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The moment method is an image analysis technique for subpixel estimation of particle positions.
The total error in the calculated particle position includes effects of pixel locking and random noise
in each pixel. Pixel locking, also known as peak locking, is an artifact where calculated particle
positions are concentrated at certain locations relative to pixel edges. We report simulations to gain
an understanding of the sources of error and their dependence on parameters the experimenter can
control. We suggest an algorithm, and we find optimal parameters an experimenter can use to
minimize total error and pixel locking. For a dusty plasma experiment, we find that a subpixel
accuracy of 0.017 pixel or better can be attained. These results are also useful for improving particle
position measurement and particle tracking velocimetry using video microscopy in fields including
colloids, biology, and fluid mechanics. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2735920�

I. INTRODUCTION

Measurement of particle positions from images is impor-
tant in many fields, including dusty plasmas,1,2 colloids,3,4

fluid mechanics,5 biology,6 and computer vision.7 Particle
positions are generally estimated as the center of a bright
spot of an image. Velocities can also be calculated from im-
ages; two common methods for this are particle tracking ve-
locimetry �PTV� and particle image velocimetry �PIV�.

To measure particle positions, an experimenter begins
with a bitmap image. As an example, in Fig. 1 we present
portions of single video frame from a dusty plasma experi-
ment. Each bright spot represents an 8 �m diameter polymer
microsphere illuminated by a 0.633 �m helium-neon laser
sheet and imaged by a video camera with a Nikon 105 mm
microlens and a bandpass optical filter to eliminate unwanted
light. The lens was focused to generate a sharp image. The
experimental setup is similar to Fig. 2 of Ref. 1. Figures 1�a�
and, a magnified view, 1�b� show portions of a video frame
recorded by a cooled 14 bit digital camera �pco1600� with a
7.4 �m pixel width and a linear response. It was operated at
30 frames/s with an exposure time of 30 ms. We should
mention that experimental images of particles will differ, de-
pending on many factors including the type of camera. To
illustrate this point, we present in Fig. 1�c� an enlarged view
of a bright spot in a frame recorded by an analog camera
with a nonlinear response corresponding to gamma=0.6.
�Some cameras are nonlinear with an output intensity propor-
tional to the input luminance to the power gamma.�

In the images in Fig. 1, particles fill several pixels. This
spot size may be due, in part, to diffraction by the particle as
well as camera properties such as diffraction by the camera
aperture8 and imperfect lens focusing. The spot size cannot
be explained merely by geometrical optics, because the small

particle size and magnification would result in an image
smaller than one pixel on the camera detector.

Images have random noise in each pixel. This can arise
because of fluctuations in the camera’s sensor and its elec-
tronics. Noise in the experimental image of Fig. 1�a� is
shown in Fig. 2 as a histogram of the pixel intensity. The
most prominent feature is the noise peak, corresponding to a
large number of pixels that are relatively dark. This noise
peak has an average value that we term the “background
intensity,” Ibg. The noise peak generally depends only on the
camera and the sensor temperature.

After recording a bitmap image, the experimenter will
then use a computer algorithm to measure the particle posi-
tion. There are several methods to do this, including the mo-
ment method,1,2,9–11 which we will study in this article. Other
methods include fitting a bright spot in the image to a
Gaussian12 or polynomial2,4 and simpler methods such as
choosing the centroid as the particle center.2,11 In the moment
method, the calculated particle position is

Xcalc =

�
k

XkIk

�
k

Ik

, �1�

where Xk is the position and Ik is the intensity of a pixel k.
The result of Eq. �1� is sometimes called the “center of
mass.”11 When the particle fills more than one pixel, this
calculation yields an estimate of the particle position with
subpixel accuracy. Because of the efficiency and accuracy of
the moment method, it is widely used when analyzing large
quantities of data, as might be produced, for example, when
using a video camera. Fitting methods, which are more com-
putationally expensive, are often used as well.12 The centroid
method is similar to the moment method except that the in-
tensity Ik of each pixel is replaced with a constant.2,11

One application of particle position measurements is the
calculation of particle velocities using PTV. A velocity cana�Electronic mail: yan-feng@uiowa.edu
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be calculated by subtracting the positions of the same par-
ticle in two different frames and dividing by the time interval
between frames. This method differs from PIV,13 where ve-
locities are calculated at regular gridpoints, not for specific
particles.

Errors in the calculated particle position arise from mul-
tiple sources, including random noise in each pixel and also
from the finite spatial resolution of the pixels on a camera
sensor. When an image is recorded by sampling it with a
finite number of pixels, some information about the intensity
profile is lost, and this can cause a type of systematic error
known as pixel locking or peak locking. The total error in the
calculated position will be due to a combination of these
effects, not just random noise or pixel locking by itself.

In this article, we seek to minimize the total error, and
doing this will require that we understand the contribution of
pixel locking. Our goal is to aid the experimenter in making
optimal choices, in both hardware and software, to minimize
the total error.

