
Accurate particle position measurement from images

Y. Feng,∗ J. Goree, and Bin Liu

Department of Physics and Astronomy,

The University of Iowa, Iowa City, Iowa 52242

(Dated: March 5, 2007)

Abstract

The moment method is an image analysis technique for sub-pixel estimation of particle positions.

The total error in the calculated particle position includes effects of pixel locking and random noise

in each pixel. Pixel locking, also known as peak locking, is an artifact where calculated particle

positions are concentrated at certain locations relative to pixel edges. We report simulations to

gain an understanding of the sources of error and their dependence on parameters the experimenter

can control. We recommend an algorithm, and we find optimal parameters an experimenter can

use to minimize total error and pixel locking. Simulating a dusty plasma experiment, we find

that a sub-pixel accuracy of 0.017 pixel or better can be attained. These results are also useful

for improving particle position measurement and particle tracking velocimetry (PTV) using video

microscopy, in fields including colloids, biology, and fluid mechanics.

PACS numbers: 52.27.Lw, 82.70.Dd, 07.05.Pj, 47.80.-v, 87.64.Rr

∗Electronic address: yan-feng@uiowa.edu

1



I. INTRODUCTION

Measurement of particle positions from images is important in many fields, including

dusty plasmas [1, 2], colloids [3], fluid mechanics [4], biology [5], and computer vision [6].

Particle positions are generally estimated as the center of a bright spot of an image. Velocities

can also be calculated from images; two common methods for this are Particle-Tracking-

Velocimetry (PTV) and Particle-Image-Velocimetry (PIV).

To measure particle positions, an experimenter begins with a bit-map image. As an

example, in Fig. 1 we present portions of single video frame from a dusty plasma experi-

ment. Each bright spot represents an 8 µm diameter polymer microsphere illuminated by

a 0.633 µm helium-neon laser sheet and imaged by a video camera with a Nikon 105 mm

micro lens and a bandpass optical filter to eliminate unwanted light. The lens was focused to

generate a sharp image. The experimental setup is similar to Fig. 2 of [1]. Figure 1(a) and a

magnified view Fig. 1(b) show portions of a video frame recorded by a cooled 14-bit digital

camera (pco1600) with a 7.4 µm pixel width and a linear response. It was operated at 30

frames per second with an exposure time of 30 msec. We should mention that experimental

images of particles will differ, depending on many factors including the type of camera. To

illustrate this point, we present in Fig. 1(c) an enlarged view of a bright spot in a frame

recorded by an analog camera with a nonlinear response corresponding to gamma = 0.6.

(Some cameras are nonlinear with an output intensity proportional to the input luminance

to the power gamma).

In the images in Fig. 1, particles fill several pixels. This spot size may be due, in part,

to diffraction by the particle as well as camera properties such as diffraction by the camera

aperture [7] and imperfect lens focusing. The spot size cannot be explained merely by

geometrical optics, because the small particle size and magnification would result in an

image smaller than one pixel on the camera detector.

Images have random noise in each pixel. This can arise because of fluctuations in the

camera’s sensor and its electronics. Noise in the experimental image of Fig. 1(a) is shown

in Fig. 2 as a histogram of the pixel intensity. The most prominent feature is the noise

peak, corresponding to a large number of pixels that are relatively dark. This noise peak

has an average value that we term the “background intensity,” Ibg. The noise peak generally

depends only on the camera and the sensor temperature.

2



After recording a bit-map image, the experimenter will then use a computer algorithm to

measure the particle position. There are several methods to do this, including the moment

method [1, 2, 8–10], which we will study in this paper. Other methods include fitting a

bright spot in the image to a Gaussian [11] or polynomial [2, 3], and simpler methods such

as choosing the centroid as the particle center [2, 10]. In the moment method, the calculated

particle position is

Xcalc =

∑
k

XkIk

∑
k

Ik

, (1)

where Xk is the position and Ik is the intensity of a pixel k. The result of Eq. (1) is

sometimes called the “center of mass” [10]. When the particle fills more than one pixel, this

calculation yields an estimate of the particle position with sub-pixel accuracy. Because of

the efficiency and accuracy of the moment method, it is widely used when analyzing large

quantities of data, as might be produced for example when using a video camera. Fitting

methods, which are more computationally expensive, are suitable when a smaller number

of bright spots are analyzed [11]. The centroid method is similar to the moment method

except that the intensity Ik of each pixel is replaced with a constant [2, 10].

One application of particle position measurements is the calculation of particle velocities

using PTV. A velocity can be calculated by subtracting the positions of the same particle in

two different frames and dividing by the time interval between frames. This method differs

from PIV [12], where velocities are calculated at regular gridpoints, not for specific particles.

Errors in the calculated particle position arise from multiple sources, including random

noise in each pixel and also from the finite spatial resolution of the pixels on a camera sensor.

When an image is recorded by sampling it with a finite number of pixels, some information

about the intensity profile is lost, and this can cause a type of systematic error known as

pixel locking or peak locking. The total error in the calculated position will be due to a

combination of these effects, not just random noise or pixel locking by itself.

