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Abstract— The Einstein frequency �E was experimentally
determined for a 2-D dusty plasma. We found �E = 49.4 s−1 and
50.2 s−1 for the collection of microspheres in a crystalline and
liquid-like state, respectively. Comparing to the nominal 2-D dust
plasma frequency ωpd, we found the ratio �E /ωpd ≈ 1/

√
3.

This experimental ratio is consistent with previous predictions
of Yukawa simulations. Our results were obtained by analyzing
images of the microspheres to obtain their positions, charge, and
the screening length; we used these measurements to calculate
resonant frequencies of test particles.

Index Terms— 2-D systems, crystal, dusty plasma, Einstein
frequency, experiment, imaging, liquid, strongly coupled plasma.

I. INTRODUCTION

IN LABORATORY experiments, dusty plasmas [1]–[3] con-
tain micrometer-sized microspheres that are highly charged

so that they exhibit strong coupling effects. As a result,
the collection of microspheres can behave as a liquid [4]–[6]
or as a solid-like crystalline lattice [7], [8]. The other com-
ponents of a dusty plasma include weakly coupled elec-
trons and ions, and neutral gas which apply a frictional
drag on the microspheres. Video microscopy allows imag-
ing of the microspheres, to determine their positions and
velocities [9]–[11].

The most common specification for strongly coupled dusty
plasmas is the Coulomb coupling parameter �. Defined as the
ratio of the interparticle potential energy and thermal kinetic
energy, � can be considered as a dimensionless inverse kinetic
temperature [12]. A strongly coupled dusty plasma typically
has solid-like behavior when � is of order 103, and liquid-
like behavior for lower values [13]. Another dimensionless
parameter is κ , which is the ratio of the interparticle spacing
and the screening length. Some dusty plasma researchers use
κ to define an effective Coulomb coupling parameter [14] �eff ,
which is diminished by the effects of shielding.

It is also common to specify a time scale for the motion
of the microspheres in a dusty plasma, and this can be done
by reporting either the dust plasma frequency ωpd or the
Einstein frequency �E . A familiar practice in the dusty plasma
literature is to normalize time by ωpd, and this is certainly
understandable to readers from the plasma physics community;
however, here we point out that the Einstein frequency will be
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more easily recognized by scientists in other areas of physics.
Normalizing time by �E could be especially helpful when
making a physical comparison of strongly coupled plasmas
with neutral liquids and solids, which of course have no plasma
frequency.

The Einstein frequency can also be used to characterize how
rapidly microscopic particle motion is scattered. As with mole-
cules in a liquid, the charged particles in a strongly coupled
plasma are scattered not by infrequent binary collisions, but
by constant interactions with multiple neighbors, so that the
researchers seldom invoke the term “collision frequency.” The
concept of a collision frequency is most suitable to describe
the rate of scattering by binary collisions in a weakly coupled
plasma, while the rate of scattering in a strongly coupled
plasma might be better described by �E .

The Einstein frequency �E , which is an abstract concept
from solid-state physics [15], is a resonant frequency for the
microscopic motion of a single movable atom. The neighbor-
ing atoms are assumed in this abstraction to be immovable
and frozen at their equilibrium positions. This concept of an
Einstein frequency for a crystal can be extended to liquids [16],
although this extension requires freezing the neighboring
atoms at their instantaneous positons, because unlike the case
of a crystal, in a liquid the atoms have no true equilibrium
positions.

In this paper, we will report an experimental determination
of the Einstein frequency for the collection of microspheres in
a dusty plasma, and we will compare its value to the dust
plasma frequency. We will do this for both a crystal and
a liquid. Although the concept of an Einstein frequency is
abstract, especially because of the way it invokes immovable
particles, we are able to obtain its value using instantaneous
experimental data for the microsphere positions and interpar-
ticle potentials.

Previous dusty plasma researchers have devised several
practical methods of obtaining the Einstein frequency [17].
These methods were developed for two simulations [14], [18]
that we will discuss in the following and an experiment. In the
experiment [19], individual microspheres were tracked for an
extended time, to calculate their mean-square displacement.
That method of estimating �E is different from the method
that we use here, which is based on the positions of multiple
microspheres at a single time.

