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Nonlinear compressional waves in a two-dimensional Yukawa lattice
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A modified Korteweg—de VriegKdV) equation is obtained for studying the propagation of nonlinear
compressional waves and pulses in a chain of particles including the effect of damping. Suitably altering the
linear phase velocity makes this equation useful also for the problem of phonon propagation in a two-
dimensional(2D) lattice. Assuming a Yukawa potential, we use this method to model compressional wave
propagation in a 2D plasma crystal, as in a recent experiment. By integrating the modified KdV equation the
pulse is allowed to evolve, and good agreement with the experiment is found. It is shown that the speed of a
compressional pulse increases with its amplitude, while the speed of a rarefactive pulse decreases. It is further
discussed how the drag due to the background gas has a crucial role in weakening nonlinear effects and
preventing the emergence of a soliton.
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[. INTRODUCTION smaller. This is conducive for the excitation and the propa-
gation of lattice phonons.

Lattices with a reduced dimensionality are an interesting Here, our work is motivated by experiments with linear
class of soft condensed matter. These lattices consist of paand nonlinear waves launched in 2D plasma crystal. Nuno-
ticles which arrange themselves in a crystalline structure imuraet al. [16] used laser beams to launch linear longitudi-
the presence of external and interparticle forces. Typical exnal and transverse waves and measure their dispersion rela-
amples of two-dimensiongRD) systems are colloidal sus- tions. They found an agreement with the theoretical
pensiong 1], electrons on liquid heliuni2], and Langmuir dispersion relation of Wangt al.[17]. Samsono\et al.[18]
monolayerg3]. A number of interesting physical processeslaunched a nonlinear pulse by applying a potential pulse to a
have been studied in these lattices, e.g., solid-liquid phaseire located in the plane of the lattice. Nosendioal. [19]
transitions, phonon propagation, and sublimation. Typicalaunched nonlinear compressional pulses using a laser exci-
examples of 1D systems are quantum wirgd, one- tation technique. In the latter experiment, nonlinear effects
dimensional surface states such as chains of H atoms omere observed for large pulse amplitudes, as indicated by a
Ni(110 [5], O on CUY110 [6], ion chains trapped in a stor- pulse speed that increased with its amplitude. However,
age ring[7], and optically bound chains of microspheres in asteepening of the pulse was not observed.
colloid [8]. In this paper, we derive a modified Korteweg—de Vries

Another way of preparing a lattice with reduced dimen-(KdV) equation which is applicable to a wide class of inter-
sionality is to use a plasma crystal, in which micron-sizeparticle potentials in 1D and 2D lattices. Starting with a
charged particles interact with each other via a Yukawa ochain of particles which interact with a potential of the class
screened-Coulomb potential. Most commonly, particles aréJ=U(|z —z|), wherez, is the position of théth particle in
levitated in a 2D lattice in the plasma sheath of a lowerthe chain, a KdV-like equation is obtained under the con-
electrode, where an upward electric force balances gravity itinuum approximation. This can be applied to the problem of
the downward directiofi9—12]. When the crystal anneals, a the propagation of nonlinear compressional waves in a 2D
triangular lattice with hexagonal symmetry is formed. Ex- Yukawa lattice. Specifically, we show that the experimental
periments by Konopkat al. [13] and simulations by Sch- geometry in a recent experimdr9] in a 2D plasma crystal
weigertet al. [14] have verified that in the plane of the 2D allows us to model the pulse propagation by a suitably modi-
lattice, the interaction potential is modeled by a Yukawa po4fied one-dimensional KdV equation. We take into account
tential. Hence, a 2D plasma crystal belongs to the generalispersion effects as well as damping due to the background
class of 2D Yukawa lattices. Similarly, 1D chains can begas.
formed by shaping the particle suspension with a fence or a We compare our results from solving the modified KdV
groove in an electrodgl5]. equation with the experimental results of Nosendioal.