II. PIXEL LOCKING

Pixel locking, also known as peak locking, is an artifact
where calculated particle positions tend to be concentrated at

certain favored locations relative to pixel edges, such as the
center or edges of a pixel. It is different from random errors,
which do not result in favored positions for particles. To
understand pixel locking, consider a particle whose image
fills only a single pixel. In this case, the sum in Eq. �1� would
have only a single term, and the position would be assigned
to the exact center of that pixel. If the particle’s image in-
stead fills two pixels with equal intensity, the position will be
assigned to the midpoint of a pixel edge. The pixel center
and midpoints of pixel edges are examples of favored posi-
tions that are found to occur even when the particle’s image
fills several pixels.14

The scientific literature for pixel locking includes many
papers where PIV is used to measure velocities. In the early
1990s, the PIV method was tested to demonstrate their sub-
pixel accuracy for particles flowing along with a fluid.15,16

For specific applications of PIV, pixel locking has been stud-
ied by other authors as well.17–20 In comparison to PIV, the
literature for PTV includes fewer studies of pixel locking,
e.g., Refs. 14 and 21. Because of this, some users of PTV,
including until recently the authors of this article, were un-
aware of pixel locking and the problems it can cause. In
addition to PTV, computer vision is another important area
where pixel locking is recognized as a problem in measuring
positions.7,22,23

To detect pixel locking, we use subpixel maps as a diag-
nostic tool. A subpixel map shows all the calculated particle
positions relative to pixel edges, and it is drawn in a small
box having the size of one pixel. To prepare a subpixel map,
we begin with a graph of calculated positions of N particles,
as illustrated in Fig. 3�a�, then plot the fraction parts of these
positions in the small box, yielding the subpixel map in Fig.
3�b�. In Fig. 3�c� we present an actual subpixel map calcu-
lated from a bitmap image by an analog camera in a dusty
plasma experiment. The signature of pixel locking can be
identified in general by concentrations of calculated particle
positions at favored positions. These favored positions can
vary, depending on both hardware and software, but they
commonly include the center or edges of a pixel, as in Fig.
3�c�. Subpixel maps are therefore very useful for detecting
pixel locking. Other authors have used similar graphs, where
the calculated positions have been binned and plotted as a
histogram.7,22,23

III. MOMENT METHOD

The algorithm we optimize in this article, the moment
method, has two main steps. The first step is the selection of
pixels that belong to each particle in the image. The second
step is the calculation of position as an intensity-weighted
moment of pixel positions.

In the first step, the selection of pixels, the user begins
by choosing a threshold Ith. The gray-scale image is replaced
by a black-and-white image, where pixels brighter than Ith

become black, and all others become white. The choice of
the threshold is important for several reasons,9 as we will
discuss later. Next, the boundaries for individual particle im-
ages are determined. There are several algorithms for select-
ing boundaries. We have examined several codes that use the

FIG. 1. Experimental bitmap images of a monolayer suspension of micro-
spheres in a dusty plasma. Each bright spot corresponds to one particle.
Here, �a� is 1 /12 of the original image from a digital camera and �b� is a
magnified view, showing that a bright spot fills several pixels, while in �c�
from an analog camera a bright spot fills about 5�5 pixels. Spot size de-
pends on such factors as camera type and focusing. A particle’s position is
calculated as the bright spot’s center; errors in this calculation are the topic
of this article.

FIG. 2. Histogram of intensity values of pixels in the original experimental
image of Fig. 1�a�. The inset shows the same data with a logarithmic scale.
The prominent peak, centered at Ibg, is due to noise in the camera.
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moment method, and we found that the only difference is the
algorithm for selecting boundaries. We will consider three
algorithms, which we distinguish by the corresponding codes
we will test. All three of these codes are well tested, and they
generate reliable results from experimental images. In one
algorithm, the boundary is selected to be a polygon that en-
closes only contiguous pixels brighter than the threshold
�Fig. 4�a��. This algorithm is used in the freely available
IMAGEJ �Ref. 11� code. The other two algorithms select a
boundary that is a rectangle. In code A, the boundary is the

smallest rectangle that encloses all the contiguous pixels
above the threshold24 �Fig. 4�b��. In code K, the boundary is
the smallest rectangle that encloses a special curved
contour.25 This curved contour is produced by a two-
dimensional �2D� contour-plotting routine, and it is drawn
not as line segments around pixel edges but rather as a curve
passing through various pixels. Within a pixel, the pixel cen-
ter is assigned the value of the original pixel intensity, but
other points within a pixel are assumed to have other inten-
sities, which are calculated by 2D interpolation using four
surrounding pixel centers. Then, the contour-plotting routine
draws a curve by joining all points, with subpixel spacing,
where the assumed intensity is equal to the threshold, as
shown in Fig. 4�c� with a dash line. In both codes A and K,
but not IMAGEJ, the boundary can enclose some pixels that
are less intense than the threshold.