In this paper, we seek to minimize the total error, and doing this will require that we

understand the contribution of pixel locking. Our goal is to aid the experimenter in making

optimal choices, in both hardware and software, to minimize the total error.

3



II. PIXEL LOCKING

Pixel locking, also known as peak locking, is an artifact where calculated particle positions

tend to be concentrated at certain favored locations relative to pixel edges, such as the center

or edges of a pixel. It is different from random errors, which do not result in favored positions

for particles. To understand pixel locking, consider a particle whose image fills only a single

pixel. In this case, the sum in Eq. (1) would have only a single term, and the position would

be assigned to the exact center of that pixel. If the particle’s image instead fills two pixels

with equal intensity, the position will be assigned to the midpoint of a pixel edge. The pixel

center and midpoints of pixel edges are examples of favored positions that are found to occur

even when the particle’s image fills several pixels [13].

The scientific literature for pixel locking includes many papers where PIV is used to

measure velocities. In the early 1990s, the PIV method was tested to demonstrate their

sub-pixel accuracy for particles flowing along with a fluid [14, 15]. For specific applications

of PIV, pixel locking has been studied by other authors as well [16–19]. In comparison to

PIV, the literature for PTV includes fewer studies of pixel locking, e.g. [13, 20]. Because of

this, some users of PTV, including until recently the authors of this paper, were unaware

of pixel locking and the problems it can cause. In addition to PTV, computer vision is

another important area where pixel locking is recognized as a problem in measuring positions

[6, 21, 22].

To detect pixel locking, we use sub-pixel maps as a diagnostic tool. A sub-pixel map

shows all the calculated particle positions relative to pixel edges, and it is drawn in a small

box having the size of one pixel. To prepare a sub-pixel map, we begin with a graph of

calculated positions of N particles, as illustrated in Fig. 3(a), then plot the fraction parts

of these positions in the small box, yielding the sub-pixel map in Fig. 3(b). In Fig. 3(c) we

present an actual sub-pixel map calculated from a bit-map image by an analog camera in

a dusty plasma experiment. The signature of pixel locking can be identified in general by

concentrations of calculated particle positions at favored positions. These favored positions

can vary, depending on both hardware and software, but they commonly include the center

or edges of a pixel, as in Fig. 3(c). Sub-pixel maps are therefore very useful for detecting

pixel locking. Other authors have used similar graphs, where the calculated positions have

been binned and plotted as a histogram [6, 21, 22].

4



III. MOMENT METHOD

The algorithm we optimize in this paper, the moment method, has two main steps. The

first step is the selection of pixels that belong to each particle in the image. The second step

is the calculation of position as an intensity-weighted moment of pixel positions.

In the first step, the selection of pixels, the user begins by choosing a threshold Ith.

The gray-scale image is replaced by a black-and-white image, where pixels brighter than

Ith become black, and all others become white. The choice of the threshold is important

for several reasons [8], as we will discuss later. Next, the boundaries for individual particle

images are determined. There are several algorithms for selecting boundaries. We have

examined several codes that use the moment method, and we found that the only difference

is the algorithm for selecting boundaries. We will consider three algorithms, which we

distinguish by the corresponding codes we will test. All three of these codes are well tested,

and they generate reliable results from experimental images. In one algorithm, the boundary

is selected to be a polygon that encloses only contiguous pixels brighter than the threshold,

as shown in Fig. 4(a). This algorithm is used in the freely available ImageJ [10] code. The

other two algorithms select a boundary that is a rectangle. In Code A, the boundary is the

smallest rectangle that encloses all the contiguous pixels above the threshold [23], as shown

in Fig. 4(b). In Code K, the boundary is the smallest rectangle that encloses a special curved

contour [24]. This curved contour is produced by a 2D contour-plotting routine, and it is

drawn not as line segments around pixel edges but rather as a curve passing through various

pixels. Within a pixel, the pixel center is assigned the value of the original pixel intensity,

but other points within a pixel are assumed to have other intensities, which are calculated

by 2D interpolation using four surrounding pixel centers. Then, the contour-plotting routine

draws a curve by joining all points, with sub-pixel spacing, where the assumed intensity is

equal to the threshold, as shown in Fig. 4(c) with a dash line. In both Codes A and K, but

not ImageJ, the boundary can enclose some pixels that are less intense than the threshold.

In the second step, which is the same in all three codes we test, the particle positions

are calculated as the moment, i.e., as the intensity-weighted position of pixels. The moment

can be calculated [1, 8, 9] using Eq. (1). However, we will find it better to use a generalized

5



form of the calculated particle position,

Xcalc =

∑
k

Xk(Ik − Ibase)
∑
k
(Ik − Ibase)

, (2)

where the baseline value Ibase will be explained later. Note that the calculated particle

position depends on the selection of pixels that are included in the summation in Eq. (1) or

Eq. (2).

IV. METHOD

A. Synthetic images

To test methods of measuring particle positions, we calculate position errors as compared

to true positions in synthetic images. For this purpose we cannot use actual experimental

images because the true position is generally not known. Synthetic images allow us to vary

the intensity and the size of a bright spot to find how errors depend on these parameters.