For studying phonons or wave propagation, plasma crysf19]. The agreement is found to be good. Our results under-
tals are ideal. Plasma crystals are suspended in a partialscore the crucial role of damping which weakens the nonlin-
ionized, low-density plasma consisting of electrons, ionsgar effects and prevents the emergence of solitons.
and neutral gas. The particle motion is damped due to colli- This paper is organized as follows. In Sec. Il we derive a
sions with the neutral gas atoms. Since the background gas general KdV-like equation applicable to 1D. In Sec. Il we
much less dense than the fluid background in a colloidaéxplain how this equation can be applied to a 2D lattice. In
suspension, the resulting damping rate is correspondinglgec. IV we specialize to the case of 2D Yukawa lattice. In

Sec. V we review some features of the inverse scattering
transform theory that are relevant for our problem. In Sec. VI
*Electronic mail: we apply this formalism to the case of plasma crystals and
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interpret the results of a recent experiment. an a2 (72771_ ad (93771_ at (94771_
—_— +— +_

nlil_ nJia iz~ 2 (922 — 3! (923 4] (924 ’ (3)
Il. GENERAL FORMULATION
In this section we derive a general differential equation o _+2a@+(23)2 ) +(23)3 Py
for the propagation of compressional nonlinear wave forms, M=2= M= 2% =75 922 — 31 578
such as nonlinear pulses and waves, in a 1D lattice. It can
also be applied to a 2D lattice, as explained in Sec. Ill. (2a)* ,941,j
An equation for the compressional displacement of par- iT F’ (4)

ticles in a chain is obtained from the equation of motion

using a Taylor expansion of the interparticle potential. Conyyhere the+ on the right-hand sidéRHS) corresponds to the
sider an infinite chain of particles which are separated uni=- ;yqex on the left-hand Sid&.HS) of these equations. Sub-
formly by a distance in thez direction. Let the interparticle  stituting these expansions in E() and retaining terms of

potential between theth andjth particles in the chain be the order ofa*, we obtain the following differential equation
given by U;;=U(|Z;—Z|). The equation of motion of the for the particle displacemen; :
jth particle is

(9277+ an 2&277 (vf,az) a*n (28) an %y
I AE S A —_ 7 -7
oS U, g2 ot TP g2 12 574 9z 972
d?z dz =
| — i
— Mgt = ————+ F
m dt2 mvy dt (?Zj Fext’ (1) n r;xty (5)

wherem is the mass of the particley is the coefficient of where we have dropped the subscript frgmand Fe,;. In
dissipation, and=L,, is the external perturbing force on the EQq. (5) the coefficients), andB are given by
jth particle in the chain. We further assume that during the

passage of the wave, the displacemgnof the jth particle 2_ 42 dz_U +220|2_U +320|2_U Y ©)
from its equilibrium positionZy; in the chain is not very Up dz2 dz2 dz2 '
large. In this case, we expatt{|Z;—Z;|) in powers ofy; /a a 2a 3a
and obtain the following difference equation fgy [20]: 43U 43U 43U
B=a®l —;| +2°— | +3—| +-- (7)
dzm+ d7; (it ) )dzu dz7l, A&, 475,
m— mV —_— 7]._ 7] — 77 [
2 ¢ dt = az2 . The coefficientv, in Eg. (5) is the linear phase velocity of
longitudinal phonons in the chain.
d?u An equation for the particle velocity= d#/ dt is obtained
+(72t 77J+2_2’71)E e by integrating Eq(5) once with respect to time. If the non-
2a

linearity is weak, the propagation speed of the wave form in
the chain is expected to be closeutg. In this case, a single

3
d*V integration with respect to time can be performed. We con-

+[(n— 77j—1)2_(77]+1_ 7/j)2]

dz® a sider a case where the velocity of the pulse or other wave
3 form is in the—z direction. This yields the following differ-
) ,.d°U ential equation fow:
(= n7-2)"=(nj12— 1)) ]E
2a dv N v vpa® P N 2B v Fex .
| AT T e w2 m s ©
+o P 2 P
This is a general initial-value problem for studying the tem-

poral evolution of a initial wave formv(z,0) excited by a

In Eqg. (1) we have retained quadratic nonlinear terms. transient perturbing forc&.,(z,t) in a chain. For a given

