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Nonlinear compressional waves in a two-dimensional Yukawa lattice
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A modified Korteweg–de Vries~KdV! equation is obtained for studying the propagation of nonlinear
compressional waves and pulses in a chain of particles including the effect of damping. Suitably altering the
linear phase velocity makes this equation useful also for the problem of phonon propagation in a two-
dimensional~2D! lattice. Assuming a Yukawa potential, we use this method to model compressional wave
propagation in a 2D plasma crystal, as in a recent experiment. By integrating the modified KdV equation the
pulse is allowed to evolve, and good agreement with the experiment is found. It is shown that the speed of a
compressional pulse increases with its amplitude, while the speed of a rarefactive pulse decreases. It is further
discussed how the drag due to the background gas has a crucial role in weakening nonlinear effects and
preventing the emergence of a soliton.
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I. INTRODUCTION

Lattices with a reduced dimensionality are an interest
class of soft condensed matter. These lattices consist of
ticles which arrange themselves in a crystalline structure
the presence of external and interparticle forces. Typical
amples of two-dimensional~2D! systems are colloidal sus
pensions@1#, electrons on liquid helium@2#, and Langmuir
monolayers@3#. A number of interesting physical process
have been studied in these lattices, e.g., solid-liquid ph
transitions, phonon propagation, and sublimation. Typi
examples of 1D systems are quantum wires@4#, one-
dimensional surface states such as chains of H atoms
Ni~110! @5#, O on Cu~110! @6#, ion chains trapped in a stor
age ring@7#, and optically bound chains of microspheres in
colloid @8#.

Another way of preparing a lattice with reduced dime
sionality is to use a plasma crystal, in which micron-s
charged particles interact with each other via a Yukawa
screened-Coulomb potential. Most commonly, particles
levitated in a 2D lattice in the plasma sheath of a low
electrode, where an upward electric force balances gravit
the downward direction@9–12#. When the crystal anneals,
triangular lattice with hexagonal symmetry is formed. E
periments by Konopkaet al. @13# and simulations by Sch
weigertet al. @14# have verified that in the plane of the 2
lattice, the interaction potential is modeled by a Yukawa p
tential. Hence, a 2D plasma crystal belongs to the gen
class of 2D Yukawa lattices. Similarly, 1D chains can
formed by shaping the particle suspension with a fence
groove in an electrode@15#.

For studying phonons or wave propagation, plasma c
tals are ideal. Plasma crystals are suspended in a par
ionized, low-density plasma consisting of electrons, io
and neutral gas. The particle motion is damped due to c
sions with the neutral gas atoms. Since the background g
much less dense than the fluid background in a collo
suspension, the resulting damping rate is correspondin
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smaller. This is conducive for the excitation and the prop
gation of lattice phonons.

Here, our work is motivated by experiments with line
and nonlinear waves launched in 2D plasma crystal. Nu
muraet al. @16# used laser beams to launch linear longitu
nal and transverse waves and measure their dispersion
tions. They found an agreement with the theoreti
dispersion relation of Wanget al. @17#. Samsonovet al. @18#
launched a nonlinear pulse by applying a potential pulse
wire located in the plane of the lattice. Nosenkoet al. @19#
launched nonlinear compressional pulses using a laser e
tation technique. In the latter experiment, nonlinear effe
were observed for large pulse amplitudes, as indicated b
pulse speed that increased with its amplitude. Howev
steepening of the pulse was not observed.

In this paper, we derive a modified Korteweg–de Vri
~KdV! equation which is applicable to a wide class of inte
particle potentials in 1D and 2D lattices. Starting with
chain of particles which interact with a potential of the cla
U5U(uzi2zj u), wherezi is the position of thei th particle in
the chain, a KdV-like equation is obtained under the co
tinuum approximation. This can be applied to the problem
the propagation of nonlinear compressional waves in a
Yukawa lattice. Specifically, we show that the experimen
geometry in a recent experiment@19# in a 2D plasma crysta
allows us to model the pulse propagation by a suitably mo
fied one-dimensional KdV equation. We take into accou
dispersion effects as well as damping due to the backgro
gas.

We compare our results from solving the modified Kd
equation with the experimental results of Nosenkoet al.
@19#. The agreement is found to be good. Our results und
score the crucial role of damping which weakens the non
ear effects and prevents the emergence of solitons.

This paper is organized as follows. In Sec. II we derive
general KdV-like equation applicable to 1D. In Sec. III w
explain how this equation can be applied to a 2D lattice.
Sec. IV we specialize to the case of 2D Yukawa lattice.
Sec. V we review some features of the inverse scatte
transform theory that are relevant for our problem. In Sec.
we apply this formalism to the case of plasma crystals a
©2003 The American Physical Society02-1
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interpret the results of a recent experiment.