Units used in this paper are pixel units for all distances including Xk, Xcalc, spot size

and errors. Intensities, including signal and noise, are specified in intensity value units, i.e.,

a dimensionless integer ranging, for example, from 0 to 214 − 1 for a 14-bit camera.

We prepare synthetic images that resemble an experimental image like Fig. 5(a). The

synthetic images have a size of 64×64 pixels, with one bright spot per image. These images

have three major attributes that we compute: the spot’s true position, the spatial profile of

the signal, and the noise.

First, the bright spot’s true position is located near the image center, but displaced in

the x and y directions by a fraction of a pixel. This is done using random numbers with a

uniform distribution (between 0 and 1) so that the true positions are random and uniformly-

distributed relative to pixel edges. Using these random positions avoids any sampling bias.

Second, like other authors [25], we model the signal’s spatial profile as a Gaussian

Isig(x, y) = Ipeak exp

[
−(x− xtrue)

2 + (y − ytrue)
2

r2
spot

]
, (3)

characterized by the spot radius rspot and the peak intensity Ipeak. (This Gaussian is intended

to approximate the actual spatial profile, which depends on factors such as the particle size,

the camera’s gamma, and lens defocusing.) To imitate the collection of light onto a square

6



pixel, we integrate this smooth profile over each pixel’s area. This yields the value Isig k of

the signal in pixel k,

Isig k =

kx+0.5∫

x=kx−0.5

ky+0.5∫

y=ky−0.5

Isig(x, y)dx dy, (4)

where kx and ky are the coordinates of pixel k. Equation (4) combined with Eq. (3) can be

evaluated efficiently using the error function erf. (After this step, each bright spot has the

same total signal intensity
∑

Isig k, which was typically 37 707 corresponding to the brightest

spot in the experimental image Fig. 1(a). In the experiment, not every bright spot has the

same total signal intensity because some particles are levitated slightly above or below the

brightest part of the horizontal laser sheet.)

Third, we calculate a noise value Inoise k which is different for each pixel k. To simulate

the experiment, Inoise k is chosen as a random intensity from the noise distribution of our

digital camera, Fig. 2, which is centered at an average intensity Ibg = 384. Finally, the

intensity Ik in each pixel is calculated as the sum of the intensities of the signal and noise

or a saturation value Isat, whichever is smaller,

Ik = Min[(Isig k + Inoise k), Isat]. (5)

We use Isat = 214 − 1 to simulate the saturation intensity of a real camera with 14-bit

resolution. Finally, we round Ik to an integer because cameras produce integer values for

the intensity of each pixel. The result of this calculation is a TIFF image like Fig. 5(b) or

5(c).

Here we only consider bright spots that are circular, as in Eq. (3). Although we do not

simulate them here, we note that non-circular bright spots can be analyzed using the moment

method, and they do occur in some experiments. Elliptical particles arise when using analog

video cameras with a limited horizontal resolution, or when particles move rapidly during

the exposure time. The latter effect can be diminished by rastering a laser beam rather than

dispersing it into a constant sheet. Defocusing a lens can result in non-circular spots, as in

Sec. VII.

B. Errors in calculated particle positions

In this paper, we are mainly interested in errors in calculated particle positions. Most

of our effort is directed toward understanding these errors, and finding how experimenters

7



can reduce them. In addition to errors in particle position, the experimenter may also be

concerned with errors in velocities and other quantities computed from particle positions,

as discussed in the Appendix.

To characterize the error in calculated particle positions, we use two diagnostics. First,

we calculate sub-pixel maps, as described in Sec. II. These sub-pixel maps will reveal pixel

locking, which is one source of error, but they will generally not reveal random errors.

Second, we characterize the total error, including both random errors and pixel locking, as

the root-mean-square (rms) difference of true and calculated positions, i.e., the rms error




N∑
m=1

(xm,calc − xm,true)
2 + (ym,calc − ym,true)

2

N




1
2

, (6)

where m and N are the index and total number, respectively, of bright spots.

To achieve good statistics, we prepared over 370 000 synthetic images, each with one

bright spot. We used N = 5000 when calculating the rms error, and N = 100 000 when

calculating sub-pixel maps. All of these images have different random true positions for

their bright spots, and the noise in each pixel is different in all images.

We are able to calculate the total error using Eq. (6), but we cannot separately calculate

the magnitude of the random errors and pixel locking that contribute to the total error.

As a diagnostic to identify the presence of pixel locking, we prepare sub-pixel maps, like

Fig. 3(c), which we examine qualitatively.

C. Parameters

To find a procedure for calculating position with minimal total error, we will test three

different codes, and we will vary parameters corresponding to software and hardware adjust-

ments that an experimenter can make. We will now list these adjustments. The experimenter

can choose to focus the camera lens sharply, or defocus it to make the bright spots in the

image appear larger and fill more pixels. Although experimenters might have the habit of

always focusing a lens as sharply as possible, we will show that one can actually reduce er-

rors in calculated particle positions by defocusing the lens to a certain degree. As a second

parameter, the experimenter can adjust the image intensity by varying the camera aperture,

exposure time or illumination brightness. After recording images with the camera, the ex-

8



perimenter will then use software. Various codes using the moment method differ primarily

in the first step where a boundary is selected, as explained in Sec. III. After choosing a code,

the experimenter can usually adjust two parameters in that code: the threshold used in the

first step, and the baseline (if any) that is subtracted in the second step, as in Eq. (2).

