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A. Details of the experimental method and parameters 

Our plasma was made by evacuating air from the metal vacuum chamber of Ref. [18], filling it with 

argon to a pressure of 6.0 mTorr, and applying a peak-to-peak voltage of 100 V at 13.56 MHz between a 

horizontal electrode and the chamber wall, which acted as the other electrode. We then added ≈104 

melamine-formaldehyde microspheres of 8.69 m diameter. Each microsphere accumulated a charge Q 

= -15,000e on average, where e is the elementary charge. The microspheres were electrically levitated 

due to a dc bias of -61 V on the horizontal electrode. The charged microspheres maintained a spacing 

that corresponded to a Wigner-Seitz radius a = 0.33 mm, where  


a n
1 2  and n is the areal number 

density. A typical microsphere moved with a velocity of only millimeters per second, due to its large 

mass, which was 7.82  1012 times greater than an argon atom. 

The collection of microspheres is an open system that interacts with the other charged components of 

the dusty plasma (electrons and positive ions). Three important effects of the electrons and ions on the 

microspheres are 

(1) the charging of microspheres (which depends on the floating potential of the microspheres) 

(2) the screening of the interaction between microspheres 

(3) the levitation and confinement of microspheres. 

The first two effects determine the interaction potentials between microspheres, and in turn, the 

strength of collisions between microspheres. For our experiment, both the charge and screening are 

essentially steady, so that the strength of collisions between microspheres does not change noticeably 

during the experiment. Further details on charging and screening are given in Section C1 of the 

Supplementary Information. 

To control the kinetic temperature of the microspheres and to sustain a steady shear flow, we used two 

pairs of laser beams.  

 One pair of moving beams provided heating24 so that the kinetic temperature was raised to a 

level of T = 99,300 K = 1.47Tmelt. Here we use the melting point data of Ref. [32] to define Tmelt. 

The heating beams provided heating using a 4-s sequence that repeated itself 4 times, each 

time flipping vertically or horizontally24. 

 The other pair provided shear; these beams were in the plane of the microspheres, where they 

imparted momentum through the radiation pressure force. The shear laser beams were 

directed in the +x and -x directions. As shown in Fig. 1a, the shear laser beams were localized 

within a pair of stripes, each of which was 2 mm wide, and they were spaced 3 mm apart.  

Tracking the microspheres yielded the experimental data. Images were recorded by a video camera, 

which viewed the microsphere layer from above at 60 frames/s. The 23.4 mm  17.6 mm region that 

was viewed contained approximately 1100 microspheres. Particle tracking was done using optimized 
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image analysis methods30,31,33 to yield time series data for the positions and velocities of individual 

microspheres.  

Our experimental parameters were chosen so that the random thermal velocity of individual 

microspheres and the flow velocities were of the same order, 1 mm/s. Other experimental parameters 

include: nominal 2D dust plasma frequency34 pd = 74 s-1; neutral gas friction force time constant35,36 of 

1.1 s-1; shear rate (measured as the transverse gradient of the flow velocity between the shear beams) 

of = 0.58 s-1; kinematic viscosity  = 2.7 mm2/s, obtained as in Ref. [26]; Reynolds number Re = 4; 

Coulomb coupling parameter37  = 114; and shielding parameter  = a/ = 0.882. 
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B. Details of the calculation of the entropy production rate and the shear stress  

1. Equations for computing the entropy production rate 

Unlike many experiments for fluctuation theorems, ours centers on the measurement of the entropy 

production rate (t). This measurement of (t) is used as an input for Eq. (1), the fluctuation theorem of 

Evans, Cohen, and Morriss (ECM). In most other kinds of physic systems, it is not possible to measure 

(t) within a small subsystem. However, for a dusty plasma experiment like ours with measurements of 

positions and velocities of individual microspheres in a shear flow, it is possible to obtain (t) for a small 

number of particles. We computed the time average entropy production rate as 
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and the instantaneous entropy production rate as 
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The shear stress  was computed as the transverse gradient of the flow velocity, the kinetic temperature 

T was obtained from the mean-square microsphere velocity after subtracting the local velocity, and the 

instantaneous shear stress Pxy(t), which is specific to the xy plane, was calculated26 according to  
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Here, i = 1,…,N labels the microspheres within a subsystem and the final sum is over all microspheres, 

which are labeled j. The inputs for the shear stress are the individual particle masses m and velocities 

relative to the background flow v , interparticle distances r, and interparticle forces F.  