II. GENERAL FORMULATION

In this section we derive a general differential equat
for the propagation of compressional nonlinear wave form
such as nonlinear pulses and waves, in a 1D lattice. It
also be applied to a 2D lattice, as explained in Sec. III.

An equation for the compressional displacement of p
ticles in a chain is obtained from the equation of moti
using a Taylor expansion of the interparticle potential. Co
sider an infinite chain of particles which are separated u
formly by a distancea in the ẑ direction. Let the interparticle
potential between thei th and j th particles in the chain be
given by Ui j 5U(uZi2Zj u). The equation of motion of the
j th particle is

m
d2Zj

dt2
1mnd

dZj

dt
52

](
j Þ i

Ui j

]Zj
1Fext

j , ~1!

wherem is the mass of the particle,nd is the coefficient of
dissipation, andFext

j is the external perturbing force on th
j th particle in the chain. We further assume that during
passage of the wave, the displacementh j of the j th particle
from its equilibrium positionZ0 j in the chain is not very
large. In this case, we expandU(uZi2Zj u) in powers ofh j /a
and obtain the following difference equation forh j @20#:

m
d2h j

dt2
1mnd

dh j

dt
52H F ~h j 211h j 1122h j !

d2U

dZ2 U
a

1~h j 221h j 1222h j !
d2U

dZ2U
2a

1•••G
1@~h j2h j 21!22~h j 112h j !

2#
d3U

dZ3 U
a

1@~h j2h j 22!22~h j 122h j !
2#

d3U

dZ3U
2a

1•••J 1Fext
j . ~2!

In Eq. ~1! we have retained quadratic nonlinear terms.
If the typical scale length of the wave formL is greater

than the interparticle distancea, then the continuum approxi
mation can be invoked to convert the difference equat
into a differential equation forh j . Here,L can be the width
of a pulse or the wavelength of a sinusoidal wave. We
pandh j 61 andh j 62 aroundh j in powers ofa/L and retain
terms of the order of (a/L)4. In this approximation, nonlin-
ear effects due to the particle discreteness are neglected
expansions ofh j 61 andh j 62 aroundh j are given by
04640
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h j 615h j6a
]h j

]z
6

a2

2

]2h j

]z2
6

a3

3!

]3h j

]z3
6

a4

4!

]4h j

]z4
, ~3!

h j 625h j62a
]h j

]z
6

~2a!2

2

]2h j

]z2
6

~2a!3

3!

]3h j

]z3

6
~2a!4

4!

]4h j

]z4
, ~4!

where the6 on the right-hand side~RHS! corresponds to the
6 index on the left-hand side~LHS! of these equations. Sub
stituting these expansions in Eq.~2! and retaining terms of
the order ofa4, we obtain the following differential equation
for the particle displacementh j :

]2h

]t2
1nd

]h

]t
5vp

2 ]2h

]z2
1

~vp
2a2!

12

]4h

]z4
2~2B!

]h

]z

]2h

]z2

1
Fext

m
, ~5!

where we have dropped the subscript fromh and Fext . In
Eq. ~5! the coefficientsvp andB are given by

vp
25a2S d2U

dZ2 U
a

122
d2U

dZ2 U
2a

132
d2U

dZ2U
3a

1••• D , ~6!

B5a3S d3U

dZ3 U
a

123
d3U

dZ3 U
2a

133
d3U

dZ3U
3a

1••• D . ~7!

The coefficientvp in Eq. ~5! is the linear phase velocity o
longitudinal phonons in the chain.

An equation for the particle velocityv5]h/]t is obtained
by integrating Eq.~5! once with respect to time. If the non
linearity is weak, the propagation speed of the wave form
the chain is expected to be close tovp . In this case, a single
integration with respect to time can be performed. We c
sider a case where the velocity of the pulse or other w
form is in the2 ẑ direction. This yields the following differ-
ential equation forv:

]v
]t

1ndv2vp

]v
]z

2
vpa2

12

]3v

]z3
1

2B

vp
2 v

]v
]z

5
Fext

m
. ~8!

This is a general initial-value problem for studying the te
poral evolution of a initial wave formv(z,0) excited by a
transient perturbing forceFext(z,t) in a chain. For a given
lattice potentialU, the coefficientsvp andB in Eq. ~8! can be
calculated from Eqs.~6! and ~7!.