Thus, we are motivated to analyze the impact of the following four parameters that the

experimenter must choose: focus, intensity, threshold, and baseline. We do this by varying

the values of rspot (keeping the total signal intensity
∑

Isig k as constant, as explained later),

Ipeak, Ith, and Ibase, respectively. We will vary each of these four parameters in Sec. V. We

will also compare results from the three different codes. The outcome of this analysis will

be a recommendation, presented in Sec. VI, of a practical procedure that the experimenter

can use to minimize errors in calculated positions.

V. RESULTS

A. Threshold

The first parameter we vary is the threshold. The experimenter will first make a coarse

adjustment of the threshold so that it is not so low that noise is wrongly identified as particles

and not so high that fainter particles are overlooked. After this coarse adjustment, a fine

adjustment can be made to reduce error. Here, we consider the fine adjustment.

Our results in Fig. 6 show that the total error generally increases with threshold, and it

also depends on the choice of a code. We calculate the total error as the rms error, using N =

5000 images and Eq. (6). Recall that the total error includes both random and pixel-locking

errors. The total error generally increases with the threshold because raising the threshold

can eliminate pixels that have useful signal.

The total error exhibits not only a general increase with threshold, but also an oscillation.

This is seen in Fig. 6, where there are several oscillations superimposed on the general trend.

We cannot dismiss these oscillations as mere statistical fluctuations because we achieved

good statistics by using 5000 particle positions. To identify the cause of these oscillations,

we tested how the boundaries that are selected in the first step depend on the threshold.

The result of this test is shown in Fig. 7 as a table of the boundaries selected by ImageJ.

When the threshold is increased slightly so that the boundary shrinks by one pixel, there

9



is a discrete jump in the calculated particle position. As the threshold increases, there is a

sequence of jumps, as the boundary becomes smaller, one pixel at a time. These jumps, in

aggregate for many particles, lead to oscillations in the rms error as the threshold is varied,

which is the phenomenon we term the “boundary effect”.

To identify the role of pixel locking in the total error, we examine sub-pixel maps in

Fig. 8, which reveal the importance of the threshold. For ImageJ, we provide sub-pixel

maps, Fig. 8(a) and 8(b), that correspond to the two thresholds that yielded the minimum

and maximum rms errors, respectively, in Fig. 6. We note that the signature of pixel locking

is weaker, i.e., the sub-pixel map is more uniform, for the case of the low threshold, Fig. 8(a),

that yields the lowest total error. Conversely, the signature of pixel locking is stronger, i.e.,

the sub-pixel map has strongly non-uniform features, for the higher threshold, Fig. 8(b).

In general, reducing the threshold will reduce pixel locking. Other codes exhibit the same

trend, but with a different appearance for the sub-pixel maps, as in Fig. 8(c) and 8(d).

B. Spot radius

To simulate an experimenter’s slight defocusing of a camera lens, we varied the spot

radius rspot in Fig. 9. We used the Gaussian profile of Eq. (3), keeping the spot’s total signal

intensity (
∑

Isig k summed over all pixels) constant. In this way we mimic an experiment

where a particle scatters the same finite number of photons into a camera lens regardless of

how the lens is focused. (We did not simulate the ring-shaped bright spot that can occur for

extreme defocusing.) Defocusing can happen when an experimenter purposefully chooses

to defocus the lens for example to avoid saturating pixels; in other cases, defocusing is not

intentional but instead simply unavoidable because particles are at different depths, as for

example in colloidal suspensions [3] and 3D dusty plasma suspensions [20].

Defocusing a lens during the experiment can actually be desirable. By distributing the

signal over a larger number of pixels, the impact of a single pixel in the calculation of

the particle’s position is less, so that pixel locking becomes weaker. On the other hand,

defocusing can reduce the signal in each pixel, so that the signal-to-noise ratio (SNR) in each

pixel becomes worse. In other words, there can be a trade-off: defocusing can improve pixel

locking at the expense of making random errors worse. In our results below we investigate

this effect.

10



We should mention that when discussing defocusing, we always refer to the experimenter’s

adjustment to the hardware when recording an image; we do not suggest blurring an image

in software after the image has been recorded by the hardware. Applying a Gaussian blur,

for example, to an image that has already been recorded does not add information; instead,

it eliminates information by an averaging process.

The result in Fig. 9 reveals three ranges of the spot radius, where the second range is

the most desirable. In the first range, with small spot radii (rspot < 0.8), the total error

diminishes with radius because the spot includes a saturated pixel. Saturated pixels are

undesirable because they introduce wrong information for intensity into Eq. (2). In the

second range, with slightly larger spot radii (0.8 ≤ rspot ≤ 2.0), the total error is smallest.

In the third range, with large spot radii (rspot > 2.0), the total error generally increases

with rspot because the trade-off results in the undesirable outcome of the worsened SNR

in each pixel having a stronger effect than the improved pixel locking due to defocusing.