Binary interparticle electric forces among the microspheres were computed as the gradient of a 

potential  

   ( )ij ijF r r  . (S4) 

We modeled the pairwise potential of microspheres as a Debye-Hückel potential 
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which requires as inputs: microsphere charges Q, interparticle distances r, and a screening length . As 

we discuss below in Section B3, the only force that affects the shear stress and therefore the entropy 

production rate in the expressions above is the binary interparticle electric force. 
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The choice of the Debye-Hückel potential is justified experimental38 as well as simulation39 results from 

the literature. A key point is that all our microspheres remained in a single layer that was perpendicular 

to the ion flow. We recognize that the Debye-Hückel potential is not applicable in general in an ion flow 

due to wakefield effects, however, it has been shown to be applicable in the plane perpendicular to the 

ion flow, as in our experiment. The simulation of Lampe et al.39 considered the full three-dimensional 

volume around an isolated microsphere, and the authors found that the Debye-Hückel potential 

accurately described the disturbance of the ion-electron background on a plane perpendicular to the ion 

flow. The experiment of Konopka et al.38 demonstrated that the binary interaction of two microspheres 

was accurately described by the Debye-Hückel potential up to a distance of about 3 screening lengths; 

beyond that distance the experimental uncertainties in measuring the potential energy were too large. 

In any case, our calculation of the forces is dominated by microspheres within this distance of 3 

screening lengths, so that it is irrelevant whether the potential is theoretically different for larger radii. 

The presence of any hypothetical attractive forces at much larger radii would have negligible effect on 

the viscous heating, which is dominated by collisions with nearest neighbors, which are all within about 

one screening length in our experiment.  

2. Entropy production vs. entropy 

Entropy production is a signature of a nonequilibrium process, and it is associated with irreversibility. 

Our microspheres, because they are undergoing a shear flow driven by external forces, comprise a 

nonequilibrium steady state. The entropy production rate that we calculate is associated with viscous 

heating due to this shear flow.  

Entropy, on the other hand, is a description of an equilibrium. Our experiment is not an equilibrium, so 

we do not calculate an entropy.  

3. Isolating the entropy production process for viscous heating 

We are able to analyze just the entropy production associated with viscous heating, separately from 

other entropy production processes. This separateness owes to the separateness of the forces 

underlying the processes. For entropy production associated with viscous heating, the only force that 

enters into the standard expressions Eqs. (S2-S3) is the binary interparticle forces for a single 

component, the microspheres. These expressions do not depend on any other forces that are present, 

such as the radiation pressure force (for laser heating and driving the shear flow) or the frictional force 

experienced by one component of the dusty plasma moving relative to another. While these other 

forces can cause entropy production, they are associated with processes distinct from those described 

by Eqs. (S2-S3). 

Our experiment’s design allows a further simplification in the analysis for viscous heating: in Eqs. (S2-S3) 

we only need to compute the entropy production due to vector components in the x-y plane. In other 

words, in the experiment we need only to observe the positions, velocities, and forces in the x-y plane. 

This is so because the experiment was designed to have no shear in the y-z or x-z planes, so that the 

viscous heating for motion in those planes would be zero. 
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For these reasons, in the Letter we analyze just the entropy production rate associated with viscous 

heating among the microspheres, using only the x-y components of their positions, velocities, and 

forces. In the culmination of the Letter, we find that this well-defined entropy production rate obeys the 

ECM fluctuation theorem. 

 

4. Selection of a subsystem of microspheres within the shear flow 

In general, fluctuation theorems are of interest for small systems. In our experiment, we must choose a 

small subsystem within our larger experimental system. Unlike simulations of small systems that make 

use of periodic boundary conditions, our experimental data includes thousands of microspheres, too 

many for a fluctuation theorem. Here we present prescriptions for two methods that we devised to 

calculate Pxy(t), one that we used in the Letter and another as well. We have verified using experimental 

data, that they yielded comparable results. Below we describe these two methods. 

Both of our methods use Eq. (S3) to compute Pxy(t). The key issue is how to select a subsystem of 

microspheres within the larger region viewed by our camera. The two methods differed according to 

what we held fixed, the number N of microspheres or the analyzed area. Both methods used a 

rectangular region, but the region is specified differently in the two methods. We used the fixed 

microspheres number approach for the results presented in the Letter. In both methods, we computed 

four separate time series of Pxy(t) simultaneously for four spatial regions between the shear beams. The 

widths (y-component) and the centers of the rectangular regions were the same for both methods. The 

widths extended between the two shear laser beams, 9.0 < y < 11.5 mm, while the centers of the 

rectangular regions were at x = 7.5, 10.3, 13.2, and 16.0 mm.  

