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Fluctuation theorems [1–4] describe nonequilibrium
stochastic behavior in small systems. Whilst experi-
ments have shown that fluctuation theorems are obeyed
by single particles in liquids [5] and several other physi-
cal systems [6–10], it has not been shown that strongly
coupled plasmas obey these theorems. Plasmas are said
to be strongly coupled when interparticle potential en-
ergies are large compared to kinetic energies. Charged
particles in such plasmas can behave collectively like liq-
uids [11, 12], but with essential differences, such as long-
range collisions [13]. It remains unexplored whether, de-
spite these differences, the stochastic behavior of strongly
coupled plasmas will obey fluctuation theorems. Here
we demonstrate experimentally that a strongly coupled
dusty plasma obeys the fluctuation theorem of Evans,
Cohen, and Morriss (ECM) [14], which was developed
for a simple liquid in a nonequilibrium steady state.
This fluctuation theorem describes the entropy produc-
tion arising from collisions in a steady laminar shear flow.

A dusty plasma [15–17] is a four-component mixture
of microspheres, electrons, positive ions, and a rarefied
neutral gas, which all share a volume [18]. The micro-
spheres, which are the heaviest of these components, de-
velop large charges [19] so that they become strongly cou-
pled [20]. The lighter charged components of the dusty
plasma (electrons and positive ions) are weakly coupled.
Dusty plasmas have much in common with other strongly
coupled plasmas, such as ultracold neutral plasmas [21],
and warm dense matter [22] as well.

The collection of microspheres can undergo a liquid-
like flow when external forces are applied by laser
beams [23–27]. In this way, the microspheres can be
driven into a shear flow, i.e., a flow with a transverse
gradient in the flow velocity. In the shear flow, entropy
production results from collisions between microspheres.

Many fluctuation theorems center on the rate of en-
tropy production in nonequilibrium systems below the
thermodynamic limit. Fluctuation theorems (not to be
confused with the similarly named fluctuation-dissipation
theorem) all spawned from the ECM fluctuation theorem;
this original fluctuation theorem was developed especially
for a steady-state laminar shear flow. In a shear flow, en-
tropy production is generated by viscous heating. This
viscous heating is always positive in the thermodynamic
limit, but it can fluctuate briefly to negative values for
a subsystem within the fluid, containing a small number
of molecules. These fluctuations, with negative heating
and therefore negative entropy production, have been de-

scribed as violations of the second law of thermodynam-
ics [14].

The ECM fluctuation theorem compares these
negative-entropy-production fluctuations to the more
common positive fluctuations. In particular, the prob-
abilities of these two kinds of fluctuations are predicted
to have a ratio obeying [14, 28]

ln

[
p(στ = −C)

p(στ = C)

]
= −Cτ as τ →∞. (1)

We will later summarize Eq. (1), which is the historically
important ECM fluctuation theorem, as LHS = RHS as
τ → ∞. In Eq. (1), στ is the entropy production rate
averaged over an observation time τ , and p(στ = −C)
is the probability that στ has a specified negative value
−C.

In addition to our main purpose of demonstrating that
strongly coupled plasmas can obey a fluctuation theorem,
our experiment serves to also reveal the robustness of the
ECM fluctuation theorem. We do this by showing that
beyond the original intended system of a simple liquid
in a shear flow, ECM also works for a system with ad-
ditional complications. These complications, for a dusty
plasma, include long-range potentials and an open sys-
tem for energy flow. The long-range screened Coulomb
potentials for the microspheres are known to lead to dis-
tinctive behavior such as a minimum in viscosity with re-
spect to temperature [29]. The open system character of
the collection of microspheres arises from flows of energy
to and from the microspheres. Laser heating provides an
external energy input, as does a powered electrode that
sustains electric fields. These fields, which are modified
by the electrons and ions, drive an ion flow that can give
some of its energy to the microspheres. The combination
of these energy inputs is balanced by an energy loss to
the neutral gas due to friction. We will find that despite
all these complications, ECM is so robust that it accu-
rately describes the fluctuations in entropy production in
our collection of microspheres.