If the typical scale length of the wave forinis greater lattice potentialJ, the coefficients , andB in Eq. (8) can be
than the interparticle distaneg then the continuum approxi- calculated from Eqs(6) and (7).
mation can be invoked to convert the difference equation A variation of Eq.(8) which we found useful in Ref21]
into a differential equation for; . Here,L can be the width s suited for the time independent, steady-state excitation by
of a pulse or the wavelength of a sinusoidal wave. We exf.;. In a steady-state situation, the energy input of the drive
pand»;-, and 7., aroundz; in powers ofa/L and retain  due to a local perturbing force in the chain is balanced by the
terms of the order ofg/L)%. In this approximation, nonlin- propagation and the dissipation of the wave energy away
ear effects due to the particle discreteness are neglected. Tfrem the excitation region. This is a boundary-value prob-
expansions ofy;..; and »;.., aroundz; are given by lem. The corresponding equation for this case is obtained by
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combining the terms containingy/dz in the RHS of Eq(8) The critical step that we have chosen for adjusting our
and transposing the coefficient to the LHS to give model for the different phase speeds in a 1D chain and a 2D
lattice is simply to substitute the phase spegd as calcu-
vpa? v dv dv 2B v lated for a 2D lattice into Eq$8) and(9). This is valid when
12 .7 top o tru=— ot 220 (9 conditions stated above are satisfied.
p It is possible that this method can be extended to model

This equation governs the steady-state propagation of wa\)@a”af waves in a 3D lattice as well, although we have nc_)t
9 g y propag yet done so. What we have done, and we shall illustrate in

forms in the chain. Here, the external perturbing foFcg, ; - .
was dropped; its effect appears as a boundary conditian on th_e following section, is apply the_lD model to a 2D lattice
with a Yukawa interparticle potential.

in the excitation region. In the limit >a, the sum in Eq(1)
converges rapidly and it is possible to integrate it numeri-

cally. However in this paper we do not choose this alterna- V- APPLICATION TO A 2D YUKAWA LATTICE

tive, because by Taylor expanding the Yukawa potential we |, this section we apply the general formulation devel-
obtain a KdV-like equation which is easier to solve and, agpeq in the Sec. 11 for 1D chains to the specific case of a 2D

we show later, gives reliable results. Yukawa lattice at zero temperature.
The equation governing the propagation of a wave form
Ill. APPLICATION OF THE 1D MODEL in a Yukawa chain is obtained by substituting the expression
TO A 2D LATTICE for the Yukawa potential in Eqg6) and (7), and obtaining

. . . . the coefficients of Eq98) and (9). In a 1D Yukawa chain,
h One of the ch|_ef points of th's paper IS that the mod_el Wecharged particles repel one another with a screened-Coulomb
ave developed in the preceding section for a 1D chain can otential of the form
in many cases, be applied to a 2D lattice. The procedure w%
used in Sec. I, expanding the interparticle potential yielding Q2 Zi
an equation for 1D, is by itself straightforward. What is less U= ﬁexp< - Tj)
common is to extend this to a 2D problem. In this section, T€0%ij
we summarize the conditions where this equation can be aRhere Z.. = 1Z,—Zi|, Q is the particle charge, andl is the
plied to a 2D lattice and we explain the critical step of SUb'screenirlljg scale Iejﬁgth. Substituting EXD) for Uin Eqgs.(6)
stituting the phase velocity in this equation. and(7), we obtain

If a compressional wave in a 2D lattice has a straight-line

wave front, it will propagate with a symmetry similar to the ZQZ[
2
=\ K

(10

compressional wave in a 1D chain. In both cases, there is vp + w
only one nontrivial coordinate, which we have denoted.as 2(e*—1)?
One difference between a 1D chain and a 2D lattice is that 5

the latter is inherently anisotropic. For linear waves in a 2D _ vpA
lattice, the dispersion relation depends on the orientation of B= o (12)

the lattice vector with respect to the wave number, especially

for short wavelengths. However, this effect is negligible, pro-where

vided that the wavelength is much longer than the interpar-

ticle spacing. By limiting our use of the model to long wave- K3+ 3k%+6k+6

lengths, we avoid this difficulty. Doing so does not actually A= K2t D+ 2 (13
reduce the usefulness of our model, because in deriving our

1D equations we have already assumed that the wavelengifhg x=a/\. In Eq. (11), the phase speed, is the speed of

is long compared to the particle spacing; we did this when;ompressional phonons in the 1D Yukawa chain. With these

we invoked the continuum approximatjon. If one wished toexpressions for the coefficients, E48) and (9) become
model a problem where our assumptionlofa were not

satisfied, then a different approach must be found that takes v v UpaZ 33 A Fex

into account the anisotropy of a 2D lattice. One approach E"'VdU_UpE_ ?—3—Av—— m (14)
might be to use a multipole expansion. However, in the

present problem, the assumptidn>a is satisfied and a
simple approach based on a Taylor expansion of the interpaf-
ticle potential is adequate.