 In the fixed microsphere number method, for each video frame we slightly adjusted the area of 

the analyzed spatial region by “rubber-banding” the length. 

Rubber-banding method: increasing or decreasing the length (x-component) of the 

rectangular region so that the rectangle always included exactly N = 56 microspheres. 

This adjustment was done for each video frame while keeping two quantities fixed: the 

width (y-component) and center position of the rectangle. Sample time series of the 

instantaneous entropy production rate and shear stress computed using the rubber-

banding method are presented in Supplementary Figure S1. 

 In the fixed area method, we specified the rectangle’s length, width, and center position, which 

all remained fixed. Consequently, the number of microspheres contained within it was not 

constant, but varied from frame to frame, as microspheres flowed in and out of the fixed 

rectangle. We chose the dimensions so that the time average of N was 55.6. The rms variation of 

N was  2.1 microspheres. The rectangle’s aspect ratio was length / width = 3.0.  
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Supplementary Figure S1. Shear stress and entropy production rate. a, Sample time series 

of the shear stress Pxy(t). Here, the shear stress was computed for N = 56 microspheres 

using the fixed number approach. The power spectrum obtained from a FFT of Pxy(t) 

revealed no preferred frequency. b, Time series of the instantaneous entropy production 

rate computed from the shear stress as . Since the shear rate  and 

kinetic temperature T were constants, the entropy production rate is proportional to the 

shear stress. Note the negative fluctuations in the entropy production rate in the shaded 

region that correspond to the positive fluctuations of the shear stress. These are the events 

of interest for the fluctuation theorem 
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C. Experimental inputs for Eqs. (S1-S5) – how they were obtained, and how sensitive results are 

to these inputs 

In this section, we discuss: the experimental inputs used in Eqs. (S1-S5) to compute the entropy 

production rate, the method we used to obtain these inputs, the uncertainties associated with each 

measurement, and the sensitivity of our result (that our strongly coupled plasma obeys the ECM 

fluctuation theorem) on the uncertainties. 

1. Charge Q and screening length  

The average charge of microspheres Q and the screening length  were needed as inputs in calculations 

of the interparticle force, which we then used to compute the shear stress Pxy(t). The shear stress, in 

turn, was used in Eq. (S1) the time average entropy production rate in Eq. (S1).  

We determined Q and  using the method of Ref. [40]. In this method, experimentally obtained phonon 

spectra for our dusty plasma in a crystalline state were fit to a theoretical dispersion relation for 

particles with a Debye-Hückel interactions in a Wigner crystal. We obtained values for the two free 

parameters in the fit,  = 0.882 and pd =74 s-1. From these free parameters, we compute the average 

charge Q from  
/

pd Q ma 
2

0

1
2 32  and the screening length  from  = a/.  

The error bars in the values of Q and while they do not affect our conclusions, merit some explaining 

regarding how we obtain them. To obtain the error bars, we use contours of 2 for the shielding 

parameter  and dust plasma frequency pd. While we did not find contours of 2 for our experiment, 

contours were obtained in another dusty plasma experiment under similar conditions, Ref. [41]. Using 

their contours, we estimated the uncertainties for Q and  in our experiment. These estimated 

uncertainties were 7.6% for Q and 23% for  and these uncertainties were correlated in such a way that 

their contributions to the interparticle potential, Eq. (S5), largely cancelled out. To show that our results 

are insensitive to these uncertainties, systematic errors equivalent to the estimated uncertainty were 

added to Q and . Repeating the analysis with these additional errors, we found that the time averaged 

entropy production rate still obeyed the ECM fluctuation theorem. 

Besides the steady-state values of charge and its error bars, there are other small effects on the charge 

of microspheres which have no bearing on our results, as we explain here. These effects are stochastic 

fluctuations, flow velocity effects, and depletions of electrons (Havnes effect). 

