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The existence of coefficients for diffusion, viscosity, and thermal conductivity is examined for two-
dimensional �2D� liquids. Equilibrium molecular dynamics simulations are performed using a Yukawa poten-
tial and the long-time behavior of autocorrelation functions is tested. Advances reported here as compared to
previous 2D Yukawa liquid simulations include an assessment of the thermal conductivity, using a larger
system size to allow meaningful examination of longer times, and development of improved analysis methods.
We find that the transport coefficient exists for diffusion at high temperature and viscosity at low temperature,
but not in the opposite limits. The thermal conductivity coefficient does not appear to exist at high temperature.
Further advances in computing power could improve these assessments by allowing even larger system sizes
and longer time series.
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I. INTRODUCTION

In strongly coupled dusty plasmas �1�, consisting of
micron-sized, highly charged particles, the interaction of the
dust particles in many cases can be well approximated by the
Yukawa potential. Other systems for which this type of po-
tential is also appropriate include charged colloids �2� and
high-energy density matter �3�.

The interparticle Yukawa potential energy in these sys-
tems

��r� =
Q2

4��0

exp�− r/�D�
r

�1�

accounts for the Coulomb repulsion of the particles originat-
ing from their like charges �Q� and the screening of the
plasma which surrounds the dust particles. Screening is char-
acterized by the dimensionless ratio �=a /�D, where a is the
Wigner-Seitz radius and �D is the screening length.

The coupling parameter � is a measure of interparticle
potential energy as compared to kinetic energy. Defined as
�=Q2 / �4��0akBT�, it varies inversely with temperature T. In
the strong-coupling domain ��1, the system behaves simi-
lar to a nonideal gas, liquid, and then solid, as � increases.

Dusty plasmas in nature and in laboratory environments
appear in both three-dimensional �3D� and two-dimensional
�2D� settings. A notable type of 2D system is a layer of dust
particles levitated in gaseous discharges. During the past de-
cade this latter system has been investigated both experimen-
tally and by different theoretical and simulation approaches.
These studies at first mainly concerned the self-organized
crystalline state of the system �4�. Propagation of compres-
sional and shear waves has been studied and dispersion prop-
erties of these waves have been determined �5�. Using per-
turbation methods, the generation of Mach cones and
nonlinear waves has also been investigated �6�. Time scales
in these 2D dusty plasma suspensions are characterized by
	0

−1= �Q2 /2��0ma3�−1/2, where m is the dust particle mass.

These crystals can be melted, to produce an interesting
liquid state, by changing the plasma parameters or by using
laser heating techniques �7�. The strongly coupled liquid
state, established this way, has already attracted interest in a
series of experiments aimed at the observation of waves �8�,
as well as studies of transport processes �9�. Apart from ex-
periments, combined theoretical and simulation studies have
recently been carried out in order to uncover thermodynamic
and structural properties �10� as well as collective excitations
�11� of two-dimensional Yukawa liquids. Studies of transport
properties in such 2D systems are especially interesting due
to the fact that doubts about the existence of transport coef-
ficients in low-dimensional systems have been raised on the-
oretical grounds �12,13�.

Experiments with dusty plasmas are invariably nonequi-
librium problems, with a constant energy input and frictional
energy loss. The energy input can be provided by ion flow or
electric field fluctuations that propagate into the dust suspen-
sion from an outside source, or by external manipulation
using, for example, laser radiation pressure. A major source
of friction is gas drag experienced by the solid dust particles
as they move through ambient neutral gas. At steady state,
the temperature is determined by a balance of the energy
input and dissipation.

Molecular dynamics simulations have successfully been
used for the determination of the self-diffusion �14�, the
shear viscosity �15–19�, and the thermal conductivity �17,20�
coefficients of 3D Yukawa liquids. In general, valid transport
coefficients are more likely to exist in 3D liquids than in 2D.
Here we will investigate 2D liquids. The first question to
address is not how large a transport coefficient is, but rather
does it exist at all. Assessing the existence of diffusion, shear
viscosity, and thermal conductivity coefficients in 2D
Yukawa systems is the aim of this paper.

Assessing the existence of a transport coefficient in 2D
Yukawa liquids based on simulation data has until now
sometimes relied on qualitative judgments and data that cov-
ered too short a time span. Here we will attempt to improve
on both of those limitations. We will use a larger system size,
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allowing us to calculate autocorrelation functions that are
meaningful over a longer time span. We will reduce the
qualitative aspect of the judgment by introducing quantita-
tive analysis methods making use of Student’s t statistics to
conclude whether a correlation function decays faster than
1 / t. We will also implement other improvements in the fit-
ting that is part of the analysis, first to avoid errors that were
previously caused by including the initial decay portions of
the autocorrelation function�s� and second to generate error
values required for the Student’s t statistics. Our assessment
in the end cannot be viewed as a final word on the existence
of a transport coefficient, but rather as an improved estimate
that could in the future be improved further, especially with
greater computational power to provide better signal-to-noise
ratios and even longer time spans.

In Sec. II of the paper we introduce the autocorrelation
functions to be studied and present their general properties,
while Sec. III briefly discusses previous work. In Sec. IV and
V, respectively, we explain the simulation and data analysis
methods. The results are presented in Sec. VI. Section VII
gives the conclusions of our studies.

II. AUTOCORRELATION FUNCTIONS

For equilibrium systems, without gradients, transport co-
efficients are calculated using the Green-Kubo relations. For
the three transport coefficients of interest here, these are
given as follows �21�.