A variation of Eq.~8! which we found useful in Ref.@21#
is suited for the time independent, steady-state excitation
Fext . In a steady-state situation, the energy input of the dr
due to a local perturbing force in the chain is balanced by
propagation and the dissipation of the wave energy aw
from the excitation region. This is a boundary-value pro
lem. The corresponding equation for this case is obtained
2-2



a

n

r
na
w
a

w
a
w

in
ss

on
a
b

in
e
e
s
th
2D

al
ro
a
e-
lly
o
ng
e
to

k
c

th

pa

f
le
a
om
rp
w

ur
2D

del
not

in
e

el-
2D

rm
ion

omb

ese

is
th

s

NONLINEAR COMPRESSIONAL WAVES IN A TWO- . . . PHYSICAL REVIEW E 68, 046402 ~2003!
combining the terms containing]v/]z in the RHS of Eq.~8!
and transposing the coefficient to the LHS to give

vpa2

12

]3v

]z3
1vp

]v
]z

1ndv52
]v
]t

1
2B

vp
2 v

]v
]t

. ~9!

This equation governs the steady-state propagation of w
forms in the chain. Here, the external perturbing forceFext
was dropped; its effect appears as a boundary condition ov
in the excitation region. In the limitL.a, the sum in Eq.~1!
converges rapidly and it is possible to integrate it nume
cally. However in this paper we do not choose this alter
tive, because by Taylor expanding the Yukawa potential
obtain a KdV-like equation which is easier to solve and,
we show later, gives reliable results.

III. APPLICATION OF THE 1D MODEL
TO A 2D LATTICE

One of the chief points of this paper is that the model
have developed in the preceding section for a 1D chain c
in many cases, be applied to a 2D lattice. The procedure
used in Sec. II, expanding the interparticle potential yield
an equation for 1D, is by itself straightforward. What is le
common is to extend this to a 2D problem. In this secti
we summarize the conditions where this equation can be
plied to a 2D lattice and we explain the critical step of su
stituting the phase velocity in this equation.

If a compressional wave in a 2D lattice has a straight-l
wave front, it will propagate with a symmetry similar to th
compressional wave in a 1D chain. In both cases, ther
only one nontrivial coordinate, which we have denoted az.

One difference between a 1D chain and a 2D lattice is
the latter is inherently anisotropic. For linear waves in a
lattice, the dispersion relation depends on the orientation
the lattice vector with respect to the wave number, especi
for short wavelengths. However, this effect is negligible, p
vided that the wavelength is much longer than the interp
ticle spacing. By limiting our use of the model to long wav
lengths, we avoid this difficulty. Doing so does not actua
reduce the usefulness of our model, because in deriving
1D equations we have already assumed that the wavele
is long compared to the particle spacing; we did this wh
we invoked the continuum approximation. If one wished
model a problem where our assumption ofL.a were not
satisfied, then a different approach must be found that ta
into account the anisotropy of a 2D lattice. One approa
might be to use a multipole expansion. However, in
present problem, the assumptionL.a is satisfied and a
simple approach based on a Taylor expansion of the inter
ticle potential is adequate.

The phase speedvp is different in a 1D chain and a 2D
lattice, and this must be taken into account. The reason
this difference is that in a triangular lattice, for examp
interparticle bonds are oriented at three different angles,
bonds that are not perpendicular to the wave front are c
pressed less than those that are. Depending on the inte
ticle spacing, the phase speed in 2D can be higher or lo
than in 1D.
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The critical step that we have chosen for adjusting o
model for the different phase speeds in a 1D chain and a
lattice is simply to substitute the phase speedvp , as calcu-
lated for a 2D lattice into Eqs.~8! and~9!. This is valid when
conditions stated above are satisfied.

It is possible that this method can be extended to mo
planar waves in a 3D lattice as well, although we have
yet done so. What we have done, and we shall illustrate
the following section, is apply the 1D model to a 2D lattic
with a Yukawa interparticle potential.

IV. APPLICATION TO A 2D YUKAWA LATTICE

In this section we apply the general formulation dev
oped in the Sec. II for 1D chains to the specific case of a
Yukawa lattice at zero temperature.

The equation governing the propagation of a wave fo
in a Yukawa chain is obtained by substituting the express
for the Yukawa potential in Eqs.~6! and ~7!, and obtaining
the coefficients of Eqs.~8! and ~9!. In a 1D Yukawa chain,
charged particles repel one another with a screened-Coul
potential of the form

U5
Q2

4pe0Zi j
expS 2

Zi j

l D , ~10!

whereZi j 5uZi2Zj u, Q is the particle charge, andl is the
screening scale length. Substituting Eq.~10! for U in Eqs.~6!
and ~7!, we obtain

vp
25

2Q2

ma H kF11
ek~k12!22

2~ek21!2 G2 ln~ek21!J , ~11!

B5
vp

2A

2
, ~12!

where

A5
k313k216k16

k212k12
~13!

andk[a/l. In Eq. ~11!, the phase speedvp is the speed of
compressional phonons in the 1D Yukawa chain. With th
expressions for the coefficients, Eqs.~8! and ~9! become

]v
]t

1ndv2vp

]v
]z

2
vpa2

12

]3v

]z3
2Av

]v
]z

5
Fext

m
~14!

and

vpa2

12

]3v

]z3
1vp

]v
]z

1ndv52
]v
]t

1Av
]v
]t

. ~15!