The optimal spot radius is somewhere in the second range, which for our parameters is

approximately 0.8 - 2.0. We should emphasize, however, that this range will vary depending

on the experiment due to different cameras (with different noise levels, sensitivities and

saturation levels), particle size, illumination, and working distance between particles and

lens. If the camera had a higher noise level, the errors in this third range would be larger

and the experimenter would be unable to use much defocusing. On the other hand, if the

illumination were brighter, then the entire curve in Fig. 9 would shift toward larger spot

radii and the experimenter would be able to use more defocusing.

In Fig. 9 we also note an oscillation, superimposed on the general trend, for 0.8 ≤ rspot ≤
2.0. This oscillation was observed previously in experiments by Käding and Melzer [20]. We

attribute this oscillation to a boundary effect similar to the one described above.

C. Intensity

To simulate adjusting the illumination brightness, the exposure time, or the camera

aperture, we varied Ipeak in Fig. 10. As a result, the total signal intensity
∑

Isig k is varied,

while rspot is kept constant. We note that ImageJ yields the smallest total error.

The trend that would be expected for random errors only is a downward slope as the

intensity is increased, due to an improving SNR in each pixel. This trend is indeed observed

11



Fig. 10, but only for some of the data, as indicated by solid curves. The opposite trend is

also observed in Fig. 10, as indicated by dashed curves; since this trend is opposite to what

is expected for random errors only, we attribute it to pixel locking. We term this particular

effect of pixel locking the “pedestal effect.”

D. Baseline

The pedestal effect is the result of a non-optimal choice of the baseline. To illustrate this

effect, in Fig. 11 we have sketched the cross section of a bright spot. The portion of this

cross section that lies within the boundary, defined by the threshold, is shown shaded. This

portion is divided in Fig. 11 into two parts, above and below the threshold. We term the part

below the threshold the “pedestal,” as shown in Fig. 11. The contribution of the pedestal to

the moment in Eq. (2) can be large, or small, depending on whether Ibase is small or large,

respectively. In the extreme case of a very large pedestal that dominates the calculation

of the particle position, the calculated particle position will often fall near a pixel edge or

midpoint, as it does in the case of a centroid, thereby contributing to severe pixel locking.

We term this tendency toward severe pixel locking the “pedestal effect.” Below, we will

determine the best choice of Ibase in order to reduce the pedestal effect and the pixel-locking

errors that it introduces to the calculated particle positions.

To test the effect of the baseline that is chosen, in Fig. 12 we present the total error,

calculated as the rms error, for three different baseline values. From Fig. 12, we see that the

total error is reduced by using a larger baseline value. The best choice is Ibase = Ith, because

this results in the smallest total error. It also minimizes pixel locking; the downward slope

in Fig. 12 indicates that random errors dominate.

Thus, we conclude that in the second step, when using Eq. (2), the baseline should be

chosen to be the same as the threshold that was used in the first step. This can be done

most simply by subtracting the same threshold for every pixel in the image. Alternatively,

a different baseline level Ibase k for each pixel could be subtracted in Eq. (2), to account for

a different background level for each pixel. The latter method is useful because it allows

the experimenter to eliminate optical reflections due to room lights, for example. The

experimenter can calculate all the Ibase k baseline values for the pixels as follows. First,

the experimenter will use the camera to record a “dark-field” image, with the illumination

12



turned off so that particles are not visible. To improve the statistics, the experimenter can

record a series of dark-field images and average them, pixel-by-pixel, to reduce the effect of

random noise. This will yield an intensity Idark k for each pixel. Second, the baseline for

each pixel will be calculated as

Ibase k = Idark k + (Ith − Ibg). (7)

Here, Ibg can be calculated as the average of Idark k for pixels in the image.

With an optimal choice of both threshold and baseline, one can achieve a sub-pixel map

that shows no evidence of pixel locking, as seen in Fig. 13(a). This map was prepared using

ImageJ, with a baseline equal to the threshold. This choice of a baseline minimizes the

total error, as we learned above. The reason that choosing Ibase = Ith minimizes the total

error is now clear: it greatly reduces pixel locking, so that mainly errors from random noise

remain. To further demonstrate the usefulness of choosing a baseline equal to the threshold,

compare Fig. 8(a) to Fig. 13(a). The former figure, which was prepared similarly except

with no baseline subtraction, reveals some pixel locking, while the latter does not.

An experimenter, when attempting to choose optimal parameters, will be unable to cal-

culate the rms error, as we have done in Fig. 12, for example. This is because the true

positions of particles are generally unknown. The experimenter can, however, calculate sub-

pixel maps, such as Fig. 13, because these require only calculated positions. Comparing

Fig. 13(a) and 13(b), which were both calculated with Ibase = Ith, but with a different Ith,

we see that the signature of pixel locking depends on the threshold.