For the diffusion coefficient D,

D =
1

Nd
�

0




Cv�t�dt, Cv�t� � �v�t� · v�0�� . �2�

The integrand Cv�t� is the velocity autocorrelation function
�VACF�. For shear viscosity �,

� =
1

VkT
�

0




C��t�dt, C��t� � �Pij�t�Pij�0�� , �3�

where the integrand C��t� is the shear stress autocorrelation
function �SACF�. For thermal conductivity �,

� =
1

VkT2�
0




C��t�dt, C��t� � �JQi�t�JQi�0�� , �4�

where the integrand C��t� is the energy current autocorrela-
tion function �EACF�.

Here, Nd is the dimensionality of the system, V is the
system volume, i� j are space coordinates, and the angular
brackets denote an ensemble average. Calculating the corre-
lation functions requires time series data for the particle ve-
locity v, the off-diagonal element of the pressure tensor Pij,
and the energy current JQi; these time series can all be re-
corded during a molecular dynamics simulation.

For transport coefficients to exist, the autocorrelation
functions in the integrands of Eqs. �2�–�4� must decay rap-
idly enough for the integral to converge. This rapid decay for
convergence is the essential requirement that we test in this
paper. In examining their decay, it is crucial to examine the
long-time behavior. Since the Green-Kubo integrals in Eqs.

�2�–�4� extend, in principle, to infinity, what is really needed
is information about the integrands as t→
. However, a nu-
merical simulation is, of course, limited to a finite time span.
This is one reason that a conclusion regarding the existence
of a transport coefficient cannot be definitive when based on
a simulation. Advances in computational power over the
years will allow longer time spans, so that conclusions re-
garding the existence of a transport coefficient can change.
Here we take a step in this gradual improvement by using a
bigger simulation size, which allows a longer time span.

For the purpose of illustrating the autocorrelation func-
tions, we present some examples in Fig. 1. Curves are shown
for Cv, C�, and C�, all computed for a cool liquid ��=300
and �=2�. �Figure 1 actually shows 	Cv	, as this function
may acquire negative values even at “early” times due to
caged motion of particles.� We plot the data on log-log axes
so that a power-law behavior appears as a straight line.

Examining Cv in Fig. 1, we identify three portions of the
time series. Our analysis will include only the central one of
these three portions.

First, there are initial decaying oscillations in the correla-
tion function. These are associated with caged particle mo-
tion and are not of interest for diffusion.

In the middle, there is a portion we term “smooth decay.”
This portion of the correlation function is what we seek to
analyze, by examining and fitting it to determine whether it
decays faster than 1 / t.
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FIG. 1. �Color online� Examples of the three autocorrelation
functions C�t�. These are the VACF �Cv�, the SACF �C��, and the
EACF �C��. �The curves are shifted vertically for the clarity of the
plot.� The corresponding transport coefficients �self-diffusion, shear
viscosity, and thermal conductivity, respectively� are deemed to ex-
ist, if 
C�t�dt converges. Data here are from our simulation of a 2D
Yukawa liquid at a low temperature, �=300. Later, we will analyze
data after the initial decaying oscillations but before a sound peak
or zero crossing.
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Finally, the smooth decay ends one of two ways: either a
sound peak as seen in Fig. 1 for Cv and C�, or noise oscil-
lations with zero crossing as seen here for C�. The sound
peak occurs at a time that is the ratio of the length of the
simulation box divided by the sound speed. Correlation data
after the sound peak can be meaningless, especially in a solid
or a cold liquid, because of the periodic boundary conditions,
which means that a sound wave that exits the box will re-
enter the box from the other side. At long times, when the
correlation function has diminished to a small value, it is
obscured by noise, which can appear as oscillations crossing
zero. We will not analyze data after a sound peak, or a zero
crossing, whichever comes first.

III. PREVIOUS WORK

In the study of liquids, long-time tails of autocorrelation
functions have been the focus of numerous investigations.
These have included both 3D and 2D systems, with various
interparticle potentials.

Nonexponential long-time tails in the VACF of hard
sphere and hard disk systems were first reported by Alder
and Wainwright �12�. For the 2D case they observed a �t−1

decay of the tail of the VACF, which makes the VACF non-
integrable. As a consequence, the diffusion coefficient was
claimed not to exist for this system.

Further, Ernst et al. �13� have shown that the kinetic con-
tributions to the autocorrelation functions of shear stress and
energy current—which are related to velocity correlations—
exhibit the same behavior. Their findings were also con-
firmed by the calculations of Dorfman and Cohen �22�. Re-
garding systems with continuous potentials, power law decay
of the VACF was observed in 3D soft-repulsive and Lennard-
Jones liquids �23�. A t−1 tail of the SACF was found in mo-
lecular dynamics simulations in the case of 2D soft disk fluid
�24�. For the case of Coulomb interaction �2D classical elec-
tron liquid� the existence of self-diffusion coefficient has
been a topic of controversy �25–27�.

For thermal conductivity, the present authors are aware of
experiments but no previous simulation or theory for a
strictly 2D �monolayer� Yukawa liquid. A recent experimen-
tal measurement of the thermal conductivity was reported for
a 2D liquid in Ref. �28�, following earlier measurements in
2D crystals �29� and liquids in a quasi-2D system �30�.