In the second step, which is the same in all three codes
we test, the particle positions are calculated as the moment,
i.e., as the intensity-weighted position of pixels. The moment
can be calculated1,9,10 using Eq. �1�. However, we will find it
better to use a generalized form of the calculated particle
position,

Xcalc =

�
k

Xk�Ik − Ibase�

�
k

�Ik − Ibase�
, �2�

where the base line value Ibase will be explained later. Note
that the calculated particle position depends on the selection
of pixels that are included in the summation in Eq. �1� or Eq.
�2�.

IV. METHOD

A. Synthetic images

To test methods of measuring particle positions, we cal-
culate position errors as compared to true positions in syn-
thetic images. For this purpose we cannot use actual experi-
mental images because the true position is generally not
known. Synthetic images allow us to vary the intensity and
the size of a bright spot to find how errors depend on these
parameters.

Units used in this article are pixel units for all distances
including Xk, Xcalc, spot size, and errors. Intensities, includ-
ing signal and noise, are specified in intensity value units,
i.e., a dimensionless integer ranging, for example, from 0 to
214−1 for a 14 bit camera.

We prepare synthetic images that resemble an experi-
mental image like Fig. 5�a�. The synthetic images have a size
of 64�64 pixels, with one bright spot per image. These im-
ages have three major attributes that we compute: the spot’s
true position, the spatial profile of the signal, and the noise.

First, the bright spot’s true position is located near the
image center but displaced in the x and y directions by a
fraction of a pixel. This is done using random numbers with
a uniform distribution �between 0 and 1� so that the true
positions are random and uniformly distributed relative to
pixel edges. Using these random positions avoids any sam-
pling bias.

FIG. 3. Illustration of the method for calculating a subpixel map. First, a
10�10 pixel bitmap image �not shown here� is analyzed to yield a map �a�
of particle positions. Second, the same positions are plotted relative to pixel
edges in �b�; these values are the fraction parts of the calculated positions.
�c� An example subpixel map of N=617 particles, calculated from an ex-
perimental image �full view of Fig. 1�c��, reveals pixel locking as a tendency
of calculated positions to be concentrated at favored positions including the
center and edges of pixels.

FIG. 4. Illustration of boundaries. In algorithms for calculating particle po-
sitions from a bitmap image, the first step is selecting the contiguous pixels
to be used, as defined by a boundary �solid white line� that encloses them.
The codes tested here differ only in the way they select boundaries. �a� In
IMAGEJ, only contiguous pixels above a threshold are included in the bound-
ary. �b� Code A and �c� code K use boundaries that are the smallest rect-
angles that enclose: all the contiguous pixels above the threshold in code A
or the dashed contour produced by a 2D contour-plotting routine in code K.
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Second, like other authors,3,26 we model the signal’s spa-
tial profile as a Gaussian,

Isig�x,y� = Ipeak exp�−
�x − xtrue�2 + �y − ytrue�2

rspot
2 � , �3�

characterized by the spot radius rspot and the peak intensity
Ipeak. �This Gaussian is intended to approximate the actual
spatial profile, which depends on factors such as the particle
size, the camera’s gamma, and lens defocusing.� To imitate
the collection of light onto a square pixel, we integrate this
smooth profile over each pixel’s area. This yields the value
Isig k of the signal in pixel k,

Isig k = �
x=kx−0.5

kx+0.5 �
y=ky−0.5

ky+0.5

Isig�x,y�dxdy , �4�

where kx and ky are the coordinates of pixel k. Equation �4�
combined with Eq. �3� can be evaluated efficiently using the
error function erf. 	After this step, each bright spot has the
same total signal intensity �Isig k, which was typically
37 707 corresponding to the brightest spot in the experimen-
tal image �Fig. 1�a��. In the experiment, not every bright spot
has the same total signal intensity because some particles are
levitated slightly above or below the brightest part of the
horizontal laser sheet.


Third, we calculate a noise value Inoise k which is differ-
ent for each pixel k. To simulate the experiment, Inoise k is
chosen as a random intensity from the noise distribution of
our digital camera �Fig. 2�, which is centered at an average
intensity Ibg=384. Finally, the intensity Ik in each pixel is
calculated as the sum of the intensities of the signal and
noise or a saturation value Isat, whichever is smaller,

Ik = min��Isig k + Inoise k�,Isat� . �5�

We use Isat=214−1 to simulate the saturation intensity of a
real camera with 14 bit resolution. Finally, we round Ik to an
integer because cameras produce integer values for the inten-
sity of each pixel. The result of this calculation is a bitmap
image like Fig. 5�b� or 5�c�.

Here we only consider bright spots that are circular, as in
Eq. �3�. Although we do not simulate them here, we note that
noncircular bright spots can be analyzed using the moment
method, and they do occur in some experiments. Elliptical
particles arise when using analog video cameras with a lim-
ited horizontal resolution or when particles move rapidly
during the exposure time. The latter effect can be diminished

by rastering a laser beam rather than dispersing it into a
constant sheet. Defocusing a lens can result in noncircular
spots, as in Sec. VII.

B. Errors in calculated particle positions

In this article, we are mainly interested in errors in cal-
culated particle positions. In addition to errors in particle
position, the experimenter may also be concerned with errors
in velocities and other quantities computed from particle po-
sitions, as discussed in the Appendix.