II. EINSTEIN FREQUENCY VERSUS PLASMA FREQUENCY

A. Scale and Dimensionality

One of the conceptual differences between the plasma fre-
quency and the Einstein frequency is the role of length scale.
The plasma frequency generally describes particle motion due
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to charge separation at a macroscopic scale, while the Einstein
frequency describes motion at a microscopic scale.

Besides scale, dimensionality of the microsphere cloud is
another factor that distinguishes ωpd and �E . For dusty plasma
experiments, dimensionality is of practical importance because
the laboratory experiments can be done with a cloud of
microspheres that either fills a 3-D volume or settles in a
2-D monolayer due to sedimentation under the force of
gravity [2]. In either case, electrons and ions always fill a
3-D volume that is larger than the microsphere cloud.

The Einstein frequency is a concept that is the same in
2-D and 3-D. This is so because the microscopic restoring
force in the case of a crystal is linear with small dis-
placements, regardless of whether the microspheres lie in a
2-D plane or fill a 3-D volume. The plasma frequency, on the
other hand, has a formula that must be written differently for
each dimensionality.

For the case of a 3-D cloud of microspheres, the dust plasma
frequency [17] formula is ωpd = (3Q2/4πε0ma3

3-D)1/2,
and this represents a true resonant frequency exactly like
an electron plasma frequency or an ion plasma frequency,
for a 3-D plasma. Here a3-D = (4πn3-D/3)−1/3 is the
3-D Wigner–Seitz radius, while Q is the charge of the
microsphere, m is the microsphere mass, and n3-D is
the 3-D number density of the microspheres.

For the case of a 2-D cloud [17], there is no 3-D number
density for the microspheres, so it is common to write

ωpd = (
Q2/2πε0ma3

2-D

)1/2 (1)

where a2-D = (πn2-D)−1/2 is the 2-D Wigner–Seitz radius
and n2-D is the areal number density of the microspheres.
We note that (1) does not describe a true resonant frequency
for microsphere motion; to understand why this is so in 2-D,
one can imagine a scenario of displacing two planar sheets
of charge, one consisting of dust and the other of electrons
and ions. In this scenario, the restoring force arising from
macroscopic electric fields would not be linearly proportional
to the macroscopic displacement of the sheets as it would
be for slabs in 3-D, and therefore there would be no resonant
motion at this frequency. For this reason, our practice is to add
the word “nominal” to the phrase “2-D dust plasma frequency”
when referring to (1).

B. Ratio

Both the plasma and Einstein frequencies arise from a
combination of inertia (described by the mass m of particles),
and electric forces (which depends on the charge Q and
spacing a between particles). There is only one simple way
to combine these three quantities (m, Q, and a) in a power-
law expression to yield a frequency. That expression has the
form ω ∝ Qm−1/2a−3/2. Since this form must be common
to both the plasma and Einstein frequencies, we expect the
ratio �E /ωpd to be a dimensionless constant. An experimental
determination of this ratio is one of the goals of this paper.

The ratio of �E /ωpd is predicted by theory and simulations
to be of order �E/ωpd = 1/

√
3 for strongly coupled plasmas

in general. This ratio is exactly 1/
√

3 for the special case of

a 3-D one-component plasma (OCP) [17]. For other cases,
�E /ωpd can be different from 1/

√
3. When shielding is

added to the interactions of particles in a strongly coupled
plasma (like a Yukawa OCP, for example), �E /ωpd can be
somewhat diminished. Dimensionality can also affect this ratio
slightly [17].