The phase speed, is different in a 1D chain and a 2D
lattice, and this must be taken into account. The reason for
this difference is that in a triangular lattice, for example, . .
interparticle bonds are oriented at three different angles, anf¥S in Eq.(8), we assume that the pulse or oscillatory wave is
bonds that are not perpendicular to the wave front are contraveling in the—z direction. These equations are valid both
pressed less than those that are. Depending on the interpdor compressions and rarefactions, corresponding paral-
ticle spacing, the phase speed in 2D can be higher or lowdel and antiparallel te,, respectively. In Sec. VI we discuss
than in 1D. the case of a rarefactive pulses.

" ma

—In(e"—l)], (11

vpa2 a3v+ &v+ _ &U+A Jv 15
12 58 Pz V0T T o T
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As stated in the Sec. Il, our method of using Ed<l) and The general solution of the KdV equation consists of
(15) for a 1D Yukawa chain to model wave propagation in aterms corresponding to the soliton and the dispersion. For an
2D Yukawa lattice is to replace the phase veloaifyby a initial pulsev(z,0) this solution is given by
different value appropriate for a 2D lattice. The reason for
this is that the geometry of a 2D lattice is triangular rather v(z,1)=vN(Z,1) +O(a(1)), (20

than linear, hence the effective spring constant for the wave , ) )
where vy(z,t) is the N-soliton solution and the last term

motion is different from the spring constant of a chain. As a . ; . .
consequence, the sound speed in a 2D lattice is differen orresponds to dispersion. This solution can be constructed

Typically, it is greater than the 1D sound speed for smrall rom the scatte_ring d"’_‘t_a' which must be obtained by sc_JIving
and smaller for largec. Nunomuraet al. [22] have calcu- Eq. (19) for agiven initial pulsev(z,0). Once the scatter_mg
lated the sound speatp in a 2D Yukawa lattice at zero data are avallable,_ them(z,t) can be constructed foII'owmg
temperature fok ranging from 0.1 to 10. For a 1D chain, the the proced_ure <_)utl|ned n the IST theqqg]. The velocity of
sound speed ,,p, can be obtained from Eq11) as a func- theNth soliton is proportional to they . The second term of

tion of k. From these, the ratia of sound speeds in one and the ;olutlon in Eq.(20) is thg dispersive part due to the
two dimensions is calculated as continuous spectrum of the eigenvalues. Under very general

conditions, it phase mixes to zero &s»o0. It should be
noted that IST is a complete theory which describes much

(16 more than what we have stated here briefly. An estimate of
the number of solitons for a given initial pulsgz,0) is

which depends om’. Hence, to take into account the sound given by
speed in a 2D triangular lattice when using our 1D model,

_ Up2D
a= PP

- ’
UpiD

we calculatev, in Eq. (14) as Ns2+f |2||v(z,0)|dz. (22)
2Q? e“(k+2)—2 _— _ :
vﬁzazi[ + (K—)zl —In(e"—l)]. Clearly, an initial pulse with a larger amplitude allows the
ma 2(e"=1) generation of more solitons. Interestingly, there is an exact

(170 solution for two solitons given by

Thus, the propagation of a compressional wave form in a 2 (z,t)
Yukawa lattice, having a nearly straight-line wave front, can ’
be studied via Eq(14) with the coefficients), and A given [3+4costi2z—8vyt) + cost{4z— 64v t) ]
by Eq. (17) and Eq.(13), respectively. The ratiax in Eq. == >

(17) must be calculated from E@16) using values, for ex- [3coshiz—28v,t) +costi3z—36u,t) ]
ample, from Ref[22] for v,,p at a given value ofk. (22

V. INVERSE SCATTERING TRANSEORM METHOD The measurement of the shape of the initial pulse is of
prime importance in the transient excitation experiments.