We now find our best result by varying the threshold, in Fig. 14, to minimize the rms

error. The threshold is the last parameter to choose, assuming that the experimenter has

already: (1) established the illumination level, (2) chosen a camera with a given noise level,

(3) defocused the camera lens to avoid saturating pixels, and (4) planned to use a baseline

Ibase = Ith. Noting that the rms error in Fig. 14 has several minima, we identify an optimal

threshold by choosing the lowest minimum. This yields our best result, an rms error of

0.017. These same parameters also virtually eliminate the signature of pixel locking in

Fig. 13(a). An experimenter can identify an optimal Ith similarly, but without calculating

the rms error, by examining sub-pixel maps for various values of Ith, and among the maps

with weak pixel-locking signatures, choosing the one with the lowest value of Ith.

13



VI. RECOMMENDED METHOD

We now recommend methods that will be useful to the experimenter in minimizing the

total error, including both random errors and pixel locking. These recommendations are for

both the hardware used to produce images and the software used to analyze them. These

recommendations apply to the moment method.

For the hardware that produces the image, one will choose a camera and make adjust-

ments to the intensity and lens focusing. Choosing a camera with low noise will not only

reduce random errors; it will also allow the use of a lower threshold which can improve pixel

locking. In using the camera, the optimal choices of intensity and lens defocusing must

be considered together. The intensity can be varied, for example, by adjusting the camera

aperture, exposure time, or illumination level. To achieve a high SNR in each pixel, we

recommend adjusting the intensity upward as high as possible without saturating pixels.

Another way to improve SNR is pixel binning, which also increase frame rate, but at the

expense of spatial resolution [26]. If additional intensity is available but pixels are saturated,

the experimenter can defocus the lens to avoid saturating the brightest pixels. Defocusing

the lens helps reduce pixel locking, but it can increase random errors by reducing the SNR in

each pixel; therefore, defocusing beyond a certain point actually worsens the total error. The

optimal lens defocusing will depend on parameters such as intensity, camera noise level, and

number of camera bits, which vary from one experiment to another. For the parameters we

simulated (a 14-bit digital camera, i.e., 16 384 possible intensities, with a noise distribution

peaked at 384 and the total signal intensity
∑

Isig k = 37 707 in a bright spot) we found that

the optimal spot radius was in the range 0.8 - 2.0, measured as the Gaussian half-width. For

other parameters, we can offer this general guidance: the optimal lens defocusing will be

determined by the need to achieve an adequate SNR in each pixel. Noisier cameras or weaker

illumination will require less defocusing, while low-noise cameras and brighter illumination

will allow more defocusing. The lens should generally be defocused at least enough to avoid

saturating pixels.

For the image analysis software, there are usually three important choices. First, we

recommend choosing a code that has as its first step the selection of a boundary that includes

only contiguous pixels above a threshold. The freely available ImageJ code selects such a

boundary. Second, if the boundary is selected as described above in the first step, then in

14



the second step, using Eq. (2), the baseline should be chosen equal to the threshold, in order

to reduce pixel locking. This can be done either by subtracting the same baseline value from

every pixel in a single step, or by using Eq. (7) with dark-field images if the experimenter

wishes to remove the effect of optical reflections for example. Third, the threshold should

be chosen in a two-part process. To start, the experimenter should count the number of

particles that are identified, and then choose a coarse range of threshold that avoids both

false particles (due to noise being misidentified as particles) and missing particles (due to

a high threshold). Next, within this coarse range, sub-pixel maps should be calculated for

various thresholds. In order to reduce both random and pixel-locking errors, the user should

choose the lowest threshold that has a weak signature of pixel locking.

The moment method can achieve very low errors in particle position measurement when

it is used optimally. For the case we simulated, an rms error as small as 0.017 is achievable

by making optimal choices in the software. Even smaller errors could be attained if the

intensity were brighter or the camera had less noise.

Readers who wish to perform tests similar to ours may use our codes and images. We

provide them in an AIP archive [27].

VII. EXPERIMENTAL DEMONSTRATION

To demonstrate the method recommended above, we used it in an experiment. The

results presented above, based on synthetic images, indicate that both total errors and pixel

locking will be reduced if we follow the recommended method. Using experimental images,

one can detect the signature of pixel locking using sub-pixel maps. We describe next the

hardware and software components of our experimental test.

For the hardware, the experiment was similar to the one for Fig. 1(a), including using the

same 14-bit camera, except that we improved the experimental method, as recommended

above, by slightly defocusing the lens. A cropped portion of the 800 × 600 pixels image

Fig. 15(a) and a magnified view Fig. 15(b) show that a bright spot fills more pixels than

in Fig. 1(b) where the lens was sharply focused. Due to defocusing, the spots are slightly

noncircular. Additionally, we binned 2 × 2 pixels. As a result of these changes, the total

intensity of a bright spot is typically 39 240, as compared to 21 000 (with a maximum of

37 707) for Fig. 1(a), and the noise peak is shifted to a lower intensity. A further possible

15



improvement in the hardware is using a more powerful laser, and we plan to do that in

future experiments.