To characterize the error in calculated particle positions,
we use two diagnostics. First, we calculate subpixel maps, as
described in Sec. II. Examining these subpixel maps qualita-
tively will reveal pixel locking, which is one source of error.
Second, we characterize the total error, including both ran-
dom errors and pixel locking, as the root-mean-square �rms�
difference of true and calculated positions, i.e., the rms error,

� 1

N
�
m=1

N

�xm,calc − xm,true�2 + �ym,calc − ym,true�2�1/2

, �6�

where m and N are the index and total number, respectively,
of bright spots. While we can calculate the total error using
Eq. �6�, we cannot separately calculate the contributions
from random errors and pixel locking.

To achieve good statistics, we prepared over 370 000
synthetic images, each with one bright spot. We used N
=5000 when calculating the rms error and N=100 000 when
calculating subpixel maps. All of these images have different
random true positions for their bright spots, and the noise in
each pixel is different in all images.

C. Parameters

To find a procedure for calculating position with mini-
mal total error, we will test three different codes, and we will
vary parameters corresponding to software and hardware ad-
justments that an experimenter can make. We will now list
these adjustments. The experimenter can choose to focus the
camera lens sharply or defocus it to make the bright spots in
the image appear larger and fill more pixels. As a second
parameter, the experimenter can adjust the image intensity by
varying the camera aperture, exposure time, or illumination
brightness. After recording images with the camera, the ex-
perimenter will then use software. Here, we test three mo-
ment method codes, as explained in Sec. III. After choosing
a code, the experimenter can usually adjust two parameters
in that code: the threshold used in the first step and the base
line �if any� that is subtracted in the second step, as in Eq.
�2�.

Thus, we are motivated to analyze the impact of the
following four parameters that the experimenter must
choose: focus, intensity, threshold, and base line. We do this
by varying the values of rspot �keeping the total signal inten-
sity �Isig k as constant, as will be explained later�, Ipeak, Ith,
and Ibase, respectively. We will vary each of these four pa-
rameters in Sec. V. We will also compare results from the
three different codes. The outcome of this analysis will be a
practical procedure, presented in Sec. VI, that the experi-
menter can use to minimize errors in calculated positions.

FIG. 5. Magnified images of bright spots. �a� Experimental image from a
digital video camera. ��b� and �c�� Synthetic images, with a Gaussian profile
centered on a known true position, here with two different spot radii. In
generating synthetic images, we first choose the true position randomly and
then calculate the intensity of each pixel using Eq. �5� so that it includes
both signal and noise.
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V. RESULTS

A. Threshold

The first parameter we vary is the threshold. The experi-
menter will first choose a coarse range of threshold so that it
is not so low that noise is wrongly identified as particles and
not so high that fainter particles are overlooked. Then, within
this coarse range, a fine adjustment can be made to reduce
error. Here, we consider the fine adjustment.

Our results in Fig. 6 show that the total error generally
increases with threshold, and it also depends on the choice of
a code. We calculate the total error as the rms error, using
N=5000 images and Eq. �6�. Recall that the total error in-
cludes both random and pixel-locking errors. The total error
generally increases with the threshold because raising the
threshold can eliminate pixels that have useful signal.

The total error exhibits not only a general increase with
threshold but also an oscillation. This is seen in Fig. 6, where
there are several oscillations superimposed on the general
trend. We cannot dismiss these oscillations as mere statistical
fluctuations because we achieved good statistics by using
5000 particle positions. To identify the cause of these oscil-
lations, we tested how the boundaries that are selected in the
first step depend on the threshold. The result of this test is
shown in Fig. 7 as a table of the boundaries selected by
IMAGEJ. When the threshold is increased slightly so that the
boundary shrinks by one pixel, there is a discrete jump in the
calculated particle position. As the threshold increases, there
is a sequence of jumps, as the boundary becomes smaller,
one pixel at a time. These jumps, in aggregate for many
particles, lead to oscillations in the rms error as the threshold
is varied, which is the phenomenon we term the “boundary
effect.”

To identify the role of pixel locking in the total error, we
examine subpixel maps in Fig. 8, which reveal the impor-
tance of the threshold. For IMAGEJ, we provide subpixel

maps �Figs. 8�a� and 8�b�� that correspond to the two thresh-
olds that yielded the minimum and maximum rms errors,
respectively, in Fig. 6. We note that the signature of pixel
locking is weaker, i.e., the subpixel map is more uniform, for
the case of the low threshold �Fig. 8�a�� that yields the lowest
total error. Conversely, the signature of pixel locking is
stronger, i.e., the subpixel map has strongly nonuniform fea-
tures, for the higher threshold �Fig. 8�b��. In general, reduc-
ing the threshold will reduce pixel locking. Other codes ex-
hibit the same trend but with a different appearance for the
subpixel maps, as in Figs. 8�c� and 8�d�.