III. EXPERIMENT

In this paper, we perform a further analysis of data from
the dusty-plasma experiment of Haralson and Goree [6], [20],
for the purpose of determining the Einstein frequency of the
microsphere component. This experiment had microspheres
that were electrically levitated in a 2-D layer within the
plasma chamber. The 3-D volume of the chamber was filled
with electrons and ions. The experiment was performed with
several runs, for both crystalline and liquid conditions. We will
compare the Einstein frequency for a crystalline run and a
liquid run. For the run with liquid conditions, the experi-
menters applied laser heating to raise the temperature above
the melting point, without changing any other parameters. This
experiment, which was described in detail in [6] and [20],
is briefly reviewed in the following.

A capacitively coupled plasma was generated by partially
ionizing argon gas at a pressure of 6 mTorr. Radio frequency
power was applied at 13.56 MHz to a lower electrode, whereas
the chamber walls acted as a grounded electrode.

Approximately 6000 microspheres of 8.69-μm diameter
were introduced into the plasma. The microspheres were
made of melamine formaldehyde, which is a polymer sub-
stance, and they had a mass m = 5.2 × 10−13 kg, based
on the manufacturer’s specifications. After the microspheres
were introduced into the plasma with a simple shaker, they
settled into a single horizontal layer, which was electrically
levitated above the lower electrode. The microspheres were
illuminated by a horizontal laser sheet and imaged from above
by a top-view video camera, operated at 70 frames/s. About
1400 microspheres appeared in the camera’s field of view,
which was 17.6 mm × 23.4 mm. Coordinates of microspheres
were measured within each still video frame by the moment
method of image analysis [9]. The typical spacing between
microspheres was characterized by the 2-D Wigner–Seitz
radius a2-D = 0.307 mm. Due to collecting electrons and ions,
the microspheres accumulated a charge which was determined
by a wave-spectrum method [20], [21] to have the value
Q = −15 500 e. The nominal 2-D dust plasma frequency
ωpd = 86 s−1 and the dimensionless screening parameter κ =
0.72 were also obtained in the spectrum analysis. For these
values, the screening length was λ = a2-D/κ = 0.426 mm.

In an experimental run without laser heating,
the microspheres self-organized in a crystalline lattice,
as seen in Fig. 1(a). For this run, the microspheres had a low
kinetic temperature of about 830 K, and a large Coulomb
coupling parameter � = Q2/4πε0a2-DkB T = 15 400. (The
effective Coulomb coupling parameter was �eff = 13 000,
using the expression from [14].)

In the other experimental run, 12 W of laser heating was
applied to melt the lattice and make a liquid. The kinetic
temperature of the microspheres was increased to 98 000 K,
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Fig. 1. Example images of microspheres in the 2-D dusty plasma.
Microspheres, levitated in a horizontal monolayer, were imaged from above
by a top-view video camera. We analyzed data from the camera’s entire field
of view, which was 17.6 mm × 23.4 mm. For presentation purposes, here
we show cropped images of 7% of the field of view. (a) In a run without
laser heating, the microspheres self-organized into a triangular lattice, with a
sufficiently low kinetic temperature so that the Coulomb coupling parameter
had a large value � = 15 400. (b) In a run with laser heating, the kinetic
temperature of the microspheres was increased so that � = 130 and the
microspheres had disordered positions and behaved collectively as a liquid.
Positions were measured by the moment method of image analysis [9]. In the
analysis following these position measurements, we select one microsphere
as a test particle and artificially assume that all other microspheres are frozen
in their positions, to allow a determination of the force constant k for that
test particle.

with � = 130 (and �eff = 110). The microscopic spatial
structure, as seen in Fig. 1(b), exhibited the disorder typical of
a liquid. Other conditions, aside from the kinetic temperature
and the disorder, were generally the same in the two runs.

IV. METHOD OF CALCULATING EINSTEIN FREQUENCY

To obtain the Einstein frequency, we obtain values for
the interparticle forces, using as an input the positions of
individual microspheres in a video frame. To do this requires
a model for the force, which we assume to be a Yukawa
(Debye–Hückel) interaction. This choice of interaction poten-
tial is experimentally justified by the binary-collision exper-
iment of Konopka et al. [22]. We calculate the interparticle
force as the gradient of the Yukawa potential

φ(ri j ) = Q2

4πε0ri j
exp(−ri j /λ) (2)

for a pair of microspheres i and j separated by a distance ri j .
To use this expression, we require the microsphere positions,
as well as values for Q, m, and λ.