Our dusty plasma consisted of polymer microspheres
suspended in a weakly ionized argon gas. The ≈104

microspheres were electrically confined to a single two-
dimensional layer within the three-dimensional volume
filled by the other dusty plasma components. The micro-
spheres, of 8.69 µm diameter, accumulated a large neg-
ative charge Q = −15, 000e, where e is the elementary
charge. Their mutual repulsion caused the microspheres
to be spaced with a Wigner-Seitz radius a = 0.33 mm.
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FIG. 1: Microsphere trajectories and hydrodynamic profiles in the dusty plasma experiment. Thousands of
mutually repulsive charged microspheres were electrically levitated as a single layer. We imaged the layer with a top-view video
camera, and analyzed images to measure the positions and velocities of individual microspheres [30]. a, Tracks of individual
microspheres in the camera’s field of view are shown over a duration of 0.3 s, revealing a combination of random thermal motion
and directed flow. The thermal and flow velocity were of the same order, 1 mm/s. The collective flow of the microspheres, which
was laminar, was driven by the radiation pressure force of oppositely directed shear laser beams as shown in a. Simultaneously,
heating was applied separately [24] over a much larger area by two other laser beams (not shown here) to sustain liquid-like
conditions in the microsphere layer. We direct our attention to a specific subsystem, shown as a rectangle containing N = 56
microspheres. b, The flow pattern of the microspheres is a shear flow, with a linear gradient in the central region. This gradient
γ appears in the Navier-Stokes energy equation term µγ2, where µ is the viscosity and γ = ∂ux/∂y. A non-zero value of γ
gives rise to viscous heating, which corresponds to entropy production. We obtained the hydrodynamic flow velocity profile
as an average of the microsphere velocities. c, The hydrodynamic kinetic temperature profile is nearly uniform in the central
region. This temperature was obtained from the mean-square microsphere velocities after subtracting the local flow velocity.

The microspheres collectively had an irregular liquid-like
arrangement, due a kinetic temperature that was ele-
vated using two laser beams [24]. In addition to this
laser heating, a separate pair of laser beams was used to
drive the collection of microspheres into a laminar shear
flow.

The microsphere motion resulting from laser manipu-
lation in our experiment is shown in Fig. 1. Represen-
tative microsphere trajectories in Fig. 1a show that the
flow was straight and laminar, and that individual micro-
spheres not only participated in the overall flow but also
exhibited their own random thermal motion. The hy-
drodynamic profiles in Fig. 1b,c confirm that the kinetic
temperature T is uniform, and the flow velocity profile
is linear within 9.0 < y < 11.5 mm, which is the central
region that we analyze.

We measured the local entropy production rate as-
sociated with viscous heating among the collection of
microspheres. The instantaneous rate [14] σ(t) =
−Pxy(t)γ/kBT is calculated from the positions and ve-

locities of microspheres and the binary microsphere-
microsphere interaction forces. Other forces, whether
from an external source or from other components of
the dusty plasma, do not enter into the expression above
and therefore do not affect the entropy production that
we measure, as explained in the Supplementary Informa-
tion. Here, Pxy(t) is the instantaneous shear stress.

In our experiment, video microscopy and tracking of
the individual microspheres provided the necessary in-
puts to compute the shear stress [26] Pxy(t), and in turn,
σ(t) in a shear flow. The resulting time series σ(t), for a
subsystem of N = 56 microspheres, is the basis of all our
remaining analysis; a portion of this time series is shown
in Fig. 2a.

To assess whether our liquid-like strongly coupled
plasma obeys ECM, we need distributions of the time
averaged entropy production rate στ . We prepared these
distributions as histograms, like Fig. 2b,c. This was done
by averaging the σ(t) time series within segments of du-
ration τ , yielding στ . Then, histograms were made by
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FIG. 2: Time series and histograms of entropy production rate. Using our particle-level experimental data, we obtain
the rate of entropy production for a subsystem of N = 56 microspheres. We report both the instantaneous rate σ(t) and an
average rate στ = 〈−Pxy(t)γ/kBT 〉τ for various observation times τ , where Pxy(t) is the shear stress and 〈...〉τ is a time average.
a, Time series for the first 20% of the data set for the instantaneous entropy production rate. Second law violations are seen
when σ(t) fluctuates to negative values in the shaded region. Whilst σ(t) does fluctuate to these negative values, it is more
often positive, with a positive average value as required by the second law. b,c, Histograms of the time averaged rate στ also
exhibit negative fluctuations, but less so for a long observation time τ (b) than for a short τ (c). Such histograms are used as
the inputs for the LHS of Eq. (1).

counting the events when στ fell within a specified bin.
Of particular interest are the negative fluctuations of στ ,
which can be seen in the shaded regions of Fig. 2b,c.