The situation for self-diffusion and shear viscosity in 2D
Yukawa liquids is different, as the literature includes both
experimental and simulation studies. These have yielded es-
timates of the self-diffusion coefficient �31,32� and the shear
viscosity �9,33–35�. Thus, our goals here will include report-
ing, apparently for the first time, a simulation for thermal
conductivity in 2D Yukawa liquids, as well as an improve-
ment over previous simulations for diffusion and viscosity.

For diffusion, earlier equilibrium MD simulations of 2D
Yukawa liquids, restricted to �=0.56, predicted that super-
diffusion rather than diffusion occurs over a wide range of
temperatures �32�. They also predicted that D exists in the
nonideal gas phase and near the disordering transition �40�,
and that the Stokes-Einstein relation D��kT is violated very
near the disordering transition.

Recent simulations �35� motivated by an experiment on
the shear viscosity in 2D Yukawa liquids using a dusty
plasma monolayer �9� indicated a fast decay of the SACF
that allowed a calculation of a viscosity coefficient. Nonequi-
librium simulations of the same system �36� did not show
significant sensitivity of the results on system size and al-
lowed an identification of non-Newtonian behavior under
high shear rates.

Interest in systems characterized by soft potentials moti-
vates our investigations of 2D Yukawa liquids. Our aim is to
carry out a systematic study of the time correlation functions
and to investigate the existence of the related transport coef-
ficients of 2D Yukawa liquids, covering a wide range of the
� and � parameters. Such investigations are especially
timely now as very recent large-scale simulations of Isobe of
a 2D hard disk fluid systems �37� have demonstrated that for
some conditions the VACF decays slightly but definitely
faster than 1 / t, in contradiction with the early findings of
Alder and Wainwright �12� mentioned above. In addition to
analyzing the correlation functions we also check the limits
of applicability of the simulations, which has been missed in
some previous studies.

IV. SIMULATION TECHNIQUE

A. Molecular dynamics method

It is noted that while nonequilibrium methods are gener-
ally more efficient in studies of transport phenomena, equi-
librium simulations have the advantage of allowing a direct
test for the existence of transport coefficients, as explained
above. In cases when this test indicates that a valid transport
coefficient does not exist, nonequilibrium simulations yield
“transport coefficients” that may not be unique, in a way that
they exhibit dependence on system size.

The system studied here is strictly two dimensional and it
is under equilibrium conditions unlike some experiments,
which are driven dissipative �9�. Using this assumption we
integrate the Newtonian equation of motion of the particles
during the course of the simulation. We apply a rectangular
cell with edge lengths Lx�Ly and periodic boundary condi-
tions. Pairwise Yukawa interparticle forces are summed over
a �-dependent cutoff radius �also extending into the images
of the primary computational cell�, using the chaining mesh
technique. No thermostat is used; the desired system tem-
perature is set by rescaling the momenta of the particles in
the initialization phase of the simulation that precedes the
start of data collection.

B. Calculation of functions

The main results of the simulations are the correlation
functions Cv�t�, C��t�, and C��t�, defined by Eqs. �2�–�4�. In
addition to these correlation functions, to detect diffusion we
also calculate time series for the mean squared displacement
of particles

MSD�t� = �	r�t� − r�0�	2� . �5�

The MSD has an advantage, as compared to the VACF, at
high � where oscillations in the VACF obscure its decay.
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Diffusive motion is characterized by a constant time deriva-
tive of the MSD.

Phase space coordinates of the particles allow the deter-
mination of the VACF and MSD directly, while the time
series needed to calculate the SACF and EACF are obtained
from the phase space coordinates as �21�

Pxy = �
i=1

N mvixviy −
1

2�
j�i

N
xijyij

rij

���rij�
�rij

� , �6�

JQx = �
i=1

N

vix1

2
m	vi	2 +

1

2�
j�i

N

��rij��
−

1

2�
i=1

N

�
j�i

N

�ri · vi�
���rij�

�rij
, �7�

where rij =ri−r j = �xij ,yij�. We normalize distances by the 2D
Wigner-Seitz radius a= �1 /n��1/2, where n is the areal den-
sity.

The first term on the right hand side of Eq. �6� is called
the kinetic term, while the second term is the potential term,
i.e.,

Pxy = Pxy
kin + Pxy

pot. �8�

Similarly, the energy current may be written as

JQx = JQx
kin + JQx

pot + JQx
coll, �9�

where the three �kinetic, potential, and collision �38� or virial
�39�� terms correspond to the ones on the right hand side of
Eq. �7�. �It is noted that some authors follow a different
partitioning of the energy current.� The stress autocorrelation
function �SACF� thus has the form

C� = �Pxy
kin�t�Pxy

kin�0�� + �Pxy
pot�t�Pxy

pot�0�� + 2�Pxy
kin�t�Pxy

pot�0��

= C�
KK + C�

PP + 2C�
KP. �10�

The energy current autocorrelation function �EACF� may as
well be decomposed as

C� = �JQx
kin�t�JQx

kin�0�� + �JQx
pot�t�JQx

pot�0�� + �JQx
coll�t�JQx

coll�0��

+ 2�JQx
kin�t�JQx

pot�0�� + 2�JQx
kin�t�JQx

coll�0�� + 2�JQx
pot�t�JQx

coll�0��

= C�
KK + C�

PP + C�
CC + 2C�

KP + 2C�
KC + 2C�

PC. �11�

In calculating these correlation functions from simulation
data, we use a common method of overlapping time seg-
ments. Each overlapping time segment begins at a different
initial time in the time series. We average the correlation
functions over all the overlapping segments. This averaging
serves the role of an ensemble average. It also serves to
reduce the noise.