As in Eq.~8!, we assume that the pulse or oscillatory wave
traveling in the2 ẑ direction. These equations are valid bo
for compressions and rarefactions, corresponding tov paral-
lel and antiparallel tovp , respectively. In Sec. VI we discus
the case of a rarefactive pulses.
2-3
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As stated in the Sec. II, our method of using Eqs.~14! and
~15! for a 1D Yukawa chain to model wave propagation in
2D Yukawa lattice is to replace the phase velocityvp by a
different value appropriate for a 2D lattice. The reason
this is that the geometry of a 2D lattice is triangular rath
than linear, hence the effective spring constant for the w
motion is different from the spring constant of a chain. As
consequence, the sound speed in a 2D lattice is differ
Typically, it is greater than the 1D sound speed for smalk
and smaller for largek. Nunomuraet al. @22# have calcu-
lated the sound speedvp2D in a 2D Yukawa lattice at zero
temperature fork ranging from 0.1 to 10. For a 1D chain, th
sound speedvp1D can be obtained from Eq.~11! as a func-
tion of k. From these, the ratioa of sound speeds in one an
two dimensions is calculated as

a[
vp2D

vp1D
, ~16!

which depends onk. Hence, to take into account the sou
speed in a 2D triangular lattice when using our 1D mod
we calculatevp in Eq. ~14! as

vp
25a2

2Q2

ma H kF11
ek~k12!22

2~ek21!2 G2 ln~ek21!J .

~17!

Thus, the propagation of a compressional wave form in a
Yukawa lattice, having a nearly straight-line wave front, c
be studied via Eq.~14! with the coefficientsvp andA given
by Eq. ~17! and Eq.~13!, respectively. The ratioa in Eq.
~17! must be calculated from Eq.~16! using values, for ex-
ample, from Ref.@22# for vp2D at a given value ofk.

V. INVERSE SCATTERING TRANSFORM METHOD

Without the term corresponding to the external for
Fext , Eq. ~14! belongs to the general class of KdV equatio
which are solved by the method of inverse scattering tra
form ~IST!. Here, we review the relevant features of th
method@23#, given as follows.

~1! The KdV equation is

]v
]t

1m
]v
]z

1nv
]v
]z

1g
]3v

]z3
50, ~18!

wherem, n, andg are constants. It has a unique solution f
all those classes of initial conditionsv(z,0) which vanish
rapidly asz→`.

~2! The information about the number of solitons and th
respective velocities is obtained by solving the correspo
ing Schrodinger equation withv(z,0) as the potential:

d2v

dz2
2@v~z,0!2lN#v50. ~19!

For everyv(z,0) satisfying Eq.~19!, there exists a finite se
of discrete eigenvalueslN whereN51,2,3, . . . . In addition,
there may be a continuous spectrum of eigenvalues.
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The general solution of the KdV equation consists
terms corresponding to the soliton and the dispersion. Fo
initial pulsev(z,0) this solution is given by

v~z,t !5vN~z,t !1O„s~ t !…, ~20!

where vN(z,t) is the N-soliton solution and the last term
corresponds to dispersion. This solution can be constru
from the scattering data, which must be obtained by solv
Eq. ~19! for a given initial pulsev(z,0). Once the scattering
data are available, thenvN(z,t) can be constructed following
the procedure outlined in the IST theory@23#. The velocity of
theNth soliton is proportional to thelN . The second term of
the solution in Eq.~20! is the dispersive part due to th
continuous spectrum of the eigenvalues. Under very gen
conditions, it phase mixes to zero ast→`. It should be
noted that IST is a complete theory which describes m
more than what we have stated here briefly. An estimate
the number of solitons for a given initial pulsev(z,0) is
given by

N<21E uzuuv~z,0!udz. ~21!

Clearly, an initial pulse with a larger amplitude allows th
generation of more solitons. Interestingly, there is an ex
solution for two solitons given by

v2~z,t !

5212H @314cosh~2z28vpt !1cosh~4z264vpt !#

@3cosh~z228vpt !1cosh~3z236vpt !#2 J .

~22!

The measurement of the shape of the initial pulse is
prime importance in the transient excitation experimen
This is for two reasons. First, the shape of the initial wa
form is required in the initial-value problem. Second, acco
ing to the IST theory outlined above, if the conditions a
appropriate then anN-soliton solution will emerge from the
initial pulse ast→`. All the information about the soliton
solution, including the number of solitons and their speeds
contained in the initial pulsev(z,0).