FIG. 6. The rms error of calculated positions as a function of the threshold
Ith. In general, errors increase with threshold, and superimposed on this
increase is an oscillation. The rms errors are always calculated as in Eq. �6�
using N=5000. �Here, rspot=1.5 pixel units and Ipeak=5334 intensity value
units, corresponding to a total signal intensity �Isigk=37 707. Also, Ibase=0.�

FIG. 7. Cause of oscillations. Boundaries, selected in the first step of IM-

AGEJ, enclose fewer pixels as the threshold is increased. Removing one pixel
from the boundary causes a discrete jump in the calculated particle position
in Eq. �2�. As the threshold increases, there is a sequence of jumps, as the
boundary becomes smaller, one pixel at a time. These jumps, in aggregate
for many particles, lead to oscillations in the rms error as the threshold is
varied, a phenomenon we term the boundary effect. The three columns
correspond to three different true positions.

FIG. 8. Subpixel maps for N=100 000 randomly distributed true positions.
The signature of pixel locking is generally more severe for higher thresh-
olds. �Here, rspot=1.5, Ipeak=5334, and Ibase=0.�
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B. Spot radius

To simulate an experimenter’s slight defocusing of a
camera lens, we varied the spot radius rspot in Fig. 9. We used
the Gaussian profile of Eq. �3�, keeping the spot’s total signal
intensity ��Isig k summed over all pixels� constant. In this
way we mimic an experiment where a particle scatters the
same finite number of photons into a camera lens regardless
of how the lens is focused. �We did not simulate the ring-
shaped bright spot that can occur for extreme defocusing.�
Defocusing can happen when an experimenter purposefully
chooses to defocus the lens, for example, to avoid saturating
pixels; in other cases, defocusing is not intentional but in-
stead simply unavoidable because particles are at different
depths, as, for example, in colloidal suspensions4 and three-
dimensional �3D� dusty plasma suspensions.21

Defocusing a lens during the experiment can actually be
desirable. By distributing the signal over a larger number of
pixels, the impact of a single pixel in the calculation of the
particle’s position is less, so that pixel locking becomes
weaker. On the other hand, defocusing can reduce the signal
in each pixel, so that the signal-to-noise ratio �SNR� in each
pixel becomes worse. In other words, there can be a trade-
off: defocusing can improve pixel locking at the expense of
making random errors worse. In our results below we inves-
tigate this effect.

We should mention that when discussing defocusing, we
always refer to the experimenter’s adjustment to the hard-
ware when recording an image. Unlike some other methods,3

here we do not blur an image in software after it has been
recorded by the hardware.

The result in Fig. 9 reveals three ranges of the spot ra-
dius, where the second range is the most desirable. In the
first range, with small spot radii �rspot�0.8�, the total error
diminishes with radius because the spot includes a saturated

pixel. Saturated pixels are undesirable because they intro-
duce wrong information for intensity into Eq. �2�. In the
second range, with slightly larger spot radii �0.8�rspot

�2.0�, the total error is smallest. In the third range, with
large spot radii �rspot�2.0�, the total error generally in-
creases with rspot because the trade-off results in the undesir-
able outcome of the worsened SNR in each pixel having a
stronger effect than the improved pixel locking due to defo-
cusing. The optimal spot radius is somewhere in the second
range, which for our parameters is approximately 0.8–2.0.
We should emphasize, however, that this range will vary de-
pending on the experiment due to different cameras �with
different noise levels, sensitivities, and saturation levels�,
particle size, illumination, and working distance between
particles and lens. If the camera had a higher noise level, the
errors in this third range would be larger and the experi-
menter would be unable to use much defocusing. On the
other hand, if the illumination were brighter, then the entire
curve in Fig. 9 would shift toward larger spot radii and the
experimenter would be able to use more defocusing.

In Fig. 9 we also note an oscillation, superimposed on
the general trend, for 0.8�rspot�2.0. We attribute this oscil-
lation, which was observed previously in experiments by
Käding and Melzer,21 to a boundary effect similar to the one
described above.

C. Intensity

To simulate adjusting the illumination brightness, the ex-
posure time, or the camera aperture, we varied Ipeak in Fig.
10. As a result, the total signal intensity �Isig k is varied,
while rspot is kept constant. We note that IMAGEJ yields the
smallest total error.

The trend that would be expected for random errors only
is a downward slope as the intensity is increased due to an
improving SNR in each pixel. This trend is indeed observed

FIG. 9. Simulation of slight lens defocusing. The optimal range of spot size
lies between two other ranges: for very small rspot, errors worsen due to
pixel saturation; for very large rspot, they worsen due to random errors. For
our parameters, these two ranges are for rspot�0.8 and rspot�2.0, respec-
tively. Oscillations in the optimal range arise from a boundary effect. �Here,
Ith=1000, Ibase=0, and �Isig k=37 707.�

FIG. 10. The rms error as the intensity is varied, to simulate adjusting the
illumination brightness, the exposure time, or the camera aperture. The main
trend is that the error decreases with increasing intensity due to an improved
signal-to-noise ratio �SNR�, as indicated by solid curves; the opposite trend,
indicated by dashed curves, is attributed to a pixel-locking effect that we
term the pedestal effect. �Here, rspot=1.5, Ith=740, and Ibase=0.�
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in Fig. 10, but only for some of the data, as indicated by
solid curves. The opposite trend is also observed in Fig. 10,
as indicated by dashed curves; since this trend is opposite to
what is expected for random errors only, we attribute it to
pixel locking. We term this particular effect of pixel locking
the “pedestal effect.”