For the software, we used ImageJ to identify particles from 100 experimental images. We

excluded any identified particles that filled only one single pixel. First, we chose a coarse

range for the threshold by counting the number of identified particles as a function of the

threshold, Fig. 16. We looked for a nearly flat portion, which is from 325 to 925 here, and

we chose that as the coarse range. Next, we calculated particle positions using Eq. (2), along

with Eq. (7) to calculate Ibase k using an average of 2000 dark-field images. We repeated

these calculations of particle positions for various thresholds, each time preparing a sub-pixel

map. Finally, we will examine these sub-pixel maps to choose the lowest threshold that has

a weak signature of pixel locking.

In Fig. 17, we present the sub-pixel map that results from following our recommended

procedure in panel (a). Examining this sub-pixel map, we see that it has no obvious signature

of pixel locking when viewed in its entirety. To search for signatures, we zoom into the

lower left corner, Fig. 17(b)-(h). There, we can identify an artifact of pixel locking: a

concentration of calculated positions on pixel edges. Our recommended method requires

choosing the lowest threshold with a weak signature of pixel locking. For our results in

Fig. 17, any threshold in the range 325 - 425 has no identifiable signature, leading us to

choose 325.

We conclude that the signature of pixel locking is vastly improved by using our rec-

ommended method. This conclusion is based on a comparison of the sub-pixel maps in

Fig. 17(a) and Fig. 3(c). The latter was prepared for a similar experiment but a different

camera, illumination, and analysis method. The signature of pixel locking is profound in

Fig. 3(c), but it is virtually undetectable in Fig. 17(a)-(c).

ACKNOWLEDGMENTS

We thank O. Arp and U. Konopka for providing codes and helpful discussions. We

also thank R. Mutel, V. Nosenko, A. Piel, T. Sheridan, and E. Thomas Jr. for helpful

discussions. This work was supported by NASA and the U.S. Department of Energy.

16



APPENDIX: ERRORS IN OTHER QUANTITIES

Errors in the calculated particle positions can introduce errors in other quantities that

are calculated from the positions. In PTV, velocities are calculated as the difference of

particle positions in consecutive frames, divided by the time interval between frames, v =

(x2 − x1)/∆t. Pixel locking can affect the velocity calculation greatly in experiments. For

example, if pixel locking is so severe that most calculated positions are located only at pixel

centers, then almost all particle velocities calculated in PTV will be quantized as an integer

number of pixel widths per frame. These errors in calculating velocities can propagate to

other calculations. Velocity distribution functions f(v) can be badly affected, with noticeable

peaks [13] that are signatures of pixel locking. However, we have found that wave spectra

and velocity correlation functions are not affected so badly.

While it is beyond the scope of this paper to completely characterize the errors in v or

f(v), we can discuss the contributions to the total error in v. For PTV, the rms error in v,

δv = ((δx1
2 + δx2

2 − 2δx1δx2)/∆t2)
1
2
, has two contributions, (δx1

2 + δx2
2)/∆t2 arising from

the errors in position, and (−2δx1δx2)/∆t2 arising from correlations in the two errors. If the

calculated position had random errors only, the correlation (−2δx1δx2)/∆t2 would be zero

and the rms error in v would be minimized when the rms error in x is minimized. However,

pixel-locking errors can have correlations, which will vary depending on the velocities, and

these will affect δv in a way that is difficult to predict.

Aside from these quantities, which are calculated from velocities, experimenters often

calculate other quantities from the position itself. The mean-square displacement (MSD),

which is used to measure diffusion, is calculated from position. Particle position errors can

cause the MSD to be exaggerated significantly at small times when the displacement is small,

but not at large times when the displacement is large [5]. Another use of particle positions

is the study of structure [28, 29]. While we have not analyzed the sensitivity of structural

analysis methods to particle position errors, we expect that calculations that are sensitive

to small changes in interparticle distances, such as Voronoi maps for detecting defects, will

be more affected than correlation functions that use data over a wide range of distances.

[1] D. Samsonov, J. Goree, H. M. Thomas, and G. E. Morfill, Phys. Rev. E 61, 5557 (2000).

17



[2] Y. Ivanov and A. Melzer, Rev. Sci. Instrum. (submitted).

[3] M. Kvarnström and C. Glasbey, Biometrical J. (in press).

[4] K. -A. Chang and P. L. -F. Liu, Phys. Fluids 10, 327 (1998).

[5] C. Selle, F. Rückerl, D. S. Martin, M. B. Forstner, and J. A. Käs, Phys. Chem. Chem. Phys.

6, 5535 (2004).

[6] M. Shimizu and M. Okutomi, Int. J. Comput. Vision 63, 207 (2005).

[7] F. A. Jenkins and H. E. White, Fundamentals of Optics, 3rd ed. (Mcgraw-Hill, New York,

1957), p. 302.

[8] F. Melandsø, Å. Bjerkmo, G. Morfill, H. Thomas, and M. Zuzic, Phys. Plasmas 7, 4368 (2000).

[9] Bin Liu, J. Goree, V. Nosenko, and L. Boufendi, Phys. Plasmas 10, 9 (2003).

[10] W. S. Rasband, computer code ImageJ version 1.34 (U. S. National Institutes of Health,

Bethesda, Maryland, 2006) http://rsb.info.nih.gov/ij/. The “center of mass” is displaced 1/2

pixel in both directions, as compared to our definition.