Stochastic fluctuations of charge occur, but at too fast a time scale to matter. These fluctuations occur 

because individual electrons and ions are collected on the microsphere’s surface at random times from 

the ambient plasma. The time scale for these charge fluctuations to occur is a multiple of the charging 

time, which is = Kt (kTe)
1/2 (an)-1, where Te is the electron temperature, a is the radius of the 

microsphere, n is the plasma density, and K is a function of the temperatures and masses of the ions 

and electrons42,43. For our plasma parameters, the charge fluctuations in our experiment occurred on a 

time scale of microseconds. On the other hand, the time scale for the motion of microspheres to 

respond to forces is characterized by the inverse dust plasma frequency, pd
 -1, which is the typical time 
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scale for the motion of a microsphere to be significantly deflected. For the microspheres in our dusty 

plasma, pd
 -1 = 14 ms. Comparing these two time scales, we see they differ by four orders of 

magnitude. While the charge fluctuates, it does so much too fast to affect the motion of microspheres. 

Moreover, the magnitude of these charge fluctuations was small; we estimate that the charge 

fluctuations in our experiment were less than 1% of the time average charge, based on Eq. (13) of Ref. 

[42], which is consistent with counting statistics42,44. 

Variation of the charge due to whether a microsphere is in the fastest vs. the slowest part of the shear 

flow is also of no consequence. In the lab frame, the microspheres flow with velocities on the order of 1 

mm/s, which was six orders of magnitude slower than the ion flow speed of 1 km/s. Using the standard 

model of Whipple19, we find that a microsphere moving at the flow velocity of 1 mm/s has, at most, a 

one part in 106 difference in charge as compared to a stationary microsphere. This miniscule difference 

has no effect on our assumption that the charge of microspheres remains essentially constant. 

Depletion of electrons also has a negligible effect on the charge of microspheres in our experiment. The 

so-called Havnes effect45, which is applicable when particles of a substantial number density fill a three-

dimensional volume, can reduce the charge of particles. This effect is miniscule in an experiment such as 

ours because our microspheres were levitated in a razor thin and sparse 2D layer within the plasma. 

Electrons and ions filled a large three-dimensional volume. Due to the ambient electric fields in the 

plasma, a fresh supply of electrons and ions from this three-dimensional volume constantly flowed past 

the small number of microspheres in their monolayer, so that the charge of the microsphere was 

determined by electrons and ions originating from outside the layer of microspheres.  

2. Mass m of microspheres 

The mass m of microspheres enters both the denominator and numerator of Eq. (S1) in the kinetic 

temperature T and the shear stress Pxy(t), Eq. (S3), respectively.  

We obtained the mass of the microspheres using the manufacturer’s specifications of diameter (8.69 

m) and mass density (1.510 kg/m3). Typical uncertainties of the mass are about 10%, which arise from 

the tendency for the masses of microspheres to change during storage and the experiment. This occurs 

primarily for two reasons. First, outgassing of volatile components can cause microspheres to 

shrink41,46,47. Second, sputtering in the plasma can cause the microsphere to either increase or decrease 

in size. The microspheres increase in size when the electrode is sputtered and deposited on the 

microspheres in high-power plasmas47, while the microspheres decrease in size when the microspheres 

themselves are sputtered in low-power plasmas48. 

Uncertainty in the mass of the microspheres does not directly affect our results. When computing  

using Eq. (S2), the mass m enters both the numerator and the denominator so that the mass term 

cancel. The entropy production rate has no direct dependence on mass, but rather depends on the dust 

plasma frequency pd, which we measure directly from our experiment using the phonon spectra fitting 

method40 described in section C1.  
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3. Microsphere positions and velocities 

The positions and velocities of individual microspheres were used in computing the shear stress, Eq. 

(S3), as well as computing the shear rate  and kinetic temperature T. 

When obtaining time series of individual microspheres positions and velocities, there are random errors 

in position associated with measuring microsphere positions from raw video images30 and consequently, 

random errors in velocity31. Typical errors in microsphere positions are about 0.05 pixels = 0.002a, 

where a is the Wigner-Seitz radius. Typical velocity errors are approximately 0.05 mm/s. 

As a verification test to ensure that our results are insensitive to these errors, we began by adding 

additional artificial errors to the positions and velocities of individual microspheres. Then we repeated 

the analysis for the ECM fluctuation theorem using these new positions and velocities. The artificial 

errors in this verification test were chosen randomly from a Gaussian distribution centered at 0 with a 

standard deviation larger than the typical measurement errors. Even with these artificial errors, our 

result that our strongly coupled plasma obeyed the ECM fluctuation theorem did not change. 

4. Shear rate  

The shear rate  was used to compute the time average entropy production rate  in Eq. (S1). 