Before presenting our method of obtaining the Einstein
frequency, we review the method that Bakshi et al. [18]
used in their simulation. At a single time step, which is
analogous to a video frame in an experiment, Bakshi et al. [18]
artificially froze the positions of all particles, except for one
test particle. The motion of their test particle was then evolved
over time, taking into account forces from all the frozen
particles. They Fourier analyzed the test particle’s motion, and
identified the dominant frequency. This dominant frequency
varied somewhat, from one test particle to another. Compiling
many determinations of this dominant frequency, they prepared
a histogram of its square. The mean of this histogram was
compared then to the plasma frequency. For their 3-D simu-
lation of an OCP, they found the Einstein frequency had the
expected ratio of �E/ωpd = 1/

√
3.

In our analysis, we start the same way as Bakshi et al. [18].
Using the instantaneous particle-position data from a single
video frame, we artificially froze the positions of all particles,
except for one test particle. Thereafter, our procedure differed
from that of Bakshi et al. [18]. We artificially displaced
a selected test particle in a chosen direction by a small
distance 
x, which was never larger than 0.01 mm. We then
computed the net force F acting on the test particle, due to
the other microspheres, which are analogous to the frozen
particles of Bakshi et al. [18]. (In this force calculation,
we included only the microspheres within a cutoff radius
of 6λ.) To obtain a force constant k, we made multiple
displacements 
x along the same direction, computing the
net force F at each displacement, and then performed a linear
fit of F with respect to 
x. The slope of this fit yielded a
measure of the force constant k. Next, we calculated

√
k/m to

yield one observation of the resonant frequency. We repeated
this process to make many more observations, first by varying
the direction of the displacement 
x over 360 angles at
1° intervals, and second by selecting thousands of different test
particles. These calculations were repeated using a total of 102
still images from the video, to yield millions of observations.

These observations of the resonant frequency were counted
to prepare histograms. These histograms are shown separately
in Fig. 2(a) for the crystal run � = 15 400 (�eff = 13 000)
and Fig. 2(b) the liquid run � = 130 (�eff = 110).

Our determination of the Einstein frequency is the mean of
a histogram. While this result has only tiny random errors, due
to our use of millions of observations, it will have a systematic
error, as we discuss in the following.

V. RESULTS

A. Einstein Frequency
We find that the Einstein frequency in the experiment did

not change significantly between the crystal and liquid runs.
The values obtained were �E = 49.4 s−1 for the crystal, and a
slightly higher value of �E = 50.2 s−1 for the liquid. Compar-
ing these two results, we note a trend of �E increasing weakly
with temperature, which is consistent with the simulation of
Kalman et al. [14].

From these results, we compute the ratio of the Einstein
frequency and the nominal 2-D dust plasma frequency ωpd.
We find �E /ωpd = 0.57 for the crystal and 0.58 for the liquid.
These ratios can be also written as �E/ωpd = 0.993/

√
3 and

1.009/
√

3, respectively.
Next, we compare these experimental ratios to theory

and simulation. As mentioned in Section II, the theory pre-
dicts �E/ωpd = 1/

√
3 for a 3-D OCP. Our experiment

differs from a 3-D OCP in at least two important ways: our
microspheres were confined to two dimensions, and they expe-
rienced shielding. Nevertheless, we find that our experimental
ratio was very close to 1/

√
3.