For the VACF, we are also able to average over all the
particles in the system, and this greatly reduces the noise as
compared to the SACF and EACF, which allow only averag-
ing over the overlapping segments. For this reason, noise
presents a greater challenge for the SACF and EACF than for
the VACF.

We repeat all the simulations several times �the actual
numbers will be given for the cases presented later�, each

with different initial conditions for the particle positions. We
combine the results of these runs, yielding a mean value and
an error bar for each data point in the time series for the
autocorrelation function.

V. DATA ANALYSIS METHOD

Here we define in detail our analysis methods for the
long-time behavior of the three autocorrelation functions.
Our goal is to assess whether the functions decay faster than
1 / t, so that their integrals will converge and the correspond-
ing transport coefficient exists. This assessment has in the
past relied to a great extent on qualitative inspections of the
autocorrelation functions. The analysis methods described
below include improvements to invoke more quantitative cri-
teria for this assessment. In the end we will answer the ques-
tion of whether the transport coefficient exists along with a
measure of our confidence in the conclusion.

A. Fitting the correlation function

First, we choose the time range for our analysis. This is
done by inspecting a plot of the correlation function C�t� on
log-log scales, as in Fig. 1. We select a starting time and a
stopping time.

The starting time will be selected usually as a judgment of
the time when the initial decay ends. This judgment is quali-
tative, which is a concern because we are attempting to re-
duce the role of qualitative judgments. Therefore, we will
bracket this time and produce our final results for two or
three different starting times, to judge whether the slightly
arbitrary choice of a starting time has much impact. In some
cases, instead of a qualitative judgment of the initial decay,
we will use a crossover of the separate terms contributing to
the SACF or EACF to determine the starting time. We be-
lieve that in some previous simulations �35�, a starting time
was chosen too soon, so that the analysis included a great
deal of the initial decay. In such cases the results should not
be relied upon. It is only because we now use a larger simu-
lation size, so that the sound peak occurs later, that we can
detect that this problem occurred in previous simulations of a
smaller size.

The stopping time will be the sound peak or a zero cross-
ing, whichever comes first. In the example of Fig. 1, the
analysis will stop at the sound peak for the VACF and EACF,
but at a zero crossing for the SACF. To detect how sensitive
our result is to the stopping time, we repeat all our calcula-
tions using 95% of the zero crossing as the stopping time.

Second, we fit the data between the starting and stopping
times to a power-law decay

ln�C�t�� =  ln�t� + intercept. �12�

To avoid introducing a bias by overemphasizing data at long
times, before fitting we resample C�t� at times that are uni-
formly spaced when plotted with a logarithmic axis.

Our fit to Eq. �12� uses a calculation of a �2 surface. The
surface is calculated in the parameter space of the slope 
and the intercept. This method requires error bars for each
data point in C�t�. We produce these error bars by perform-
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ing multiple simulations for the same conditions but different
initial conditions, and calculating the mean and standard de-
viation of the mean for each data point in C�t�.

An example of a �2 surface is shown in Fig. 2. The best fit
is the minimum of the �2 surface, yielding fit. The quality of
the fit is evaluated by comparing the minimum �2 to 1.00,
which is considered a typical value for a moderately good fit.
In order to perform further statistical analysis we require an
uncertainty, or standard error, for the fit parameter . We
estimate this uncertainty � using the 68.3% confidence in-
terval in the �2 surface, as shown in Fig. 2.

B. Hypothesis testing

To complete our analysis, we use Student’s t statistics to
compare fit to −1. First, we compose a null hypothesis

H0:fit � − 1. �13�

In other words, our null hypothesis H0 is that the transport is
anomalous. We calculate the t value as

t =
fit + 1

�

. �14�

Next, we calculate the p value for a one-tailed test using a
Student’s t calculator. The p value is the probability of
�−1. Finally, we determine a significance level, 1− p, to

reject H0. Thus, in the end we determine the significance
level for a conclusion that the transport is anomalous.

To explain this in physical terms, we are attempting to
reject the null hypothesis that the transport coefficient does
not exist, i.e., to reject the idea that the transport is anoma-
lous. If we find that the significance level for this test is very
high, for example, 99%, we would be confident in saying
that the transport coefficient exists. However, if the signifi-
cance level is much lower, for example, 60%, we would be
unable to conclude whether the transport coefficient exists.
As always with Student’s t statistics, the test of the null hy-
pothesis works only one way. We contemplate whether we
can reject H0, not the converse. Thus, if we find a small p
value such as 0.05 we will conclude that the transport is not
anomalous, with a significance level 1− p. If we instead find
a large p value such as 0.40, the test does not yield a quan-
titative conclusion but we can examine the correlation func-
tion graph qualitatively for indications that suggest the trans-
port is anomalous.

VI. RESULTS AND DISCUSSION

Most of the correlation function data presented below are
based on several independent simulation runs, each with
1.1�106 time steps �typically spanning a time several times
104	0

−1�, carried out on systems of N=4080 or 16 320 par-
ticles. After preparing the correlation functions, when we use
the �2 surface method, we limit the analysis to two cases.
These are a cool liquid with �=300 and a warm liquid with
�=20, both for �=2. These cases correspond to temperatures
of 1.4TM and 21TM, respectively, using data for the melting
point TM from Ref. �10�. Results for the �2 surface and Stu-
dent’s t method are presented in Tables I–IV.