D. Base line

The pedestal effect is the result of a nonoptimal choice
of the base line. To illustrate this effect, in Fig. 11 we have
sketched the cross section of a bright spot. The portion of
this cross section that lies within the boundary, defined by
the threshold, is shown shaded. This portion is divided in
Fig. 11 into two parts, above and below the threshold. We
term the part below the threshold the “pedestal” �Fig. 11�.
The contribution of the pedestal to the moment in Eq. �2� can
be large or small, depending on whether Ibase is small or
large, respectively. In the extreme case of a very large ped-
estal that dominates the calculation of the particle position,
the calculated particle position will often fall near a pixel
edge or midpoint, as it does in the case of a centroid, thereby
contributing to severe pixel locking. We term this tendency
toward severe pixel locking the pedestal effect. Below, we
will determine the best choice of Ibase in order to reduce the
pedestal effect and the pixel-locking errors that it introduces
to the calculated particle positions.

To test the effect of the base line that is chosen, in Fig.
12 we present the total error, calculated as the rms error, for
three different base line values. From Fig. 12, we see that the
total error is reduced by using a larger base line value. The
best choice is Ibase= Ith, because this results in the smallest
total error. It also minimizes pixel locking; the downward
slope in Fig. 12 indicates that random errors dominate.

Thus, we conclude that in the second step, when using
Eq. �2�, the base line should be chosen to be the same as the

threshold that was used in the first step. This can be done
most simply by subtracting the same threshold for every
pixel in the image. Alternatively, a different base line level
Ibase k for each pixel could be subtracted in Eq. �2� to account
for a different background level for each pixel. The latter
method is useful because it allows the experimenter to elimi-
nate optical reflections due to room lights, for example. The
experimenter can calculate all the Ibase k base line values for
the pixels as follows. First, the experimenter will use the
camera to record a “dark-field” image, with the illumination
turned off so that particles are not visible. To improve the
statistics, the experimenter can record a series of dark-field
images and average them, pixel by pixel, to reduce the effect
of random noise. This will yield an intensity Idark k for each
pixel. Second, the base line for each pixel will be calculated
as

Ibase k = Idark k + �Ith − Ibg� . �7�

Here, Ibg can be calculated as the average of Idark k for pixels
in the image.

With an optimal choice of both threshold and base line,
one can achieve a subpixel map that shows no evidence of
pixel locking, as seen in Fig. 13�a�. This map was prepared
using IMAGEJ, with a base line equal to the threshold. This
choice of a base line minimizes the total error, as we learned
above. The reason that choosing Ibase= Ith minimizes the total
error is now clear: it greatly reduces pixel locking, so that
mainly errors from random noise remain. To further demon-
strate the usefulness of choosing a base line equal to the
threshold, compare Fig. 8�a� to Fig. 13�a�. The former figure,
which was prepared similarly except with no base line sub-
traction, reveals some pixel locking, while the latter does
not.

An experimenter, when attempting to choose optimal pa-
rameters, will be unable to calculate the rms error, as we
have done in Fig. 12, for example. This is because the true
positions of particles are generally unknown. The experi-

FIG. 11. Cross section of a bright spot, illustrating the “pedestal.” Pixels
brighter than the threshold identify the boundary for IMAGEJ in the first step.
In the second step, both shaded portions contribute to the calculated particle
position if Ibase=0, i.e., if no base line is subtracted in Eq. �2�. The lower
shaded portion, marked “pedestal,” can heavily influence the calculated par-
ticle position. The pedestal can be reduced by choosing Ibase= Ibg or elimi-
nated altogether by choosing Ibase= Ith.

FIG. 12. Test of different base lines. The best choice to minimize rms error
is subtracting a base line equal to the threshold Ith in Eq. �2�. �We used
IMAGEJ and rspot=1.5, Ith=740, and Ibg=384.�
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menter can, however, calculate subpixel maps, such as Fig.
13, because these require only calculated positions. Compar-
ing Figs. 13�a� and 13�b�, which were both calculated with
Ibase= Ith, but with a different Ith, we see that the signature of
pixel locking depends on the threshold.

We now find our best result by varying the threshold, in
Fig. 14, to minimize the rms error. The threshold is the last
parameter to choose, assuming that the experimenter has al-
ready �1� established the illumination level, �2� chosen a
camera with a given noise level, �3� defocused the camera
lens to avoid saturating pixels, and �4� planned to use a base
line Ibase= Ith. Noting that the rms error in Fig. 14 has several
minima, we identify an optimal threshold by choosing the
lowest minimum. This yields our best result, a rms error of
0.017. These same parameters also virtually eliminate the
signature of pixel locking in Fig. 13�a�. An experimenter can
identify an optimal Ith similarly, but without calculating the
rms error, by examining subpixel maps for various values of
Ith, and among the maps with weak pixel-locking signatures,
choosing the one with the lowest value of Ith.