The simulation of Kalman et al. [14] is more comparable
to our physical system because their particles also moved in
two dimensions and experienced shielding according to the
Yukawa potential. They obtained �E using a formula from the
quasilocalized charge approximation theory, with an input of
the pair correlation function from their simulation. The ratios
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Fig. 2. Histograms of experimental determinations of the resonant frequency
√

k/m, based on the force constants k for a multitude of different test particles.
Data shown here are from the same two runs as in Fig. 1. Each count in the histograms represents an evaluation of

√
k/m for a displacement of a single

test particle, in a single direction, and in a single video frame. The Einstein frequency �E is obtained as the mean of the histogram, shown as dashed lines,
with (a) �E = 49.4 s−1 = 0.57 ωpd for the crystal and (b) �E = 50.2 s−1 = 0.58 ωpd for the liquid. As compared to the crystal, the liquid has a slightly
higher Einstein frequency, and its histogram has a much greater width due to the greater disorder in the positions of microspheres.

Fig. 3. Comparison of our experimentally obtained Einstein frequency �E
to the simulation results of Kalman et al. [14]. In the vertical axis, we plot
the ratio of �E to the nominal 2-D dust plasma frequency ωpd. For the
horizontal axis, κ is the ratio of the Wigner–Seitz radius a2-D to the screening
length λ. Our experimentally obtained ratios of �E /ωpd are consistent with
the simulation results, and they exhibit the same weak trend of �E increasing
slightly with the dimensionless temperature �−1.

of �E /ωpd reported from their simulation are plotted in Fig. 3,
along with our experimental data. We see that our experimental
data point for a liquid is consistent with their simulation data
points, which are also for a liquid. An interpolation between
the simulation data points comes to within 8% of our liquid
data point.

We can also remark upon the finite width of the peaks
in the histograms in Fig. 2. For a crystal, the histogram
has a finite width due to at least two factors: variation of
instantaneous positions of microspheres due to their finite
kinetic temperature and variation of the force constant k with
respect to direction in a lattice. For a liquid, the histogram
is much wider, which we attribute to greater disorder in the
spatial structure. A pair of microspheres in a liquid can be
much closer or much farther apart than in a crystalline lattice,
leading to a greater variation in the net force F acting on a
test particle.

B. Measurement Errors

As mentioned above, random errors in our determination of
the Einstein frequency were negligible, but systematic errors
arise from uncertainties in several inputs. The two inputs
that contribute the most error for our determination of �E

are the values of ωpd and κ , which have uncertainties that
were reported in [20]. We used the one-sigma range of these
uncertainties to estimate the error bars in our reported values
of �E as ±0.9 s−1, for both the crystal and liquid. Due to
their systematic source, the error bars in �E for the crystal and
liquid are not independent; they are either both positive or both
negative, and moreover, have nearly the same magnitude.
Consequently, the 0.8 s−1 difference between our two values
of �E is statistically significant despite being smaller than the
error bars.

The dimensionless ratio �E /ωpd has two principle sources
of error, ωpd and κ . The error due to ωpd fortunately cancels,
because �E and ωpd have the same dependence on Q and m.
The only other input for calculating ωpd is a2-D, which has
a negligible uncertainty. On the other hand, the error due
to κ does not cancel out. For our experimental data points
in Fig. 3, the uncertainty in κ would contribute both a
horizontal error bar, which we show, and a vertical error bar,
which was not determined.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WONG et al.: EINSTEIN FREQUENCY MEASUREMENT 5

C. Analytic Approximation
Separately from our experimental results, we also report an

approximate analytic expression for �E /ωpd. This expression
may be useful for readers of other papers that report only
values of ωpd, but not �E .

We fit the simulation data points reported in Fig. 2(b) of
Kalman et al. [14] to a simple polynomial. As compared to our
experiment, their simulation has the advantage of providing
results for more values of � and κ . We found that their data,
over the ranges 40 < �eff < 120 and 0 < κ < 3, are fit
adequately by

�E

ωpd
= 1√

3
(1.142 − 0.00052�eff − 0.225κ − 0.011κ2). (3)

This fit can be used with some confidence because it is good
to within 5% of the simulation data points.

VI. CONCLUSION

We experimentally determined the Einstein frequency for
the microsphere component of a 2-D dusty plasma. The
ratio �E /ωpd was nearly 1/

√
3, which is consistent with the

MD simulation of Kalman et al. [14]. The experimental ratio
is slightly higher for liquid than for a crystal.
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