VI. NONLINEAR PULSES IN PLASMA CRYSTALS

In this section, we apply the general formulation dev
oped earlier to the specific case of the excitation of trans
pulses in plasma crystals. We then interpret the results
recent experiments.

A. Modeling the initial-value problem

The solution of the initial-value problem in Eq.~14! is
useful for modeling experiments with the transient excitat
of a compressional pulse in a plasma crystal. In the exp
ment of Nosenkoet al. @19#, a compressional pulse wa
launched in a 2D plasma crystal by the radiation press
force of a laser sheet which was momentarily turned on
then off. This resulted in a weakly nonlinear pulse, where
2-4
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perturbed particle velocities were all in one direction and
resulting wave front was nearly a straight line. Hence,
reasons given earlier, the propagation of this nonlinear p
can be approximated by the propagation of a pulse alon
linear Yukawa chain. In the experiment, the pulse sh
along the direction of propagation was measured at the in
time as well as at subsequent intervals. The solution of
initial-value problem in Eq.~14! with vp given by Eq.~17! is
thus applicable. If we take the shape of the pulse after
laser was turned off, we may simplify Eq.~14! by dropping
the Fext term. Hence, we will solve Eq.~14! without Fext ,
and use as its initial condition the pulse shape just after
laser was turned off.

In the case of a plasma crystal, we identify the screen
scale lengthl in Eq. ~10! as the Debye lengthlD . In the
plasma crystal, the particle charge is screened by the b
ground electrons and ions. Hence, the screening scale le
is given by the Debye length in the expression for t
Yukawa potential.

Before proceeding to construct the solution, we next d
cuss the crucial effects of dissipation in our solutions.

B. Damping

Any possible source of damping in the experiment
duces the pulse’s amplitude and weakens any nonlinea
fects. In the experiment, a plasma crystal is formed in a
plasma which has not only electrons and ions but also neu
molecules of the background gas. The collisions of the d
particles with gas molecules give rise to a damping of
particle motion. Using Epstein’s model, the coefficient
this dragnd in Eq. ~14! is given by@22#

nd5dA8mg

pTg

p

rr p
, ~23!

wherep, mg , Tg , r p , andr are the gas pressure, mass of t
gas molecule, gas temperature, radius, and the material
sity of particles, respectively. The leading coefficientd
ranges from 1.00 in the case of the specular reflection to 1
in the case of diffuse reflection. Typical values ofnd for
micron-size particles in about 10-mtorr gas are of the or
of 1 s21. In the experiment by Nosenkoet al. @19#, nd
52.9 s21.

The role of damping becomes even more crucial in
periments where the amplitude of the initial pulse is not v
large. As we shall see shortly in our solutions, the damp
quickly reduces the amplitude of the initial pulse. Hence,
main effect of the damping is to weaken nonlinear effe
before a well-defined soliton may emerge. Earlier, Rosenb
and Kalman@24# found that damping can similarly obscu
the effects of correlations in the dispersion of acoustic wa
in a 3D dusty plasma.

C. Evolution of the pulse

In the experiment, a pulse was excited by applying
radiation pressure force due to a laser sheet. The laser s
struck the lattice at an angle, applying a force in the2 ẑ
direction within a narrow excitation region. Thereafter,
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compressional pulse propagated in the2 ẑ direction. A larger
laser power resulted in larger amplitude pulses in the latt
Particle positions, recorded by a video camera, were use
calculate the particle velocity and the areal number den
as the pulse propagated through the lattice. Depending on
number of particles, the interparticle distancea ranged from
486 mm to 1097mm and the values ofk ranged from 0.68
to 1.45. In Fig. 1 we show the experimental data for the pu
shape from Ref.@19#. The initial pulse is identified as curv
0, which was recorded just after the laser was turned off.
subsequent evolution at intervals of 0.1 s up to 0.5 s are
shown. The laser power was 2.38 W.

The experimental parameters had uncertainties that m
be taken into account while explaining the observations. T
temporal evolution of the initial pulsev(z,0) is studied by
solving Eq.~14!. If parameters such as the particle chargeQ,
massm, and k which enter in the coefficients of variou
terms in Eq.~14! were known with infinite precision, then
there would be no free parameters in the problem and
evolution of the initial pulsev(z,0) would be unique. How-
ever, because of the inevitable experimental errors in
measurement of these parameters, there is a range of v
of the coefficients in Eq.~14! to choose from. In the experi
ment, the charge wasQ52(90006200)e, the particle di-
ameter wasD58.0960.18mm, and the error in the mea
surement ofk, which was made using a wave technique, w
Dk/k56 0.13. The parameter known with the greatest p
cision in the experiment wasa @19#.