Without the term corresponding to the external forceThis is for two reasons. First, the shape of the initial wave
Fext» EQ.(14) belongs to the general class of KdV equationsform is required in the initial-value problem. Second, accord-
which are solved by the method of inverse scattering transing to the IST theory outlined above, if the conditions are
form (IST). Here, we review the relevant features of this appropriate then aN-soliton solution will emerge from the

method[23], given as follows. initial pulse ast—oc. All the information about the soliton
(1) The KdV equation is solution, including the number of solitons and their speeds, is
contained in the initial pulse(z,0).
Jv Jv Jv v
—tu—-+tvw-—-+y—=0, (18
ot Jz 0z 973 VI. NONLINEAR PULSES IN PLASMA CRYSTALS

wherex, v, andy are constants. It has a unique solution for !N this section, we apply the general formulation devel-

all those classes of initial conditions(z,0) which vanish oped earlier to the specific case of the excitation of transient

rapidly asz— . ' pulses in plasma crystals. We then interpret the results of
(2) The information about the number of solitons and their"©cent experiments.

respective velocities is obtained by solving the correspond-

ing Schrodinger equation with(z,0) as the potential: A. Modeling the initial-value problem
5 The solution of the initial-value problem in Eq@l4) is
d_v (2,00~ ApJu=0 (19) useful for modeling experiments with the transient excitation
dz ' N ' of a compressional pulse in a plasma crystal. In the experi-

ment of Nosenkoet al. [19], a compressional pulse was
For everyv(z,0) satisfying Eq(19), there exists a finite set launched in a 2D plasma crystal by the radiation pressure
of discrete eigenvaluesy whereN=1,2,3 .. .. Inaddition, force of a laser sheet which was momentarily turned on and
there may be a continuous spectrum of eigenvalues. then off. This resulted in a weakly nonlinear pulse, where the
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perturbed particle velocities were all in one direction and the EEE T T T T
resulting wave front was nearly a straight line. Hence, for 2r .
reasons given earlier, the propagation of this nonlinear pulse — theory 1
can be approximated by the propagation of a pulse along a L3 - experiment
linear Yukawa chain. In the experiment, the pulse shape
along the direction of propagation was measured at the initial
time as well as at subsequent intervals. The solution of the
initial-value problem in Eq(14) with v, given by Eq.(17) is
thus applicable. If we take the shape of the pulse after the
laser was turned off, we may simplify E(L4) by dropping
the F¢y term. Hence, we will solve Eq14) without Fg,;, 05
and use as its initial condition the pulse shape just after the i pulse propagation
laser was turned off. 1

In the case of a plasma crystal, we identify the screening T I T T —
scale length\ in Eq. (10) as the Debye lengthp. In the position z (mm)
plasma crystal, the particle charge is screened by the back- . . : .
ground electrons and ions. Hence, the screening scale Ienglg%1 gﬁéé}sProp%ggtuotr;] Oftﬁ Compress'infé pu'_si (u)nsa 2D lattice.
is given by the Debye length in the expression for the 'y used in the theory were 1.4, a=L1.95 MM, vp

. =9 mm/s, andvy=2.9 s -. The experimental curve at=0 was

Yukawa potential.

Bef di h uti di recorded after the laser was turned off; it was used as the initial
efore progee Ing to cor?strluct ,t e'so ution, W,e next ISTondition for the theory. The pulse shape is also shown at five
cuss the crucial effects of dissipation in our solutions.

subsequent intervals of 0.1 s. The theoretical curves are superim-
posed on the experimental observations of Nosegtkal. [19].

particle velocity v (mm/s)

B. Damping

Any possible source of damping in the experiment re-compressional pulse propagated in_the direction:AIarger_
duces the pulse’s amplitude and weakens any nonlinear e\@ser power_rgsulted in larger amp]ltude pulses in the lattice.
fects. In the experiment, a plasma crystal is formed in a rfParticle positions, recordedi by a video camera, were useq to
plasma which has not only electrons and ions but also neutrg@lculate the particle velocity and the areal number density
molecules of the background gas. The collisions of the dus#S the pulse propagated through the lattice. Depending on the
particles with gas molecules give rise to a damping of theumber of particles, the interparticle distareceanged from
particle motion. Using Epstein’s model, the coefficient of 486 #m to 1097um and the values ok ranged from 0.68

this dragvg in Eq. (14) is given by[22] to 1.45. In Fig. 1 we show_thg experimen_tal daya for the pulse
shape from Ref[19]. The initial pulse is identified as curve
8my p 0, which was recorded just after the laser was turned off. Its
V=4 F,T’ (23 subsequent evolution at intervals of 0.1 s up to 0.5 s are also
gPlp

