat spots indicated here
correspond to harmonic 1:1, superharmonic 1:2, and subharmonic 3:1
and 2:1 synchronized states. Using a Devil’s staircase like this one, we
can measure the range of driving frequencies for each synchronized
state; for example the 1:1 synchronized state at this driving amplitude
occurs for 14.5 � fdr � 24 Hz. (b) Data shown for Adr = 9 Vpp. The
two separate flat spots marked 1:1 indicate a branching of the 1:1
synchronized state, which will be shown in greater detail in Fig. 7.

sweeping allows us to cover a wide range of the parameters
Adr and fdr, as is required for an Arnold tongue diagram,
in a reasonable time before the dusty plasma conditions in the
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FIG. 7. (Color online) Arnold tongue diagram, i.e., indications of
the driving conditions that result in synchronized states. Here we can
identify four tongues for the harmonic 1:1, superharmonic 1:2, and
subharmonic 3:1 and 2:1 synchronized states. To prepare this diagram,
we marked the elements in the parameter space that correspond to a
flat spot in the Devil’s staircase in Fig. 6. Unlike Arnold tongues in
the van der Pol paradigm, here the tongues do not narrow to a point
at Adr = 0 Vpp. Instead, we find a threshold driving amplitude for
exciting synchronized states. Data shown are for our first experiment.

experiment changed. To verify that these results are unaffected
by the use of sweeping, we checked the wave spectra in
our second experiment and found that the peaks exhibited
the signatures of synchronization as expected for the Arnold
tongue diagram (Fig. 7).

2. Discussion of Arnold tongues

Our Arnold tongues in Fig. 7 reveal a threshold for the
driving amplitude required for synchronization. Unlike the
Arnold tongues for the van der Pol oscillator, ours do not
have a sharp tip at zero driving amplitude but instead vanish
at a small but finite amplitude. For example, there is no
synchronization observed for Adr below a threshold of 6 Vpp

for the 1:2 superharmonic synchronized state.
In considering the origin of this threshold, we must

determine whether it is the result of nonlinearities in the
dust cloud that we wish to study or whether it is instead
an uninteresting consequence of the coupling of our driving
electrode to the dust-free plasma located between the electrode
and the dust. We can dismiss the latter possibility by examining
Fig. 3, which demonstrates a linear response of the ion density
to the driving amplitude. This response exhibits no threshold
or other peculiarities, even at the lowest driving amplitudes.
Thus, we assume that the origin of the threshold must lie
somewhere within the dust cloud.

Our 1:1 Arnold tongue also has a distinctive branching at
low forcing amplitudes. These branches can be seen in Fig. 7.
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The two branches are at spectral frequencies of about 16 and
22 Hz.

We consider two possible explanations for this branching
feature: the branches are either all part of the same 1:1
synchronized state or they indicate a merging of two different
synchronized states. To test these explanations requires a way
of distinguishing synchronized states, and for this purpose
our Devil’s staircase is a better tool than the Arnold tongue
diagram, which is prepared from the Devil’s staircase. By
examining the rich detail in the Devil’s staircase in Fig. 6(b),
we find a signature of 1:1 synchronization feature with two
separate flat spots at the same Adr as the two branches in the
Arnold tongue diagram. This indicates that both branches are
in fact part of the same 1:1 synchronized state. A feature in
Arnold tongue diagrams similar to our branching feature can
be seen in the results of van der Pol simulations, which is
not all belonging to the 1:1 synchronized state but instead
a merging of two distinct nearby states such as 3:2 and
1:1 [81]. We can exclude the latter possibility by noting that our
Devil’s staircase lacks any signature of 3:2 synchronization,
which would appear at a winding number of 0.6 if it were
present in our experiment. Thus, we conclude that the branches
we observed are all part of the same 1:1 synchronized
state.

Similar branching of an Arnold tongue can be seen in pre-
viously reported experimental data for other physical systems,
including the 1:1 synchronization of ionization waves in a
non-dusty-plasma experiment [59] and the 1:1 synchronization
of ruby laser output [82]. We use the term “branching” and not
“splitting” as in Ref. [82] because only the tip of our 1:1
Arnold tongue is divided, not the entire tongue as in some
of the results of Ref. [82]. Although this 1:1 branching is
visible in these previously reported Arnold tongues [59,82],
we have not found any explanation of this phenomenon in the
literature.