A. VACF and diffusion

To diagnose diffusive motion, we present the analysis of
the velocity autocorrelation functions �VACF� in Figs. 3–5
for a range of � and � values.

1. VACF

We will investigate the decay of the VACF curves plotted
in Fig. 3 for �=2. These data represent the average of six
simulation runs �for each �� using N=4080 particles. The
curves have the three portions described earlier. In the
middle there is a smooth decay, which will be our primary
focus. This is preceded by initial decaying oscillations asso-
ciated with caged motion, and it is followed by a sound peak
�marked S� and noisy oscillations. Plotting the data on log-
log axes reveals a power law, when the smooth decay ap-
pears to be a straight line. For reference, we draw a line with
a slope of −1, corresponding to a t−1 decay. Diffusion, as
opposed to anomalous diffusion, would require a decay
faster than t−1 so that the integral of the VACF converges.

Our statistical analysis using the �2 method is presented
in Table I. Two cases are listed here. For a warm liquid, �
=20, we find that the fit parameter for the slope is typically
�1.20, depending slightly on the starting and stopping
times used in selecting the data to fit. Performing the Stu-
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FIG. 2. �Color online� A �2 surface is used in our analysis
method, for fitting a correlation function from the simulation to Eq.
�12�. For a value of the slope  and intercept, we calculate the sum
of square residuals to find �2, and we repeat for many pairs of these
values. The resulting values are plotted as contours. The best fit is
the minimum of the �2 surface. A confidence interval �−0.30 to
−1.32 for the fit parameter  in this example� is found using the
contour at a height of 2.3 above the minimum. Data shown here are
for the SACF, with start and stop times of 13 and 114	0

−1, respec-
tively. �=20 and �=2.
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dent’s t analysis leads to the conclusion that we can reject the
null hypothesis H0 of anomalous transport with an 83–99 %
significance level. The fits with the best �min

2 have a 99%
significance level. Thus, our simulation indicates that the dif-
fusion coefficient exists for this warm liquid. On the other
hand, for a cold liquid, �=300,  is very near to 1, and we
cannot reject the null hypothesis H0 of anomalous transport.

To further illustrate this trend of diffusive motion, we
present in Fig. 4�a� fitting results for a range of �. �For ease
in performing repeated calculations, here we found  using a
simpler fitting method with only a single set of starting and
stopping times, so that the results are less precise than in
Table I and do not have error bars or significance levels.�
Results are reported here for three values of �, which all
have different melting points. To better compare these, we
rescaled the horizontal axis as T /TM in Fig. 4�b�, using data
for the melting point TM from Ref. �10�. After performing
this rescaling, we find a nearly universal curve: near the
melting point or disordering transition at T /TM =1 there is
anomalous diffusion, while at higher temperatures the mo-
tion is likely to be diffusive. A transition between the re-
gimes of diffusive and anomalous particle transport appears
at T /TM �5.

2. System size effects

Next we analyze the possible effects related to the finite
size of the computational box. These effects are illustrated

here for the VACF, but the limitations we find are also ap-
plicable to the other correlation functions, the SACF and the
EACF.

The finite size of the simulation box limits usefulness of
simulation data in two different ways. First, particles may
traverse a small simulation box without experiencing a suf-
ficient number of collisions. This may be a concern only for
low � values. Second, sound waves have a finite transit time
�ts across the box �23� as was already mentioned above. Due
to the periodic boundary conditions, this can limit meaning-
ful interpretation of correlation functions to t��ts. This is a
concern especially at high �, where correlations of caged
particle motion �41�, which appear as oscillations in the cor-
relation function, persist a long time. For our purposes we
wish to interpret correlation functions after these oscillations
have decayed; at high � this requires a long time series and
thus a large system size. The peaks marked S in Fig. 3 and
are conspicuous indications of this effect.

Random particle motion can be decomposed into a spec-
trum of sound waves over a range of wavenumbers. The
sound waves have a dispersion, where the group velocity
depends on wavenumber, but this dispersion is significant
only for large wavenumbers �11�. For small wavenumbers
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the wave has little dispersion, so that there is a distinctive
sound speed.

This sound speed depends on the screening parameter �.
For �=1, 2, and 3, respectively, the sound speeds for such
waves are c�0.78 a	0, c�0.4 a	0, and c�0.22 a	0 �11�.
The corresponding transit times are expected to be 	0�ts

=�N� /c=290, 560, and 950, for �=1, 2, and 3, respectively,
for a simulation box with edge length L=a�N� and N
=16 320 particles.

We see the effect of � in Fig 5�a�, where VACFs show a
sound peak that reduces the useful portion of the data most
extremely for small �. �The values of the coupling parameter
� have been varied among the three curves to keep constant
the effective coupling value �10� ��=85.�

The effect of system size on the sound peak is demon-
strated in Fig. 5�b�. Note that at the smallest system size
�N=1020 particles� the part of the VACF with power law
decay completely disappears. This shows that a large system
size is essential, if one is to identify and fit the decay portion
of the correlation function. This problem becomes more ex-
treme for small � values where the sound speed is higher
�see Fig. 5�a��. For this reason, we believe that our results
represent an advance over some earlier simulations with
small system sizes, where the latter should no longer be re-
lied upon.