shown. The laser power was 2.38 W.
Wherep’ mg, Tg! rp, andp are the gas pressure, mass of the The ex_perimental pare_lmeters had uncertainties _that must
gas molecule, gas temperature, radius, and the material debe taken into account while explaining the observations. The
sity of particles, respectively. The leading coefficieit temporal evolution of the initial pulse(z,0) is studied by
ranges from 1.00 in the case of the specular reflection to 1.480lving Eq.(14). If parameters such as the particle cha@e
in the case of diffuse reflection. Typical values mf for massm, and k which enter in the coefficients of various
micron-size particles in about 10-mtorr gas are of the ordeferms in Eq.(14) were known with infinite precision, then
of 1 s L In the experiment by Nosenketal. [19], vy  there would be no free parameters in the problem and the
=29¢g1 evolution of the initial pulse(z,0) would be unique. How-
The role of damp|ng becomes even more crucial in ex£Ver, because of the inevitable eXperimental errors in the
periments where the amplitude of the initial pulse is not verymeasurement of these parameters, there is a range of values
large. As we shall see shortly in our solutions, the dampingf the coefficients in Eq(14) to choose from. In the experi-
quickly reduces the amplitude of the initial pulse. Hence, thement, the charge wa®= —(9000+200)e, the particle di-
main effect of the damping is to weaken nonlinear effect@meter wasD =8.09+0.18 um, and the error in the mea-
before a well-defined soliton may emerge. Earlier, Rosenbergurement ok, which was made using a wave technique, was
and Kalman[24] found that damping can similarly obscure Ax/«x== 0.13. The parameter known with the greatest pre-
the effects of correlations in the dispersion of acoustic wave§ision in the experiment was [19].

in a 3D dusty plasma. The error inv,, denoted byAv,, arises mainly due to
errors in measurements @ D, andx. Using the method of
C. Evolution of the pulse propagation of errors, we obtaikw /v, as

In the experiment, a pulse was excited by applying the Av, AQ\? [3AD\? [Ax df\?
radiation pressure force due to a laser sheet. The laser sheet o * [(6) (T) + (7 a) } (24)
P

struck the lattice at an angle, applying a force in the
direction within a narrow excitation region. Thereafter, awhere f(«) is the x dependence of;f, given in Eq.(17).
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2 e shows that except for the higher speed of the pulse with the
| nonlinear term, the difference is not very significant.
— linear The condition for the emergence of a soliton from the
L5 - nonlinear 0 N initial pulse requires that the nonlinear term must persist in-

definitely despite damping. In Fig. 1 we see that the solution
has developed a significant oscillatory part that is not yet
damped. This part corresponds to the second term of Eq.
(21). The dispersive part will decay to zero as . Thus,
the condition for the emergence of a soliton is that the non-
linear terms persist for a time long enough for the oscillatory
part to damp to a low level. This requires eitia) a suffi-
ciently large amplitude of the initial pulse db) a small
damping rate. In the experiment of Nosendioal. [19], the
B T T S— pulse amplitude was rather weaks< 1.8 mm/s, so that non-
position z (mm) linear effects were not strong, and these were further weak-
ened by the damping at a raig~2.9 s . This explains
why a clear soliton did not emerge from the initial pulse in
this experiment.

particle velocity v(mm/s)

FIG. 2. The evolution of the initial pulse with and without the
nonlinear term in Eq(14). This test demonstrates that for condi-

tions as in the experiment«E 1.45, a=1.05 mm, v,=9 mm/s, If an experiment had an initial Ise with a much laraer
andvy=2.9 s'1), nonlinearities affect the pulse’s speed but not its Xper initial pu wi u 9

shape. The pulse shape is shown at five subsequent intervals pl'ltude, there mlght bFT' rpt only one but several solitons.
01s. s discussed earlier, the initial pulse corresponds to a poten-

tial in the Schrdinger equation. The depth of the well is
. . .y proportional to the amplitude of the pulse. Since a deeper
Using the experimental uncertainties f@; D, and x, we  potential well accommodates more eigenvalues, and since
obtain v,=29*3 mm/s for «=0.680.09 and a  {he number of eigenvalues is equal to the number of solitons,
=0.50 mm, andv,=10.00x1.00 mm/s fork=1.450.18  jt follows that the number of solitons emerging from an ini-
anda=1.05 mm. The particle’s mass density in both cases igja| pulse increases with its amplitude. This is also consistent