D. Phaselocking versus suppression mechanisms

We will next determine which of the two synchronization
mechanisms, in the context of the van der Pol paradigm, is
responsible for the synchronization that we have observed. We
will use the terms “phaselocking” and “suppression” to distin-
guish these two mechanisms, as defined by Balanov et al. [56].

To avoid confusion, we should mention that “phaselocking”
and “suppression” also have other meanings in the synchro-
nization literature. Phaselocking is used by some authors
as a synonym for synchronization itself, regardless of its
underlying mechanism [71]. The term “suppression” is used
sometimes as a synonym for “oscillation death” in the literature
for the nonlinear dynamics of biological systems [55]. The
meanings we use for “phaselocking” and “suppression” are not
these, but instead the synchronization mechanisms, as defined
in Ref. [56].

To distinguish suppression and phaselocking, we follow the
prescription in Sec. 3.9 of Balanov et al. [56]. They provided
a comprehensive review of the fundamental theories and
they presented a discussion of the signatures of suppression
and phaselocking that we will use. These prescriptions were
developed for use with the van der Pol oscillator, and we will
use them even though that oscillator is essentially a single

point and not an extended system that sustains a propagating
wave, like ours. Previous investigators of synchronization of
plasma waves [58,73] relied upon the van der Pol paradigm
for other purposes; here we rely upon it for distinguishing
the two mechanisms that are possible for the van der Pol
oscillator, phaselocking, and suppression [83]. In the van
der Pol paradigm, suppression occurs over a wide range of
driving amplitudes, except for the lowest amplitudes, where
phaselocking can occur [56].

We now summarize the prescription of Balanov et al. [56]
for determining whether the suppression and phaselocking
mechanisms are present. The data used are power spectra.
In particular, one examines two peaks in the spectra, at fdr

and f0. A signature of phaselocking is a merging of the two
peaks as the driving amplitude increases, while a signature
of suppression is that the two peaks remain separate [56].
Another signature of the suppression is a significant reduction
of the height of the peak at f0, as the driving amplitude is
increased. It is particularly useful to inspect the power spectra
at lower driving amplitudes, corresponding to the lower portion
of an Arnold tongue, because it is for these conditions that
phaselocking, if it occurs at all, should be identifiable.

We next examine our spectra for the signatures of sup-
pression and phaselocking. The spectral data we use for this
purpose (Fig. 8) are from our second experiment. In particular,
the conditions we consider are low driving amplitudes, Adr �
12 Vpp, at fdr = 16 and 18 Hz, which are the same conditions
as at the lowest extremity of the 1:1 Arnold tongue. We have
marked the peaks at fdr and f0 with heavy arrows at the top
of each panel of Fig. 8. We will give close attention to the
separation between these peaks, as indicated by the separation
between the heavy arrows.

We can exclude the possibility of the phaselocking mech-
anism by observing that the peaks at fdr and f0 never
merge. Examining a column in Fig. 8, for example, the
left column, we see that the separation between the peaks
remains nearly constant and does not merge, as the driving
amplitude increases from the top panel to the bottom. Thus,
the signature of phaselocking (a merging of the two peaks) is
absent. This result is the same for both cases, for fdr = 16 and
18 Hz.

We do observe the signature for the suppression mecha-
nism, as indicated not only by the absence of merging, but
also a significant reduction in the height of the peak at f0 as
the driving amplitude increases. This reduction can be seen
by scanning the eye downward in the left column of Fig. 8,
focusing on the peak at f0. For example, the power is reduced
by about a factor of three between Figs. 8(b) and 8(d), and by
about a factor of five between Figs. 8(d) and 8(e). This result for
the driving frequency of fdr = 16 Hz in the left column is also
confirmed in the right column for fdr = 18 Hz. Thus, as one of
our chief results, we find that the 1:1 synchronization occurs
through the mechanism of suppression and not phaselocking
[84].