Improving the transit time comes with a significant com-
putational cost. As �ts scales as N1/2, doubling the useful
long-time range of the VACF requires quadrupling the run-
time, because the number of computations in the simulation
scales linearly with N.

3. MSD

As an additional test for diffusion, to gain confidence in
our conclusions based on the VACF, we examine the long-
time behavior of the mean-square displacement �MSD�. This
method makes use of the same kind of simulations, but we
use only particle position data to calculate a time series of
squared displacements from an initial position, and average
this over all particles and overlapping time segments. To do
this, we performed additional simulations with a larger sys-
tem size of N=16 320 particles, but only with a single simu-
lation run. The MSD results are plotted in Fig. 6. First we
emphasize that due to the sound speed, the useful long-time
range of the MSD curves is the same as that for the VACFs.
Around the time of �ts, marked S, ripples show up on the
MSD curves �with an amplitude that is detectable, but too

TABLE I. Results for fitting the Cv, the velocity autocorrelation
function �VACF�. Various starting and stopping times, normalized
by 	0, are tested. For the warm liquid, �=20, the p values are
small, leading us to reject H0 with an 80–99% significance level
and to conclude that the diffusion coefficient exists. For the cool
liquid, �=300, the p values do not allow us to conclude anything.
�=2. NR is the number of runs included in the data analysis.

� Stop Start fit � �min
2 t p NR

20 190 20 −1.20 0.05 0.92 4.00 0.000 6

20 190 30 −1.22 0.09 0.20 2.59 0.005 6

20 190 45 −1.20 0.15 0.20 1.38 0.08 6

20 190 68 −1.17 0.20 0.20 0.85 0.20 6

20 180 20 −1.20 0.05 0.94 4.00 0.00 6

20 180 30 −1.22 0.09 0.20 2.44 0.01 6

20 180 45 −1.20 0.15 0.21 1.38 0.08 6

20 180 68 −1.19 0.20 0.21 0.95 0.17 6

300 236 100 −1.00 0.16 2.60 0.00 0.50 6

300 236 120 −1.05 0.44 0.54 0.11 0.45 6

300 236 148 −1.02 0.39 0.39 0.05 0.48 6

300 224 100 −1.00 0.16 2.70 0.00 0.50 6

300 224 120 −1.04 0.22 0.57 0.19 0.43 6

300 224 148 −1.02 0.41 0.41 0.05 0.48 6
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small to see in Fig. 6 without more magnification�. These
ripples hinder the determination of the slope at longer times.
Thus any analysis of the MSD curves must be limited to
times not exceeding �ts.

The MSD time series plotted in Fig. 6�a� indicate a bal-
listic motion at low 	0t values, characterized by MSD �t2.
At later times the slope of the MSD curves decays, and for
	0t�100 most of the curves appear to be nearly linear
���r�2�� t� with slopes ��1.

As a more sensitive indicator, we examine the derivative
MSD� of the MSD in Fig. 6�b�. This derivative would have a
zero slope, at long time, if motion is diffusive. Instead, we
find superdiffusion, as indicated by an exponent ��1.15,
over the range of ��100, where the MSD� curves have a
constant slope. At ��100 the slopes of the MSD� curves
change slightly but continuously in the time domain extend-

ing to �ts �indicated by dotted vertical lines in Figs. 6�a� and
6�b��. We speculate that the decreasing slope of the MSD� at
lower � values may eventually, beyond the meaningful time
range shown here, converge to zero, which is required for
normal diffusion. However, we cannot prove this specula-
tion, as several orders of magnitude longer time may be
needed to reach this convergence. A more convincing dem-
onstration of convergence of the MSD might require as much
as three orders of magnitude additional �ts, which would
require �1010 particles, far beyond our computing capacity.
Nevertheless, the observation of a decreasing slope MSD�
curves at lower � values is generally consistent with the
findings that the VACFs decay faster than t−1 at these �lower�
� values �see Fig. 3�a��, also indicating normal diffusion.

B. SACF and shear viscosity

Turning now our attention to the shear viscosity, we
present the stress autocorrelation functions in Fig. 7. Two
cases are shown: a warm liquid at �=20 and a cool liquid at
300, both at �=2. These data are for a large system size of
N=16 320, with 108 and 115 independent simulation runs
for �=20 and 300, respectively, each comprising 1.1�106

time steps. It is noted that in the first part of calculations 52
and 31 runs have been carried out for �=20 and 300, respec-
tively. The data obtained from these runs have been analyzed
in the way explained in Sec. V A, and the results of this
analysis are given in Table II. Having selected the most ap-
propriate start and stop times, several additional independent
simulation runs have subsequently been carried out �resulting
a total number of runs of 108 and 115 for �=20 and 300,
respectively� and the data analysis was accomplished only
for this pair of start and stop times. The best fits obtained
here are also given in Table II. �The same procedure was
followed for the EACF, to be discussed in the next subsec-
tion.�
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For the warm liquid, �=20, we observe a power-law tail
with a decay slower than 1 / t. Fitting the decay using our �2

method yields small exponents in the range −0.63��
−0.80, as listed in Table II. A Student’s t test yields p values
that do not allow rejecting the null hypothesis of anomalous
transport. Examining the SACF graph in Fig. 7, we verify
that the decay does appear to be slower than 1 / t. Thus, our
simulation indicates that the viscosity coefficient does not
exist for the warm liquid.