The shear rate  used in Eq. (S1) can be computed two 

ways, and in either case, our strongly coupled plasma 

data satisfied the ECM fluctuation theorem. In the Letter, 

 was computed as the transverse gradient of the flow 

velocity profile. The flow velocity profile was obtained 

from a spatial and time average of microsphere 

velocities49. In this case, was a single, constant value. 

Alternatively, a local and fluctuating shear rate (t) within 

the rectangle that defines our subsystem could be 

computed. This fluctuating shear rate was computed from 

the N = 56 microspheres within our subsystem and then 

time averaged over the time interval . 

The uncertainty in was small when  was obtained using 

the method presented in the Letter, where  was 

computed as the transverse gradient in the flow velocity 

profile. The uncertainty in  was 3.5%, which is small 

compared to uncertainties that arise from counting 

statistics when computing the LHS of Eq. (1).  

When we used a fluctuating local shear rate (t) to compute , Eq. (S2), the resulting distribution of 

still satisfied the ECM fluctuation theorem as shown in Supplementary Figure S2. However, the 

Supplementary Figure S2. The ECM fluctuation 

theorem satisfied using a fluctuating shear 

rate. The LHS and RHS of Eq. (1) agree for  = 

0.25 s. The LHS and RHS were obtained as in 

the Letter, except a fluctuating shear rate (t) 

rather than the constant shear rate  was used 

to compute entropy production rates.  
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distributions of the changed substantially, so it is not clear whether the agreement with ECM for a 

fluctuating shear rate would hold for other experiments. 
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D. Another indication of our experimental data satisfying the ECM fluctuation theorem 

Another indication that our strongly coupled plasma obeys a steady-state fluctuation theorem is that 

not only do the LHS and RHS agree for a long , they also both fall on a straight line in Fig. 3a,b. This 

linearity for the LHS data points was described by Gallavotti and Cohen28 as their “key test of the 

theory.” Our data satisfy this key test not only for the two values of , in Fig. 3a,b, but for all values that 

we tested. 
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E. Verification of our chief result for other numbers of microspheres N in the subsystem 

To verify that our chief result (our strongly coupled plasma obeys the ECM fluctuation theorem) is not 

peculiar to our choice of N, we repeated the analysis of our experiment over the widest range of N 

practical for us. We found that our chief result was unaffected by the choice of N.  

1. Our chief result is unchanged for N up to 75 microspheres 

As an example of our tests for varying the size N of the subsystem, below are results for N = 75, showing 

that our conclusions remain the same for this size of subsystem. 

Repeating the analysis of Eq. (1) for a slightly larger subsystem of N = 75 microspheres reveals a similar 

convergence of the LHS and RHS as we found for N = 56 microspheres. The discrepancies D between the 

LHS and RHS of Eq. (1) are presented in Supplementary Figure S2. There was a slightly shorter 

convergence time of tc = 0.031 s for a subsystem of N = 75 microspheres as compared to tc = 0.037 s for 

a subsystem of N = 56 microspheres. 

Supplementary Figure S3. Convergence of the ECM fluctuation theorem for N = 75 

microspheres. This plot is analogous to Fig. 4 in the Letter. Using a larger subsystem of N = 

75 microspheres, our dusty plasma still obeys the ECM fluctuation theorem. The LHS and 

RHS of Eq. (1) converge together as  increases, just as it did for 56 microspheres. 

Discrepancies D and its errors were found just as in the Letter. Here, we find a convergence 

time tc = 0.031 s for N = 75 microspheres as compared to tc = 0.037 s for N = 56 

microspheres.  
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The reason we did not explore subsystem sizes larger than N = 75 microspheres is the need for adequate 

statistics. There are two reasons that choosing a larger value of N would result in inadequate statistics 

for our experiment:  

 The limited spatial size of the camera’s field of view. The number of microspheres in the 

shear flow imaged by the camera was limited, which provides an absolute maximum for 

the N that we can study. Additionally, as N is increased substantially, the shear flow 

cannot be divided into as many subsystem of N microspheres. 

 Rarity of negative fluctuations in entropy production rate for larger subsystems. As the 

number of microspheres in the subsystem was increased, the probability of negative 

entropy production events decreased. Having fewer negative entropy production events 

made it difficult to have sufficient statistics to compute the LHS of Eq. (1). 