Additionally, we note that the spectra in Fig. 8 exhibit
sidebands. These sidebands are peaks at frequencies that are
linear combinations of fdr and f0 and their harmonics, for
example, fdr + f0, 2f0 − fdr, and 3f0 − 2fdr, as marked by
thin arrows in Fig. 8. In general, the presence of sidebands is
interpreted as an indication that nonlinear coupling between
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FIG. 8. (Color online) Testing for signatures of suppression vs.
phaselocking mechanism, for 1:1 synchronization. We examine these
spectra to identify how the peak for the natural frequency f0 behaves
with respect to that of the driving, fdr. (a) At the lowest driving
amplitude, there is only a peak at the natural frequency f0. (b)–(e)
At a slightly higher driving amplitude, nonlinear coupling occurs,
as indicated by the presence of sidebands, although the amplitude
is not sufficient for synchronization. A transition to synchronization
develops as the driving amplitude is increased (b)–(e), until the oscil-
lation is fully synchronized with the driving in (f). In the transition to
synchronization, we observe two indications of suppression: the two
peaks do not merge, and the peak at f0 diminishes in height. Similar
spectra are shown in the right column (g)–(l) and they exhibit the
same signatures. These data are for the second experiment.

the waves and the external driving is present but too weak to
result in synchronization [56].

E. Period doubling and deterministic chaos

We also inspect our spectra for indications of chaos, and we
find neither a signature of the periodic-doubling route to chaos
nor any broadband spectral features that might indicate chaos.
For the van der Pol oscillator, the period-doubling route to
chaos can sometimes be observed at large driving amplitudes
for driving frequencies that lie within the Arnold tongues. A
signature of this transition is the appearance of subharmonic
peaks at spectral frequencies of f0/2n [71]. Inspecting our
spectra, we find no indication of these peaks, even for the
highest driving amplitude that we used. We also find no
indication of broadband spectral features, like the ones that
have been reported for ionization waves, viz. Fig. 2(f) of
Ref. [59]. Such broadband features sometimes occur when two
Arnold tongues overlap, or inside the Arnold tongues [56,81],
but we do not observe these broadband features. Thus, we
conclude that we do not observe indications of dynamical
chaos for the driving conditions that we used.

F. Nonharmonic state

In the power spectra of Fig. 5, we noted three kinds of strong
features, which we interpret as: the natural oscillations at f0,
the synchronized states, and a nonharmonic state that is neither
synchronized nor at f0. We now discuss this nonharmonic
state, which is marked f∗ in Fig. 5.

The feature f∗ in Fig. 5 appears as almost a vertical line,
meaning that the spectral frequency varies only a little while
the driving frequency is varied over a wider range. In Fig. 5,
the spectral frequency for this feature lies in the narrow range
15 < fsp < 17 Hz, while the driving frequency has a wider
range, 25 < fdr < 35 Hz. We have verified that this feature is
present in this same spectral frequency range for all driving
amplitudes >2 Vpp that we tested.

We term this feature as a “nonharmonic state,” since it
appears to be different from both the natural oscillation at f0

and the synchronized states. The reason it appears not to be
associated with the natural oscillation at f0 is that its spectral
frequency is quite different, with f∗ well below f0. The reasons
that we consider it not to be a synchronized state is that its
frequencies do not match a subharmonic or superharmonic of
the driving frequency fdr, and it appears almost as a vertical
line in the Fig. 5. This vertical line is unlike the synchronization
features, which have constant slopes and pass through the
origin.

We also find indications of nonlinearities for this nonhar-
monic state. These indications of nonlinearity are a harmonic
at 2f∗, as indicated by a dashed line in Fig. 5(b), and a lower
sideband frequency, fls ≡ fdr − f∗, as indicated by a dotted
line in Fig. 5(b). The presence of this sideband indicates
a nonlinear coupling of the external driving and the dust
density waves. Thus, while we are unable to fully explain
this feature, we can conclude that it is a nonlinear oscillation
that is different from both the natural oscillation at f0 and the
synchronized states. This nonharmonic state seems to occur
above a threshold driving amplitude, since we do not observe
it at our lowest driving amplitude of 2 Vpp.

To further characterize the nonharmonic state, we determine
the driving parameters for which it is observed from our first
experiment, yielding Fig. 9. The uppermost portion of Fig. 9
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FIG. 9. (Color online) The driving parameter space for the
condition we term the “nonharmonic state.” This diagram is prepared
by examining spectra from our first experiment, like Fig. 5, for various
driving amplitudes, and darkening an element in this parameter space
if the strongest peak in the spectrum is between 15 and 17 Hz.
Although this figure resembles an Arnold tongue diagram, it is
different because Arnold tongue diagrams indicate the parameter
space for synchronization, while this nonharmonic state is not
synchronized.

corresponds to the largest driving amplitude, as in Fig. 5. In
this plot of parameter space, we have darkened the portions
corresponding to the nonharmonic state. This plot (Fig. 9) has
a format similar to an Arnold tongue diagram, but we hasten to
add that unlike an Arnold tongue, in this case the oscillations
are not believed to be synchronized with the external driving
at fdr. A threshold for the driving amplitude required for this
nonharmonic state is marked in Fig. 9. We verify the reliability
of this observation of the nonharmonic state in our second
experiment, with constant fdr, by confirming that it is not an
artifact of the sweeping.