This result, that the shear viscosity does not exist for a 2D
Yukawa liquid at a warm temperature, is contrary to what
was previously believed. The difference in our result is pre-
sumably attributable to the larger simulation size, allowing
us to observe the smooth decay after the initial decay.

For the cool liquid, with the higher coupling value of �
=300, we find the opposite result. A qualitative inspection of
the total SACF in Fig. 7 shows a rapid decay, faster than a
power law.

We can gain greater confidence in this conclusion for the
cool liquid by examining the separate contributions to the
SACF, in Fig. 8. These contributions are the potential �PP�,
kinetic �KK�, and cross �KP� terms �as given by Eq. �10��.
Curves shown in Fig. 8 are again for �=20 and �=300, at
�=2. The values on the vertical axis have been normalized
so that C��t=0�, given as Eq. �10�, equals 1.

For the cool liquid at �=300, the potential term domi-
nates at early times. More importantly, at longer times we see
a useful indication that possibly has not been previously re-
ported: the potential term begins to oscillate, so that it pos-
sibly does not dominate the long-time behavior. At these
long times, 	0t�80, the kinetic term might instead domi-
nate, and it decays as a power law. This observation leads us
to fit only the kinetic term, and we find an exponent mostly
in the range −1.29��−1.38, and we can reject the null
hypothesis of anomalous viscosity with a significance level
of 72–99 %, as listed in Table III.

For the warm liquid at �=20, the kinetic contribution to
the shear viscosity dominates in Fig. 8, as is well known
�16,35�. In Fig. 8 we see that the potential term decays rap-
idly into the noise, so that only the kinetic term contributes
significantly to the long-time tail. Because we see no cross-

over between the various terms at long time, we have greater
confidence in our conclusion, based on the total SACF, that
the SACF for the warm liquid decays slowly and the viscos-
ity coefficient does not exist.

TABLE II. Results for fitting the C�, the stress autocorrelation
function �SACF�. Various starting and stopping times, normalized
by 	0, are tested for the warm liquid, �=20. The p values are high,
indicating that we cannot reject H0. �=2. NR is the number of runs
included in the data analysis.

� Stop Start fit � �min
2 t p NR

20 120 30 −0.71 0.84 0.67 0.35 0.64 52

20 114 30 −0.67 0.82 0.69 0.40 0.66 52

20 120 20 −0.65 0.59 0.56 0.59 0.72 52

20 114 20 −0.63 0.70 0.57 0.53 0.70 52

20 120 13 −0.79 0.47 0.75 0.45 0.67 52

20 114 13 −0.80 0.52 0.76 0.39 0.65 52

20 120 20 −0.69 0.97 0.21 0.32 0.63 108

TABLE III. Results for fitting only the kinetic contribution to
the stress autocorrelation function �SACF� for the cool liquid, �
=300. The p values are small, so that we reject H0. �=2. NR is the
number of runs included in the data analysis.

� Stop Start fit � �min
2 t p NR

300 300 20 −1.38 0.19 1.77 2.00 0.02 31

300 300 30 −1.36 0.31 0.91 1.16 0.12 31

300 300 45 −1.29 0.49 0.95 0.60 0.27 31

300 285 20 −1.38 0.19 1.79 2.05 0.02 31

300 285 30 −1.36 0.31 0.92 1.18 0.12 31

300 285 45 −1.29 0.49 0.96 0.59 0.28 31

300 300 45 −1.60 0.74 0.21 0.81 0.21 115
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C. EACF and thermal conduction

Finally we analyze the behavior of the energy current au-
tocorrelation functions �EACFs�. The EACFs for �=2 at �
=20 and 300 are plotted in Fig. 9. These curves are the
results of averaging the same numbers of runs as specified
for the case of the SACFs, using N=16 320 particles.

The initial decay persists for a long time in the EACF, as
compared to the VACF �Fig. 3�a�� or the SACF at low �
�Fig. 7�a��. We judge the initial decay for the EACF in Fig. 9
to last until the a power law becomes apparent at 	0t�70 in
the case of �=20, and 	0t�170 in the case of �=300. We
will focus our attention now on the “smooth decay” that
occurs after this initial decay and before the first zero cross-
ing.

For the warm liquid �=20, we see in Fig. 9 a slow power-
law decay. As listed in Table IV, we find a power-law expo-
nent in the range −1.16��−1.02, which is close to a t−1

decay. The p values do not allow rejecting the null hypoth-
esis of anomalous transport. Examining the curves qualita-
tively in Fig. 9, we conclude that the decay is likely too slow
for convergence. Thus, our simulation indicates that in this
warm liquid, the thermal conductivity coefficient does not
exist.

For the cool liquid, at �=300, our results are hindered by
a short and noisy “smooth decay” between the long initial
decay and the oscillations with zero crossings. Fitting, we
find in Table IV an exponent of =−1.40�0.87. The fit is
not very reliable, as indicated by the wide error bar on this
value, as well as a high value of �min

2 in Table IV. We are
thus unable to conclude whether the thermal conductivity
exists for the cool liquid. Improving this result would require
more extensive computations to improve the signal-to-noise
ratio in the EACF at long times.