1.514 g/cm. Our results for the uncertainties of,, given  yith the estimate of number of solitons given by E2p).
above, correspond to ad+ange. It is within this range that

we will constrainv,, when fitting our model to the experi-
mental data. D. Speed of the pulse

We solve Eq(14), using as its initial condition the experi- o ghead of a nonlinear pulse is in general a function of

mental pulse shape identified as curve 0 in Fig. 1. We alsqq gmpjitude. This was observed to occur in the experiment

show the temporal evolution of this pulse at subsequent ing¢ pe. [19]. The experimenters found that the increase in

tervals of 0.1 s. For the best fit to the experimental reSUItSspeed, as compared to the linear case, was roughly propor-
we have chosera=1.05 mm, k=1.45, A(kx)=3.43; we

o tional to the amplitude. This nonlinear effect was observed
also chose,=9 mm/s, which is at the lower end of theal- 4t strongly at large. The experiment was performed for
range given above. As stated earlier, the shape of the pulsgser nowers of 0.66 W, 1.25 W, 1.84 W, 2.38 W, and 2.75 W,
after the laser is turned off is requwed as the initial c_ond_ltlonwhere higher laser powers yielded larger amplitudes for the
in Eq. (14). Because Eq.14) is written for a pulse moving in pulse.
the — z direction, we replace the portion of the experimental  For both the experiment and the theory, our method of
wave form atz>2.5 mm, which contained a rarefactive measuring the speed of the pulse was to plot its posiion
pulse moving in the+z direction, with a zero value. The vstand fit it to a straight line. The method of identifyiag,
compression portion of the experimental wave form, however, was different for the theory where we could easily
<2.5 mm, is retained. We then evolve the pulse shape as identify the maximum of the pulse’s peak, and the experi-
propagates by integrating E@.4). For easy comparison with ment where we could not, due to noise in the data. The
the experiment we rescale our equation in physical unitsposition of the peak in the experiment was determined in two
distance in millimeters, time in seconds, and the speed isteps. Firstz, was estimated by the poit, ., where the
mm/s. As in the experiment, the evolution of the pulse isparticle velocity is maximum. Second, to reduce the effect of
obtained at time intervals of 0.1 s up to 0.5 s. This is showmoise, the first moment af vs zwas calculated using data in
in Fig. 1. The agreement of the solutions with experimentathe rangez,,,,— 2.5 mm t0z,,,+ 2.5 mm.
results is good. We evolved the pulses by solving E(L4) and we ob-

As stated earlier, damping reduces the role of nonlineatained the pulse speédas a function of the amplitude. We
effects. Because of damping, the amplitude decays and threpeated this calculation for amplitudes corresponding to
nonlinearity is weakened. As a result, in the late stages of theach of the five values of laser power in the experiment: 0.66
pulse’s evolution, its shape is governed mostly by lineaW, 1.25W, 1.84 W, 2.38 W, and 2.75 W. We also repeated it
terms. To demonstrate this, in Fig. 2 we show the evolutiorfor two values ofx: 0.68 and 1.45. We then compare the
of the initial pulse in Fig. 1 as calculated both with and pulse speeds from the experiment and the theory. &or
without the nonlinear term in Eq(14). This comparison =1.45, in the theory we used the value of discussed
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FIG. 3. Variation of pulse speed with amplitude. In the ex- FIG. 4. The coefficients ,/Cy andA of the linear and nonlinear

periment, the amplitude increased with the applied laser power. Iterms, respectively in Eq(14), as a function ofx. Here, C,

the theory, the amplitude for the initial condition was chosen to=Q/\ma. For smallx the coefficient of the linear term is much
match the experiment, and the parametefs=26 mm/s for larger than that of the nonlinear term. This results in a linear behav-
=0.68 andv ,=9 mm/s fork=1.45 were assumed. The valueigf  ior at small values of.

was same as in Fig. 1. For large the pulse speed increases sig-

nificantly with amplitude. Experimental data are fitted to a straight |V| =v,+ Av, (26)

line.

wherev andv, are positive values.

earlier. Fork=0.68, we chose,=26 mm/s for a good fit; Finally, we discuss rarefactive pulses, which we find have
this value is again at the lower end of therrange from the @ speed that decreases with their amplitude. In the initial
experiment. In Fig. 3 we show results for pulse speed v&ondition for a rarefactive pulse, the particle velocity is in
amplitude both in theory and experiment, and we note thath€ direction opposite to the pulse propagation velocity.
the agreement is good. Slnc? in Eq.(14), the pulse propagation was assumed to be