IV. SUMMARY

We have characterized synchronization of the self-excited
dust density waves in a dust cloud in a laboratory plasma.
In the absence of driving, the waves propagate at a natural

frequency f0. To provide driving, we apply a sinusoidal
voltage with an adjustable driving frequency fdr and driving
amplitude Adr to an electrode located above the dust cloud,
causing the ion density throughout the plasma to be modulated
sinusoidally at fdr. As in the experiment of Ref. [43], the
wave grows in amplitude as it propagates downward, attaining
nonlinear amplitudes. We determine spectra for fluctuations
in the brightness in video images, since the brightness is
proportional to the dust number density. We examine how
these spectra depend on the driving amplitude and frequency.

We find at least four distinct synchronized states: 3:1,
2:1, 1:1, and 1:2. In the harmonic synchronized state (1:1),
the wave oscillates at the external driving frequency. For the
subharmonic synchronized states (3:1 and 2:1), the wave oscil-
lates at a harmonic of fdr. We detect only one superharmonic
synchronized state (1:2) in which the wave oscillations are at
one-half the driving frequency.

Examining the spectra for the common signatures in the van
der Pol paradigm, we find that synchronization of our waves
has the signatures of the suppression mechanism but not the
signature of the phaselocking mechanism. Additionally, we
determined that period doubling and chaotic states were absent
in our experiment.

The synchronization we observe differs in at least two
additional ways from the van der Pol paradigm. First, there
is a threshold that the driving amplitude must exceed for
synchronization to occur, as can be seen in our Arnold tongue
diagram (Fig. 7). Second, for 1:1 synchronization, our Arnold
tongue does not have a single pointed tip, but instead has a
branched tip.

We find that sidebands appear in the spectra at frequencies
that are the sum or difference of f0 and fdr or their harmonics.
These sidebands are indications of nonlinear coupling. These
are seen for driving conditions fdr and Adr that are slightly
outside the Arnold tongues, i.e., for conditions that do not
quite allow synchronization. These sidebands vanish for the
synchronized states, as also occurs in the van der Pol paradigm.

We observe a feature in the spectra that we term a “non-
harmonic state,” which appears to be a nonlinear oscillation.
This feature appears in Fig. 5 at a spectral frequency between
15 and 17 Hz, which is neither the natural frequency nor a
subharmonic or superharmonic of fdr, as would be expected for
a synchronized state. This nonharmonic state is not a familiar
feature of the van der Pol paradigm.

ACKNOWLEDGMENTS

We thank M. Rosenberg and C. Brandt for helpful discus-
sions. This work was supported by NSF and NASA.

[1] D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys.
32, 419 (1994).

[2] F. Verheest, Space Sci. Rev. 77, 267 (1996).
[3] P. K. Shukla, Plasma Phys. Control. Fusion 42, B213 (2000);

Phys. Plasmas 8, 1791 (2001).
[4] M. Rosenberg, Astrophys. Space Sci. 277, 125 (2001).

[5] A. Piel and A. Melzer, Plasma Phys. Control. Fusion 44, R1
(2002); Adv. Space Res. 29, 1255 (2002).

[6] D. A. Mendis, Plasma Sources Sci. Technol. 11, A219
(2002).

[7] P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma
Physics (Institute of Physics, Bristol, 2002).

046401-10

http://dx.doi.org/10.1146/annurev.aa.32.090194.002223
http://dx.doi.org/10.1146/annurev.aa.32.090194.002223
http://dx.doi.org/10.1007/BF00226225
http://dx.doi.org/10.1088/0741-3335/42/12B/316
http://dx.doi.org/10.1063/1.1343087
http://dx.doi.org/10.1023/A:1012240331407
http://dx.doi.org/10.1088/0741-3335/44/1/201
http://dx.doi.org/10.1088/0741-3335/44/1/201
http://dx.doi.org/10.1016/S0273-1177(02)00194-1
http://dx.doi.org/10.1088/0963-0252/11/3A/333
http://dx.doi.org/10.1088/0963-0252/11/3A/333


SYNCHRONIZATION MECHANISM AND ARNOLD TONGUES . . . PHYSICAL REVIEW E 85, 046401 (2012)

[8] P. K. Shukla and B. Eliasson, Rev. Mod. Phys. 81, 25
(2009).