Counts in the experimentally obtained histograms, like
those in Fig. 2b,c, were used as the probabilities p in the
LHS of the ECM fluctuation theorem, Eq. (1). We first
chose a value of τ and selected two oppositely valued his-
togram bins, στ = ±C. Then, we calculated the ratio
of the counts in the bins for −C and +C, allowing us to
obtain the LHS using Eq. (1). The RHS was also cal-
culated from C and τ . Finally, we compare the LHS to
the RHS of Eq. (1) to test whether our strongly coupled
plasma obeys the ECM fluctuation theorem. These re-
sults are presented in Fig. 3a,b, for a long τ and a short
τ , respectively.

Our chief result is that the ECM fluctuation theorem is
obeyed by the strongly coupled component of our dusty

plasma, the microspheres. This is demonstrated exper-
imentally in Fig. 3a, where the LHS and RHS pairs of
data points agree within error bars, for Eq. (1). We note
that this agreement did not require adjusting any free
parameter.

This agreement also demonstrates that, as a descrip-
tion of a shear flow, ECM is not limited to its original
scope of simple liquids. Our experiment shows that ECM
also accurately describes a shear flow for one component
of a more complicated system.

Another aspect of the ECM fluctuation theorem that
we can explore is its asymptotic behavior. According to
Eq. (1), the LHS and RHS must converge together for
increasing τ . This gradual tendency can be seen in our
experimental data by comparing Fig. 3a and Fig. 3b. In
Fig. 3a for a long τ , the LHS and RHS have converged
together, but in Fig. 3b for a short τ , they have not
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FIG. 3: Demonstration that a strongly coupled plasma obeys the ECM fluctuation theorem. We compare the
two dimensionless terms of Eq. (1), the left-hand side (triangles) and right-hand side (circles), by examining a pair of data
points for a given value of C. Most pairs of data points agree within error bars in a for a long τ , but not in b for a short
τ ; this result demonstrates that our data obey the ECM fluctuation theorem, including the asymptotic property of Eq. (1)
that LHS = RHS only as τ → ∞. The LHS data points in a,b were obtained using histograms of στ , Fig. 2b,c. Error bars,
which represent one-standard-deviation uncertainties, were found from counting statistics for these histograms. Straight lines
are drawn through the data points to guide the eye.

converged.
The time scale for this convergence is a quantity that

should be useful, in general, for gaining an understanding
of a physical system. However, the fluctuation theorem
itself is silent upon the matter of this time scale. More-
over, the literature says little about methods of measur-
ing convergence time.

We have devised a prescription for precisely obtaining
a characteristic time for convergence, tc. We use a curve
D(τ), Fig. 4, where D(τ) is the difference in the slope
of two curves: LHS vs C and RHS vs C, at a specified
value of τ . For our experiment, the curve D(τ) decays
exponentially, allowing us to define its e-folding time as
tc.

For our experiment, we find a convergence time tc =
0.037 s. This value describes the time required for
stochastic effects to begin accumulating in our shear
flow. For our experimental conditions, tc is compara-
ble to the inverse of the mean entropy production rate
of 0.053 s in Fig. 2, and tc is also comparable to the
inverse Einstein frequency (see Supplementary Informa-
tion) Ω−1

E = 0.024 s.
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Static and dynamic shear viscosity of a single-layer com-
plex plasma. Phys. Rev. E 84, 016404 (2011).

[27] Feng, Y., Goree, J. & Liu, B. Observation of temperature
peaks due to strong viscous heating in a dusty plasma
flow. Phys. Rev. Lett 109, 185002 (2012).

[28] Gallavotti, G. & Cohen, E. G. D. Dynamical Ensembles
in Nonequilibrium Statistical Mechanics. Phys. Rev. Lett.
74, 2694-2697 (1995).

[29] Sanbonmatsu, K. Y. & Murillo, M. S. Shear Viscosity
of Strongly Coupled Yukawa Systems on Finite Length
Scales. Phys. Rev. Lett. 86, 1215-1218 (2001).

[30] Feng, Y., Goree, J. & Liu, B. Accurate particle position
measurement from images. Rev. Sci. Instrum. 78, 053704
(2007).

Acknowledgements We thank R. Belousov and E.
G. D. Cohen for helpful discussions. This work was sup-
ported by the U.S. National Science Foundation, the U.S.
Department of Energy, and NASA.

Author contributions C.-S.W. and J.G. conceived
and designed the experiment; Z.H. performed the ex-
periment; C.-S.W. and J.G. analyzed the data; B.L.
performed the numerical simulations; C-.S.W. and J.G.
wrote the paper.

Competing financial interests The authors declare
no competing financial interests.

Data availability. The data that support the plots
within this paper and other findings of this study are
available from the corresponding author upon reasonable
request.