The error invp , denoted byDvp , arises mainly due to
errors in measurements ofQ, D, andk. Using the method of
propagation of errors, we obtainDvp /vp as

Dvp

vp
56AF S DQ

Q D 2

1S 3DD

2D D 2

1S Dk

2 f

d f

dk D 2G , ~24!

where f (k) is the k dependence ofvp
2 given in Eq. ~17!.

FIG. 1. Propagation of a compressional pulse in a 2D latti
Parameters used in the theory werek51.45, a51.05 mm, vp

59 mm/s, andnd52.9 s21. The experimental curve att50 was
recorded after the laser was turned off; it was used as the in
condition for the theory. The pulse shape is also shown at
subsequent intervals of 0.1 s. The theoretical curves are supe
posed on the experimental observations of Nosenkoet al. @19#.
2-5
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Using the experimental uncertainties forQ, D, and k, we
obtain vp52963 mm/s for k50.6860.09 and a
50.50 mm, andvp510.0061.00 mm/s fork51.4560.18
anda51.05 mm. The particle’s mass density in both case
1.514 g/cm3. Our results for the uncertainties ofvp , given
above, correspond to a 1-s range. It is within this range tha
we will constrainvp , when fitting our model to the experi
mental data.

We solve Eq.~14!, using as its initial condition the exper
mental pulse shape identified as curve 0 in Fig. 1. We a
show the temporal evolution of this pulse at subsequent
tervals of 0.1 s. For the best fit to the experimental resu
we have chosena51.05 mm, k51.45, A(k)53.43; we
also chosevp59 mm/s, which is at the lower end of the 1-s
range given above. As stated earlier, the shape of the p
after the laser is turned off is required as the initial condit
in Eq. ~14!. Because Eq.~14! is written for a pulse moving in
the 2 ẑ direction, we replace the portion of the experimen
wave form at z.2.5 mm, which contained a rarefactiv
pulse moving in the1 ẑ direction, with a zero value. The
compression portion of the experimental wave form,z
,2.5 mm, is retained. We then evolve the pulse shape a
propagates by integrating Eq.~14!. For easy comparison with
the experiment we rescale our equation in physical un
distance in millimeters, time in seconds, and the speed
mm/s. As in the experiment, the evolution of the pulse
obtained at time intervals of 0.1 s up to 0.5 s. This is sho
in Fig. 1. The agreement of the solutions with experimen
results is good.

As stated earlier, damping reduces the role of nonlin
effects. Because of damping, the amplitude decays and
nonlinearity is weakened. As a result, in the late stages of
pulse’s evolution, its shape is governed mostly by line
terms. To demonstrate this, in Fig. 2 we show the evolut
of the initial pulse in Fig. 1 as calculated both with an
without the nonlinear term in Eq.~14!. This comparison

FIG. 2. The evolution of the initial pulse with and without th
nonlinear term in Eq.~14!. This test demonstrates that for cond
tions as in the experiment (k51.45, a51.05 mm, vp59 mm/s,
andnd52.9 s21), nonlinearities affect the pulse’s speed but not
shape. The pulse shape is shown at five subsequent interva
0.1 s.
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shows that except for the higher speed of the pulse with
nonlinear term, the difference is not very significant.

The condition for the emergence of a soliton from t
initial pulse requires that the nonlinear term must persist
definitely despite damping. In Fig. 1 we see that the solut
has developed a significant oscillatory part that is not
damped. This part corresponds to the second term of
~21!. The dispersive part will decay to zero ast→`. Thus,
the condition for the emergence of a soliton is that the n
linear terms persist for a time long enough for the oscillato
part to damp to a low level. This requires either~a! a suffi-
ciently large amplitude of the initial pulse or~b! a small
damping rate. In the experiment of Nosenkoet al. @19#, the
pulse amplitude was rather weak,v,1.8 mm/s, so that non
linear effects were not strong, and these were further we
ened by the damping at a ratend'2.9 s21. This explains
why a clear soliton did not emerge from the initial pulse
this experiment.

If an experiment had an initial pulse with a much larg
amplitude, there might be not only one but several solito
As discussed earlier, the initial pulse corresponds to a po
tial in the Schro¨dinger equation. The depth of the well
proportional to the amplitude of the pulse. Since a dee
potential well accommodates more eigenvalues, and s
the number of eigenvalues is equal to the number of solito
it follows that the number of solitons emerging from an in
tial pulse increases with its amplitude. This is also consist
with the estimate of number of solitons given by Eq.~22!.

D. Speed of the pulse

The speed of a nonlinear pulse is in general a function
its amplitude. This was observed to occur in the experim
of Ref. @19#. The experimenters found that the increase
speed, as compared to the linear case, was roughly pro
tional to the amplitude. This nonlinear effect was observ
most strongly at largek. The experiment was performed fo
laser powers of 0.66 W, 1.25 W, 1.84 W, 2.38 W, and 2.75
where higher laser powers yielded larger amplitudes for
pulse.