[9] A. Melzer and J. Goree, in Low Temperature Plasmas, edited
by R. Hippler, H. Kersten, M. Schmidt, and K. H. Schoenbach
(Wiley, Weinheim, 2008).

[10] O. Havnes, T. K. Aanesen, and F. Melandsø, J. Geophys. Res.
95, 6581 (1990).

[11] N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38,
543 (1990).

[12] A. Piel, Plasma Physics: An Introduction to Laboratory, Space,
and Fusion Plasmas (Springer-Verlag, Berlin, 2010).

[13] C. Thompson, A. Barkan, R. L. Merlino, and N. D’Angelo, IEEE
Trans. Plasma Sci. 27, 146 (1999).

[14] J. H. Chu, J.-B. Du, and I. Lin, J. Phys. D 27, 296 (1994).
[15] N. D’Angelo, J. Phys. D 28, 1009 (1995).
[16] A. Barkan, R. L. Merlino, and N. D’Angelo, Phys. Plasmas 2,

3563 (1995).
[17] H. R. Prabhakara and V. L. Tanna, Phys. Plasmas 3, 3176 (1996).
[18] C. Thompson, A. Barkan, N. D’Angelo, and R. L. Merlino, Phys.

Plasmas 4, 2331 (1997).
[19] R. L. Merlino, A. Barkan, C. Thompson, and N. D’Angelo,

Plasma Phys. Controlled Fusion 39, A421 (1997); Phys. Plasmas
42, 1607 (1998).

[20] E. Thomas Jr. and M. Watson, Phys. Plasmas 6, 4111 (1999).
[21] V. I. Molotkov, A. P. Nefedov, V. M. Torchinski, V. E. Fortov,

and A. G. Khrapak, J. Exp. Theor. Phys. 89, 477 (1999).
[22] V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov,

A. P. Nefedov, O. F. Petrov, and V. M. Torchinsky, Phys. Plasmas
7, 1374 (2000).

[23] A. A. Samaryan, A. V. Chernyshev, O. F. Petrov, A. P. Nefedov,
and V. E. Fortov, J. Exp. Theor. Phys. 92, 454 (2001).

[24] E. Thomas Jr. and R. L. Merlino, IEEE Trans. Plasma Sci. 29,
152 (2001).

[25] N. Hayashi, Phys. Plasmas 8, 3051 (2001).
[26] A. V. Zobnin, A. D. Usachev, O. F. Petrov, and V. E. Fortov,

J. Exp. Theor. Phys. 95, 429 (2002).
[27] V. E. Fortov, A. D. Usachev, A. V. Zobnin, V. I. Molotkov, and

O. F. Petrov, Phys. Plasmas 10, 1199 (2003).
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and M. Stanojević, Ref. [68]), and beam plasma oscilla-
tions (Y. Nakamura, Ref. [72]; Y. Saitou, Y. Nakamura,
M. Tanaka, A. Komori, and Y. Kawai, Ref. [73]), and the authors
of these investigations did not mention synchronization by
phaselocking.

046401-12

http://dx.doi.org/10.1088/0741-3335/35/12/008
http://dx.doi.org/10.1088/0032-1028/24/12/005
http://dx.doi.org/10.1088/0032-1028/24/12/005
http://dx.doi.org/10.1103/PhysRevLett.93.165004
http://dx.doi.org/10.1103/PhysRevLett.93.165004
http://dx.doi.org/10.1063/1.2147000
http://dx.doi.org/10.1063/1.2147000
http://link.aps.org/supplemental/10.1103/PhysRevE.85.046401
http://link.aps.org/supplemental/10.1103/PhysRevE.85.046401
http://dx.doi.org/10.1063/1.859987
http://dx.doi.org/10.1063/1.859987
http://dx.doi.org/10.1142/S0218127493001203
http://dx.doi.org/10.1142/S0218127493001203
http://dx.doi.org/10.1103/PhysRevE.50.3383
http://dx.doi.org/10.1103/PhysRevE.50.3383
http://dx.doi.org/10.1103/PhysRevE.84.016405
http://dx.doi.org/10.1103/PhysRevE.84.016405