We now examine the separate contributions to the EACF
in Fig. 10. For �=20, there is an apparent crossover of the
KK and CC terms. This crossover may coincide with the end
of the rather long initial decay that we judged in the total

TABLE IV. Results for fitting the energy current autocorrelation
function �EACF�. Compared to the VACF and SACF, for the EACF
we used fewer combinations of start and stop times due to the
limited time duration between them. For �=300, due to noise and a
limited useful time range, the fit quality as indicated by �min

2 is not
good, and we cannot rely strongly on the corresponding p value.
�=2. NR is the number of runs included in the data analysis.

� Stop Start fit � �min
2 t p NR

20 400 68 −1.12 0.60 1.90 0.20 0.42 52

20 360 68 −1.02 0.61 0.69 0.03 0.49 52

300 535 170 −1.40 0.87 3.21 0.46 0.32 31

20 360 68 −1.16 0.91 0.22 0.18 0.43 108

300 535 170 −1.20 0.47 1.26 0.42 0.34 115
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EACFs of Fig. 9. For �=300, on the other hand, there is no
crossover, giving us more confidence in our analysis above
based on the total EACFs.

Our results here for the EACFs are apparently the first
that have been reported for a 2D Yukawa liquid. We note that
the EACF poses especially challenging computational re-
quirements because the useful portion of the curve is at large
t when the signal-to-noise ratio is poorest. Improving the
signal-to-noise ratio for the EACF at �=300 to a level that
would allow a conclusion would require at least an order
of magnitude increase in runs beyond the 115 runs we used.
We concluded that our simulation indicates the thermal con-
ductivity coefficient does not exist for a warm liquid, but for
a cool liquid, our signal-to-noise ratio did not allow a
conclusion.

VII. SUMMARY

It has long been suggested, for two-dimensional systems
in general, that valid transport coefficients do not exist �13�.
Here we reported some counterexamples, based on our cal-
culations covering a wide range of parameters of 2D friction-
less Yukawa liquids. We find that transport coefficients
sometimes exist, depending on the temperature.

The diffusion coefficient exists for warm but not for cool
liquids. For warm liquids, the diffusion coefficient exists at
temperatures higher than about five times the melting tem-
perature. For cool liquids, however, we found a closely �t−1

type decay of the velocity autocorrelation function �VACF�,
indicating the occurrence of anomalous diffusion and no
valid diffusion coefficient.

The shear viscosity coefficient exists for cool but not
warm liquids. This finding is contrary to previously reported
results. For �=2, a cool liquid at �=300 exhibits a fast de-
cay indicating a valid transport coefficient, but a warm liquid
at �=20 does not. Comparing to the result above, our simu-
lations suggest that self-diffusion and viscosity do not
couple, because the coefficients do not exist in the same
temperature regimes.

The thermal conductivity does not exist for a warm liquid
at �=20, where a slow power-law decay in the energy cur-
rent autocorrelation function �EACF� was observed. For a
cool liquid at �=300, however, we are unable to come to a
conclusion because of the technical challenges posed by
signal-to-noise ratios and a long initial decay.

Our approach has been to ask the question, does the trans-
port coefficient exist? Using equilibrium MD simulations,
this question was addressed by computing autocorrelation
functions, and examining their decay at long times. A rapid
decay would indicate that the integral of the autocorrelation
function converges, and the corresponding transport coeffi-
cient exists. For the results reported here, we have improved
our statistical analysis methods for assessing whether the de-
cay is faster than 1 / t, as required for convergence.

A limitation of equilibrium MD methodology is that test-
ing for convergence requires reliable measurements of corre-

lation functions at times tending to infinity, while the simu-
lations yield results over only a finite time. This finite time is
limited by two challenges: signal-to-noise ratios �which are
especially important for the shear viscosity and thermal con-
ductivity� and sound peaks arising from periodic boundary
conditions �especially important for the diffusion coeffi-
cient�. Both of these problems have been improved here by
using larger simulation sizes than in previous reports. For
this paper, we consumed several years of CPU time, using
typical personal computers. Nevertheless, the simulation data
did not allow us to draw definite conclusions regarding the
existence of transport coefficients in cases when the decay of
correlation functions was close to 1 / t.

Future advances in computational power will allow larger
simulation sizes. The increase in size that is needed is sub-
stantial, because of the square-root scaling of the sound peak
time with respect to system size N. A 104-fold increase in
computations would be required for a 100-fold increase in
meaningful time.

Because of these limitations that are gradually being off-
set by improved computing power, conclusions such as those
we presented above �i� should be considered as a snapshot
view of a developing effort to estimate whether transport
coefficients exist in 2D Yukawa liquids and �ii� may even
change just as in the case of 2D hard disk system �Ref. �12�
vs �37��. Our results are, nevertheless, valuable because of
interest in 2D liquids in general, and also because of in-
creased interest in transport measurements in 2D dusty
plasma experiments.

We can identify other areas where further work would be
useful. Higher temperature liquids, in the nonideal gas phase,
have not been well explored yet. Systems present in 2D
dusty plasma experiments—which include friction and par-
ticle heating �9,29�—can be simulated by MD methods with
proper modification of the particles’ equation of motion. The
mean-square displacement and the velocity autocorrelation
function have been studied in �42� using this aproach. An-
other line of research could be the identification of the rea-
sons behind the anomalous transport and its dependence on
the dimensionality of the system. Such an investigation has
been presented in Ref. �43� for diffusion.

Note added in proof: We have recently learned about stud-
ies of heat conduction in 2D strongly-coupled dusty plasmas
�44�, using non-equilibrium simulations based on establish-
ing a temperature gradient through the system and measuring
the stationary temperature profile and the heat flux.
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