For both the experiment and the theory, our method
measuring the speed of the pulse was to plot its positionz0
vs t and fit it to a straight line. The method of identifyingz0,
however, was different for the theory where we could eas
identify the maximum of the pulse’s peak, and the expe
ment where we could not, due to noise in the data. T
position of the peak in the experiment was determined in t
steps. First,z0 was estimated by the pointzmax where the
particle velocity is maximum. Second, to reduce the effec
noise, the first moment ofv vs z was calculated using data i
the rangezmax22.5 mm tozmax12.5 mm.

We evolved the pulses by solving Eq.~14! and we ob-
tained the pulse speedV as a function of the amplitude. W
repeated this calculation for amplitudes corresponding
each of the five values of laser power in the experiment: 0
W, 1.25 W, 1.84 W, 2.38 W, and 2.75 W. We also repeate
for two values ofk: 0.68 and 1.45. We then compare th
pulse speeds from the experiment and the theory. Fok
51.45, in the theory we used the value ofvp discussed

of
2-6
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earlier. Fork50.68, we chosevp526 mm/s for a good fit;
this value is again at the lower end of the 1-s range from the
experiment. In Fig. 3 we show results for pulse speed
amplitude both in theory and experiment, and we note t
the agreement is good.

The reason that the pulse speed is independent of the
plitude for small values ofk is thatvp varies rapidly withk.
Recall that the phase velocityvp that appears as the coeffi
cient of the linear term in Eq.~14! is given by Eq.~11!. This
velocity increases rapidly with decreasingk. On the other
hand, the parameterA(k), which is the coefficient of the
nonlinear term in the same equation, varies slowly withk.
These two variations are shown in Fig. 4. Thus, with d
creasingk, linear terms become more dominant than t
nonlinear terms, leading to a linear behavior at small val
of k.

We can justify now the experimenters’ choice of fittin
their data for pulse speed vs amplitude to a straight line@19#.
Their idea for choosing a straight line rather than some o
power law came from the theory for a nonlinear adiaba
sound wave in a 3D fluid@25#. They chose this form, despit
the difference of their 2D crystal and a 3D fluid, for a lack
any better model. Here, we present a justification based
our model, for fitting pulse speed vs amplitude to a strai
line, for 1D propagation in a 2D lattice. As shown b
Nosenkoet al. @19#, the role of dispersion in the pulse prop
gation is weak. In this case we may neglect the dispers
term in Eq.~14! and express it as

]v
]t

1ndv5vpS 11A
v
vp

D ]v
]z

. ~25!

In the experiment the nonlinearity is weak, i.e.,v/vp!1. For
such a case Eq.~25! corresponds to a pulse with a speed

FIG. 3. Variation of pulse speedV with amplitude. In the ex-
periment, the amplitude increased with the applied laser powe
the theory, the amplitude for the initial condition was chosen
match the experiment, and the parametersvp526 mm/s for k
50.68 andvp59 mm/s fork51.45 were assumed. The value ofnd

was same as in Fig. 1. For largek, the pulse speed increases si
nificantly with amplitude. Experimental data are fitted to a strai
line.
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uVu5vp1Av, ~26!

wherev andvp are positive values.
Finally, we discuss rarefactive pulses, which we find ha

a speed that decreases with their amplitude. In the in
condition for a rarefactive pulse, the particle velocity is
the direction opposite to the pulse propagation veloc
Since in Eq.~14!, the pulse propagation was assumed to
in 2 ẑ direction, thenv in the initial condition for a rarefac-
tive pulse should be in the1 ẑ direction.

For example, an initial condition for a rarefactive pulse
Eq. ~14! can be obtained by assuming an initial pulse such
that in Fig. 1 but withv in the opposite direction. To dem
onstrate this, as an initial condition for a rarefactive pulse
reversed the sign ofv for curve 0 in Fig. 1, retaining the

In

t

FIG. 4. The coefficientsvp /C0 andA of the linear and nonlinear
terms, respectively in Eq.~14!, as a function ofk. Here, C0

5Q/Ama. For smallk the coefficient of the linear term is muc
larger than that of the nonlinear term. This results in a linear beh
ior at small values ofk.

FIG. 5. Variation of the pulse speed with the amplitude for co
pressional and rarefactive pulses. Data shown are from theory
rameters assumed were the same as in Fig. 1. The pulse amp
in the theory was chosen to match the compressional pulse am
tude in the experiment at various laser powers. A smooth curv
drawn through the data points.
2-7
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initial data for z,2.5 mm, as before. This pulse was th
evolved by solving Eq.~14!, and the speed vs amplitud
relationship was obtained as before. In Fig. 5 we show
results for both compressional and rarefactive pulses, ass
ing k51.45, a51.05 mm, andvp59 mm/s. We find that,
as opposed to the case of the compressional pulse, the s
of the rarefactive pulse is found to decrease with the am
tude, as shown in Fig. 5.