2. Role of the shape of subsystem for very small subsystems  

We found that for very small subsystem of size N = 10, the entropy production rates generally obeyed 

the ECM fluctuation theorem. Interestingly, however, if we chose subsystems with an extreme aspect 

ratio (ratio of length to width), the LHS and RHS of Eq. (1) did not necessarily converge. For a subsystem 

with an aspect ratio of 0.52, the LHS and RHS converged together for long  as the discrepancy D 

diminishes, as shown in Supplementary Figure S4a. For a subsystem with an extreme aspect ratio of 

18.75, the LHS and RHS did not converge for long as shown in Supplementary Figure S4b. 
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Supplementary Figure S4. Subsystem shape dependence for ECM fluctuation theorem for 

N = 10 microspheres. a, Convergence of the LHS and the RHS of Eq. (1) can be seen at long 

time intervals as the discrepancy D approaches 0. In this case, the subsystem’s width (in 

the y-direction) was 2.5 mm, equivalent to the width of the subsystem used for N =56 

microspheres. The average length (in the x-direction) was 1.3 mm. b, For an extreme case 

of a much longer box (width of 0.4 mm and length of 7.5 mm), the two sides of Eq. (1) did 

not converge together at long . 

ba
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F. Description of how  E was calculated 

In the Letter, we reported our measurement of a convergence time tc, which can provide insight into our 

physical system. To put this convergence time into context of other physical time scales of our dusty 

plasma, we compared the convergence time to the inverse entropy production rate, as well as the 

Einstein frequency E. 

In a gas, a collision frequency expresses the inverse time scale for a particle’s velocity to be scattered 

significantly by a binary collision. This idea of a collision frequency fails in a liquid because the collisions 

are not intermittent binary events, but constant deflections by multiple neighbors. Due to this failure, 

the terminology “collisional frequency” is seldom used in liquid physics. In the well-known textbook for 

liquids, Theory of Simple Liquids by Hansen and McDonald50, the term “collision frequency” is only used 

twice in over 500 pages. 

In a liquid, the concept of an Einstein frequencyE is sometimes borrowed from the field of condensed 

matter physics to use as a proxy for a collision frequency. The Einstein frequency expresses the rate that 

a particle undergoes large deflections in its velocity due to the collective effects of multiple neighbors. 

Most often, the Einstein frequency is used to describe a crystal, but it has been used to describe a liquid 

dusty plasma51 as we do.  

The Einstein frequency is calculated using a theoretical abstraction that the motion of one particle i (that 

is free to move) among multiple neighbors j that are frozen in their positions. The motion of particle i is 

then described by a complicated potential well formed by the frozen neighbors.  

The only data required to compute the Einstein frequency are the instantaneous positions of particles at 

just one moment in time. Also required is a formula for the forces between them, as a function of 

interparticle distance, and for this we use the binary Debye-Hückel potential, Eqs. (S4-S5). The key step 

in our procedure is to numerically calculate a distribution of values for derivative k = df/dr, and to use 

this distribution’s mean to calculate  sE k m    142 . 
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G. Molecular dynamics simulation to verify our chief result 

As a verification that our chief result (a strongly coupled plasma obeys the ECM fluctuation theorem) 

was due to the shear flow and not due to the gas friction or anisotropy that were also present in the 

experiment, we performed a two-dimensional (2D) molecular dynamics (MD) simulation. Dusty plasmas 

are very well suited for comparison to MD simulations because the experiments generate particle-

tracking data is analogous to the data generated by the simulations.  

While the simulation mimicked the parameters of our experiment, the simulation was a simpler physical 

description because it excluded the following effects that were present in the experiment: 

 The gas friction. In the experiment the microspheres experienced a gas friction force, 

proportional to their velocities. This gas friction dissipated heat. (The heat was generated 

viscously by Coulombic collisions among the microspheres that were undergoing shear motion.) 

The dissipation of heat, in balance with the laser heating, determined the kinetic temperature of 

the microspheres in the experiment. In the simulation, heat was also generated viscously, 

however, the temperature was held constant by a different mechanism: a Gaussian thermostat 

that constantly removed heat. This thermostat frequently rescaled peculiar velocities in the 

simulated area.  

 The anisotropic temperature from using only two moving laser beams that gave kicks to 

microspheres in the  x directions only. This anisotropy was previously described in Refs. 

[24,25]. 