VI. PRACTICAL PROCEDURE

We present here a practical procedure for using the mo-
ment method that minimizes the total error, including both
random errors and pixel locking. This practical procedure
includes first the use of hardware to record images and then
the use of software to analyze them. Our software uses the
moment method with base line subtraction as we tested
above; there are also other well-tested analysis methods that
experimenters may wish to consider.3,4

For the hardware that produces the image, one will
choose a camera and make adjustments to the intensity and
lens focusing. Choosing a camera with low noise will not
only reduce random errors, it will also allow the use of a
lower threshold which can improve pixel locking. In using
the camera, the optimal choices of intensity and lens defo-
cusing must be considered together. The intensity can be
varied, for example, by adjusting the camera aperture, expo-
sure time, or illumination level. To achieve a high SNR in
each pixel, we adjust the intensity upward as high as possible
without saturating pixels. Another way to improve SNR is
pixel binning, which also increases frame rate, but at the
expense of spatial resolution.27 If additional intensity is
available but pixels are saturated, the experimenter can de-
focus the lens to avoid saturating the brightest pixels. Defo-
cusing the lens helps reduce pixel locking, but it can increase
random errors by reducing the SNR in each pixel; therefore,
defocusing beyond a certain point actually worsens the total
error. The optimal lens defocusing will depend on parameters
such as intensity, camera noise level, and number of camera
bits, which vary from one experiment to another. For the
parameters we simulated �see Fig. 9�, we found that the op-
timal spot radius was in the range of 0.8–2.0, measured as
the Gaussian half-width. For other parameters, we can offer
this general guidance: the optimal lens defocusing will be
determined by the need to achieve an adequate SNR in each
pixel. Noisier cameras or weaker illumination will require
less defocusing, while low-noise cameras and brighter illu-
mination will allow more defocusing. The lens should gen-
erally be defocused at least enough to avoid saturating
pixels.

For the image analysis software, there are usually three
important choices. First, we prefer a code that has as its first
step the selection of a boundary that includes only contigu-
ous pixels above a threshold. The freely available IMAGEJ

code selects such a boundary. Second, if the boundary is
selected as described above in the first step, then in the sec-
ond step, using Eq. �2�, the base line should be chosen equal
to the threshold in order to reduce pixel locking. This can be
done either by subtracting the same base line value from
every pixel in a single step or by using Eq. �7� with dark-
field images if the experimenter wishes to remove the effect
of optical reflections, for example. Third, the threshold
should be chosen in a two-part process. To start, the experi-
menter should count the number of particles that is identified
and then choose a coarse range as explained in Sec. V A.
Next, within this coarse range, subpixel maps should be cal-
culated for various thresholds. In order to reduce both ran-
dom and pixel-locking errors, the user should choose the

FIG. 13. Subpixel maps, using a base line Ibase= Ith for two different thresh-
olds: �a� Ith=1150 and �b� Ith=2950. Comparing these panels shows that the
signature of pixel locking can be virtually eliminated, as in �a�, by making
the best choice of threshold as well as choosing Ibase= Ith. �Here, we used the
same 100 000 images as in Fig. 8.�

FIG. 14. Total error, using a base line Ibase= Ith. Comparing to Fig. 6 where
Ibase=0, errors have been reduced. The lowest rms error that can be achieved
with these images is 0.017, using the same optimal choice of parameters as
in Fig. 13�a�. We used the same 5000 images as in Fig. 6. �Here and in Fig.
13, we used IMAGEJ.�
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lowest threshold that has a weak signature of pixel locking.
The moment method can achieve very low errors in par-

ticle position measurement when it is used optimally. For the
case we simulated, a rms error as small as 0.017 is achiev-
able by making optimal choices in the software. Even
smaller errors could be attained if the intensity was brighter
or the camera had less noise.

Readers who wish to perform tests similar to ours may
use our codes and images.28

VII. EXPERIMENTAL DEMONSTRATION

To demonstrate the practical procedure above, we used it
in an experiment. The results presented above, based on syn-
thetic images, indicate that both total errors and pixel locking
will be reduced if we follow the practical procedure. Using
experimental images, one can detect the signature of pixel
locking using subpixel maps. We describe next the hardware
and software components of our experimental test.

For the hardware, the experiment was similar to the one
for Fig. 1�a�, including using the same 14 bit camera, except
that we improved the experimental method by slightly defo-
cusing the lens. A cropped portion of the 800�600 pixel
image �Fig. 15�a�� and a magnified view �Fig. 15�b�� show
that a bright spot fills more pixels than in Fig. 1�b�, where
the lens was sharply focused. Due to defocusing, the spots
are slightly noncircular. Additionally, we binned 2
�2 pixels. As a result of these changes, the total intensity of
a bright spot is typically 39 240, as compared to 21 000 �with
a maximum of 37 707� for Fig. 1�a� and the noise peak is
shifted to a lower intensity. A further possible improvement
in the hardware is using a more powerful laser, and we plan
to do that in future experiments.