VII. SUMMARY

In this paper we have developed a general formalism
study the propagation of nonlinear wave forms, such as n
linear pulses and waves, in 1D chains and 2D lattices.
Taylor expanding the interparticle potential in the equation
motion, an equation governing the propagation of trans
or steady-state wave forms in a 1D chain is obtained.

By suitably changing the linear phase velocity in the 1
equation and assuming a Yukawa potential between part
in the chain, this formalism was applied to the case of a
plasma crystal. The initial-value problem in Eq.~14! was
demonstrated using the experimentally measuredv(z,0) as
ev

r-

s.
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the initial condition. We accounted for the damping due
the background neutral gas. The calculated evolution ag
well with the experimental observations of Nosenkoet al.
@19#. The speed of the compressional pulse was shown
increase with its amplitude, which is consistent with the e
perimental observations. The speed of rarefactive puls
shown to decrease with the amplitude.

We discuss how damping plays a crucial role in weak
ing nonlinear effects in the experiment of Nosenkoet al.
@19#. In this experiment the amplitude of the initial pulse w
not very large. The drag due to neutrals further weakens
nonlinearity quickly by damping the pulse’s amplitude. As
result, the emergence of a soliton is prevented and in the
stages of the pulse’s evolution its propagation is gover
mostly by linear effects.

ACKNOWLEDGMENTS

We thank A. Bhattacharjee for useful discussions. T
work was supported by NASA and the U.S. Department
Energy.
and

.

ett

jee,

-

@1# V.M. Kaganer, H. Mohwald, and P. Dutta, Rev. Mod. Phys.71,
779 ~1999!.

@2# F.M. Peeters and X. Wu, Phys. Rev. A35, 3109~1987!.
@3# C.C. Grimes and G. Adams, Phys. Rev. Lett.42, 795 ~1979!.
@4# A. Yacobyet al., Phys. Rev. Lett.77, 4612~1996!.
@5# U. Bischler and E. Bertel, Phys. Rev. Lett.71, 2296~1993!.
@6# E. Bertel and J. Lehmann, Phys. Rev. Lett.80, 1497~1998!.
@7# J. Pachos and H. Walther, Phys. Rev. Lett.89, 187903~2002!.
@8# S.A. Tatarkova, A.E. Carruthers, and K. Dholakia, Phys. R

Lett. 89, 283901~2002!.
@9# J.H. Chu and L. I, Phys. Rev. Lett.72, 4009~1994!.

@10# H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feue
bacher, and D. Mo¨hlmann, Phys. Rev. Lett.73, 652 ~1994!.

@11# Y. Hayashi and K. Tachibana, Jpn. J. Appl. Phys., Part 233,
L804 ~1994!.

@12# A. Melzer, T. Trottenberg, and A. Piel, Phys. Lett. A191, 301
~1994!.

@13# U. Konopka, G.E. Morfill, and L. Ratke, Phys. Rev. Lett.84,
891 ~2000!.

@14# I.V. Schweigert, V.A. Schweigert, A. Melzer and A. Piel, Phy
Rev. E62, 1238~2000!.
.

@15# A. Homann, A. Melzer, S. Peters, and A. Piel, Phys. Rev. E56,
7138 ~1997!.

@16# S. Nunomura, J. Goree, S. Hu, X. Wang, A. Bhattacharjee,
K. Avinash, Phys. Rev. Lett.89, 035001~2002!.

@17# X. Wang, A. Bhattacharjee, and S. Hu, Phys. Rev. Lett.86,
2569 ~2001!.

@18# D. Samsonov, A.V. Ivlev, R.A. Quinn, G. Morfill, and S
Zhdanov, Phys. Rev. Lett.88, 095004~2002!.

@19# V. Nosenko, S. Nunomura, and J. Goree, Phys. Rev. Lett.88,
215002~2002!.

@20# F. Melandso”, Phys. Plasmas3, 3809~1996!.
@21# V. Nosenko, K. Avinash, J. Goree, and B. Liu, Phys. Rev. L

~to be published!.
@22# S. Nunomura, J. Goree, S. Hu, X. Wang, and A. Bhattachar

Phys. Rev. E65, 066402~2002!.
@23# V. Eckhaus and A. Van Harten,The Inverse Scattering Trans

form and the Theory of Solitons, An Introduction~North-
Holland, New York, 1981!.

@24# M. Rosenberg and G. Kalman, Phys. Rev. E56, 7166~1997!.
@25# L.D. Landau and E.M. Lifshitz, Fluid Mechanics

~Butterworth-Heinemann, Boston, 1997!, Vol. 6.
2-8