The reason that the pulse speed is independent of the arm — z direction, therv in the initial condition for a rarefac-
plitude for small values ok is thatv , varies rapidly withx. tive pulse should be in the z direction.
Recall that the phase velocity, that appears as the coeffi-  For example, an initial condition for a rarefactive pulse in
cient of the linear term in Eq14) is given by Eq.(11). This  Eq.(14) can be obtained by assuming an initial pulse such as
velocity increases rapidly with decreasirg On the other that in Fig. 1 but withv in the opposite direction. To dem-
hand, the parametek(«), which is the coefficient of the onstrate this, as an initial condition for a rarefactive pulse we

nonlinear term in the same equation, varies slowly with  reversed the sign of for curve 0 in Fig. 1, retaining the
These two variations are shown in Fig. 4. Thus, with de-

creasingk, linear terms become more dominant than the U———7 ,
nonlinear terms, leading to a linear behavior at small values )
of k.

. . . . . O compressional pulse
We can justify now the experimenters’ choice of fitting 12 A rarefactive pulse ,

their data for pulse speed vs amplitude to a straight[lrgs.
Their idea for choosing a straight line rather than some other
power law came from the theory for a nonlinear adiabatic
sound wave in a 3D fluif25]. They chose this form, despite
the difference of their 2D crystal and a 3D fluid, for a lack of
any better model. Here, we present a justification based on
our model, for fitting pulse speed vs amplitude to a straight L .
line, for 1D propagation in a 2D lattice. As shown by
Nosenkoet al.[19], the role of dispersion in the pulse propa-

gation is weak. In this case we may neglect the dispersion — s

pulse speed V (mm/s)
S
T
|

term in Eq<l4) and express it as laser power (W)
dv v FIG. 5. Variation of the pulse speed with the amplitude for com-
5 Frav=vp 1+AU— 5z (25 pressional and rarefactive pulses. Data shown are from theory. Pa-
p

rameters assumed were the same as in Fig. 1. The pulse amplitude
in the theory was chosen to match the compressional pulse ampli-

In the experiment the nonlinearity is weak, i#ly,<1. For  tude in the experiment at various laser powers. A smooth curve is

such a case Ed25) corresponds to a pulse with a speed  drawn through the data points.
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initial data for z<2.5 mm, as before. This pulse was thenthe initial condition. We accounted for the damping due to
evolved by solving Eq(14), and the speed vs amplitude the background neutral gas. The calculated evolution agrees
relationship was obtained as before. In Fig. 5 we show thavell with the experimental observations of Noserdal.
results for both compressional and rarefactive pulses, assurfit9]. The speed of the compressional pulse was shown to
ing k=1.45, a=1.05 mm, andv,=9 mm/s. We find that, increase with its amplitude, which is consistent with the ex-
as opposed to the case of the compressional pulse, the spgagrimental observations. The speed of rarefactive pulse is
of the rarefactive pulse is found to decrease with the amplishown to decrease with the amplitude.

tude, as shown in Fig. 5. We discuss how damping plays a crucial role in weaken-
ing nonlinear effects in the experiment of Nosen&bal.
VII. SUMMARY [19]. In this experiment the amplitude of the initial pulse was

not very large. The drag due to neutrals further weakens the

In this paper we have developed a general formalism tgonlinearity quickly by damping the pulse’s amplitude. As a
study the propagation of nonlinear wave forms, such as nonresult, the emergence of a soliton is prevented and in the late
linear pulses and waves, in 1D chains and 2D lattices. Bgtages of the pulse’s evolution its propagation is governed
Taylor expanding the interparticle potential in the equation ofmostly by linear effects.
motion, an equation governing the propagation of transient
or steady-state wave forms in a 1D chain is obtained.

By suitably changing the linear phase velocity in the 1D ACKNOWLEDGMENTS
equation and assuming a Yukawa potential between particles
in the chain, this formalism was applied to the case of a 2D We thank A. Bhattacharjee for useful discussions. This
plasma crystal. The initial-value problem in E@4) was  work was supported by NASA and the U.S. Department of
demonstrated using the experimentally measured)0) as  Energy.
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