For the software, we used IMAGEJ to identify particles
from 100 experimental images. We excluded any identified
particles that filled only one single pixel. First, we chose a
coarse range for the threshold by counting the number of
identified particles as a function of the threshold, Fig. 16. We
looked for a nearly flat portion, which is from 325 to 925
here, and we chose that as the coarse range. Next, we calcu-
lated particle positions using Eq. �2�, along with Eq. �7� to
calculate Ibase k using an average of 2000 dark-field images.
We repeated these calculations of particle positions for vari-
ous thresholds, each time preparing a subpixel map. Finally,

we will examine these subpixel maps to choose the lowest
threshold that has a weak signature of pixel locking.

In Fig. 17, we present the subpixel map that results from
following our practical procedure in panel �a�. Examining
this subpixel map, we see that it has no obvious signature of

FIG. 15. Experimental bitmap images of a monolayer suspension of micro-
spheres in a dusty plasma. Here, �a� is 1 /12 of the original image and �b� is
a magnified view. A bright spot fills about 5�5 pixels. Compared to Fig.
1�a�, the hardware was improved by slight lens defocusing.

FIG. 16. Choosing the coarse range of threshold using experimental images.
Counting the particles identified in 100 images, we choose the nearly flat
portion 325� Ith�925 as the coarse range. Outside this coarse range, many
false particles appear at lower Ith due to noise, while many true particles are
missed at higher Ith. Labels �a�–�h� identify thresholds used in Fig. 17.

FIG. 17. Experimental subpixel maps for different thresholds within the
coarse range. Here, �a� is an entire map and �b�–�h� show the lower left
corner. We choose the lowest Ith with a weak signature of pixel locking, 325.
The signature is stronger for Ith�525, with a concentration of calculated
positions on pixel edges. Vastly better than Fig. 3�c�, there is no obvious
signature of pixel locking for Ith�525. �Here, we used IMAGEJ with Ibase k

calculated from Eq. �7� and a dark-field image.�
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pixel locking when viewed in its entirety. To search for sig-
natures, we zoom into the lower left corner �Figs.
17�b�–17�h��. There, we can identify an artifact of pixel lock-
ing: a concentration of calculated positions on pixel edges.
Our practical procedure requires choosing the lowest thresh-
old with a weak signature of pixel locking. For our results in
Fig. 17, thresholds in the range of 325–425 have no identi-
fiable signature, leading us to choose 325.

We conclude that the signature of pixel locking is vastly
improved by using our practical procedure. This conclusion
is based on a comparison of the subpixel maps in Fig. 17�a�
and Fig. 3�c�. The latter was prepared for a similar experi-
ment but a different camera, illumination, and analysis
method. The signature of pixel locking is profound in Fig.
3�c�, but it is virtually undetectable in Figs. 17�a�–17�c�.
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APPENDIX: ERRORS IN OTHER QUANTITIES

Errors in the calculated particle positions can introduce
errors in other quantities that are calculated from the posi-
tions. In PTV, velocities are calculated as v= �x2−x1� /�t, as
discussed in Sec. I. Pixel locking can affect the velocity cal-
culation greatly in experiments. For example, if pixel locking
is so severe that most calculated positions are located only at
pixel centers, then almost all particle velocities calculated in
PTV will be quantized as an integer number of pixel widths
per frame. These errors in calculating velocities can propa-
gate to other calculations. Velocity distribution functions f�v�
can be badly affected, with noticeable peaks14 that are signa-
tures of pixel locking. However, we have found that wave
spectra and velocity correlation functions are not affected so
badly.

While it is beyond the scope of this article to completely
characterize the errors in v or f�v�, we can discuss the con-
tributions to the total error in v. For PTV, the rms error,
�v= ���x1

2+�x2
2−2�x1�x2� /�t2�1/2, has two contributions,

��x1
2+�x2

2� /�t2 arising from the errors in position and
�−2�x1�x2� /�t2 arising from correlations in the two errors. If
the calculated position had random errors only, the correla-
tion �x1�x2 would be zero and the rms error in v would be
minimized when the rms error in x is minimized. However,
pixel-locking errors can have correlations, which will vary
depending on the velocities, and these will affect �v in a way
that is difficult to predict.

Aside from these quantities, which are calculated from
velocities, experimenters often calculate other quantities

from the position itself. The mean-square displacement
�MSD�, which is used to measure diffusion, is calculated
from position. Particle position errors can cause the MSD to
be exaggerated significantly at small times when the dis-
placement is small, but not at large times when the displace-
ment is large.6 Another use of particle positions is the study
of structure.29,30 While we have not analyzed the sensitivity
of structural analysis methods to particle position errors, we
expect that calculations that are sensitive to small changes in
interparticle distances, such as Voronoi maps for detecting
defects, will be more affected than correlation functions that
use data over a wide range of distances.
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