 

Like the 2D simulation that was presented in the original fluctuation theorem paper of ECM14, our 

simulation used the so-called SLLOD algorithm with Lees-Edwards boundary conditions. As mentioned 

above, viscous heat generated by the shear flow was extracted by a Gaussian thermostat that rescales 

the peculiar velocities of particles to keep the kinetic temperature constant. The equations of motion for 

the particles52 were 

 ˆ i
i iy

m

p
q x  (S6) 

and 

 ˆ
i i yi ip   p F x p , (S7) 

where qi is position of particle i, pi is a peculiar momenta of particle i, m is the mass of the particles, yi is 

the vertical position of the particle i, is the shear rate, Fi is the net interparticle force acting on particle 

i due to all its neighbors, and  is the thermostat term. We integrated the equations of motion using a 

Verlet integrator.  
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Unlike the 2D simulation of ECM, we simulated a larger system of 1024 particles, from which we 

selected a subsystem of N = 56 particles. For this purpose, we used the rubber-banding method 

described in Section B as in the experiment, for a region with the same aspect ratio. Also unlike the ECM 

simulation, we used a Debye-Hückel interparticle potential to compute the force F in a way that mimics 

the experiment, instead of using a modified Lennard-Jones (Weeks-Chandler-Anderson) potential to 

mimic molecules. In computing F, we truncated the Debye-Hückel interparticle potential at distances 

greater than 11a, where a is the Wigner-Seitz radius. 

We chose simulation parameters to mimic the experiment. These included the same microsphere 

charge, microsphere mass, screening length, interparticle spacing, and shear rate as in the experiment. 

For the kinetic temperature, which was isotropic in the simulation, we chose a value midway between Tx 

and Ty of the experiment. The time step used in the simulation was 0.00021 s, which was chosen to 

provide energy conservation; this time step was much shorter than the 0.0167 s time between video 

frames in the experiment, so that the simulation produced a larger quantity of data. 

The rest of the analysis for the ECM fluctuation theorem was done using our simulation data in the same 

manner as with experimental data in the Letter. The simulation results for the LHS and RHS of Eq. (1) for 

Supplementary Figure S5. Demonstration of the fluctuation theorem using simulation data. 

This figure is analogous to Fig. 3 in the Letter, but with an input of simulation data. a, A 

comparison of the LHS (triangles) and RHS (circles) of Eq. (1) computed from simulation data, 

for a long time interval, τ = 0.25 s. As the primary demonstration that our strongly coupled 

plasma obeys the ECM fluctuation theorem, we find that the LHS data points agree with the 

RHS data points within error bars for the simulation data, just as they did for experimental 

data. b, For a short τ, the LHS and RHS data points do not agree, consistent with the 

asymptotic aspect of Eq. (1), which was seen in the analysis of experimental data as well. The 

simulation data also satisfy Gallavotti and Cohen’s “key test of the theory,” as the LHS data 

points in a,b fall in a straight line. The LHS and RHS data points, as well as their error bars, for 

both a,b, were computed in the same way as in the Letter, but with an input of simulation 

data. 
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a long  and short  are presented in Supplementary Figure S5. As in the experiment, we find that the 

LHS and RHS of Eq. (1) agree for a long (Supplementary Figure S5a), but not for a short 

(Supplementary Figure S5b). The convergence of the LHS and the RHS is demonstrated in 

Supplementary Figure S6, where the discrepancy D diminishes exponentially with . Here, for the 

simulation we find a convergence time of tc = 0.052 s, which is similar to the experimental measurement 

of tc = 0.037 s.  

The similarity between our MD simulation results and experimental results shows that the salient 

element of the experiment responsible for agreement with the ECM fluctuation theorem was in fact the 

shear flow. The two effects that were excluded in our MD simulation (neutral gas friction and 

temperature anisotropy) did not play a major role in our chief result of demonstrating that our strongly 

coupled plasma obeys the ECM fluctuation theorem. 

 

 

  

Supplementary Figure S6. Convergence of the ECM fluctuation theorem for simulation 

data. This plot for simulation data is analogous to Fig. 4 in the Letter for experimental data. 

Plotted are the discrepancies D between the LHS and RHS of Eq. (1). The LHS and RHS of Eq. 

(1) converge together as D diminishes for increasing τ, just as it did for experimental data. 

The discrepancies and their errors were computed in the same was as in the Letter. The 

convergence occurred exponentially, allowing us to obtain a convergence time tc = 0.052 s 

for our simulation data as compared to tc = 0.037 s for experimental data.  
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