[11] M. Gai, D. Carollo, M. Delbò, M. G. Lattanzi, G. Massone, F. Bertinetto, G. Mana, and

S. Cesare, Astron. Astrophys. 367, 362 (2001).

[12] J. Westerweel, Meas. Sci. Technol. 8, 1379 (1997).

[13] V. Nosenko, J. Goree, and A. Piel, Phys. Plasmas 13, 032106 (2006).

[14] C. E. Willert and M. Gharib, Exp. Fluids 10, 181 (1991).

[15] A. K. Prasad, R. J. Adrian, C. C. Landreth, and P. W. Offutt, Exp. Fluids 13, 105 (1992).

[16] L. Gui and S. T. Wereley, Exp. Fluids 32, 506 (2002).

[17] K. T. Christensen, Exp. Fluids 36, 484 (2004).

[18] K. P. Angele and B. Muhammad-Klingmann, Exp. Fluids 38, 341 (2005).

[19] H. Nobach and M. Honkanen, Exp. Fluids 38, 511 (2005).

[20] S. Käding and A. Melzer, Phys. Plasmas 13, 090701 (2006).

[21] A. Stein, A. Huertas, and L. Matthies, “Attenuating Stereo Pixel-Locking via Affine Window

Adaptation,” presented at the IEEE International Conference on Robotics and Automation,

May, 2006. http://www.ri.cmu.edu/pubs/pub 5378.html

[22] D. Nehab, S. Rusinkiewiez, and J. Davis, “Improved sub-pixel stereo correspondences through

symmetric refinement,” presented at the Tenth IEEE International Conference on Computer

Vision, 2005. http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1541303

[23] O. Arp, computer code DETECT PARTICLES 2D.m (IEAP, Christian-Albrechts-Universität,

18



D-24098 Kiel, Germany, 2006).

[24] U. Konopka, computer code SPIT (Max-Planck-Institut für extraterrestrische Physik, D-85741

Garching, Germany, 2005).

[25] H. Huang, D. Dabiri, and M. Gharib, Meas. Sci. Technol. 8, 1427 (1997).

[26] Z. M. Zhou, B. Pain, and E. R. Fossum, IEEE T. Electron Dev. 44, 1764 (1997).

[27] See EPAPS Document No. for codes and sample images used in this paper. This document

can be reached through a direct link in the online article’s HTML reference section or via the

EPAPS homepage (http://www.aip.org/pubservs/epaps.html).

[28] C. A. Knapek, A. V. Ivlev, B. A. Klumov, G. E. Morfill, and D. Samsonov, Phys. Rev. Lett.

98, 015001 (2007).

[29] R. A. Quinn, C. Cui, J. Goree, J. B. Pieper, H. Thomas, and G. E. Morfill, Phys. Rev. E 53,

R2049 (1996).

19



FIG. 1: Experimental bit-map images of a monolayer suspension of microspheres in a dusty plasma.

Each bright spot corresponds to one particle. Here, (a) is 1/12 of the original image from a digital

camera and (b) is a magnified view, showing that a bright spot fills several pixels, while in (c)

from an analog camera a bright spot fills about 5× 5 pixels. Spot size depends on such factors as

camera type and focusing. A particle’s position is calculated as the bright spot’s center; errors in

this calculation are the topic of this paper.

FIG. 2: Histogram of intensity values of pixels in the original experimental image of Fig. 1(a). The

inset shows the same data with a logarithmic scale. The prominent peak, centered at Ibg, is due

to noise in the camera.

FIG. 3: Illustration of the method for calculating a sub-pixel map. First, a 10× 10 pixel bit-map

image (not shown here) is analyzed using an algorithm to yield a map (a) of particle positions.

Second, the same positions are plotted relative to pixel edges in (b); these values are the fraction

parts of the calculated positions. (c) An example sub-pixel map of N = 617 particles, calculated

from an experimental image (full view of Fig. 1(c)), reveals pixel locking as a tendency of calculated

positions to be located at favored positions including the center and edges of pixels.

FIG. 4: Illustration of boundaries. In algorithms for calculating particle positions from a bit-

map image, the first step is selecting the contiguous pixels to be used, as defined by a boundary

(solid white line) that encloses them. The three codes we tested differ only in the way they

select boundaries. (a) In ImageJ, only the contiguous pixels above a threshold are included in the

boundary. Code A (b) and Code K (c) use boundaries that are the smallest rectangles that enclose

all the contiguous pixels above the threshold in Code A, or the dashed contour produced by a 2D

contour-plotting routine in Code K.

FIG. 5: Magnified images of bright spots. (a) Experimental image from a digital video camera.

(b),(c) Synthetic images, with a Gaussian profile centered on a known true position, here with two

different spot radii. In generating synthetic images, such as (b) or (c), we first choose the true

position randomly, and then calculate the intensity of each pixel using Eq. (5) so that it includes

both signal and noise.

20



FIG. 6: The rms error of calculated positions as a function of the threshold Ith. In general, errors

increase with threshold, and superimposed on this increase is an oscillation. The rms errors are

always calculated as in Eq. (6) using N = 5000. (Here, rspot = 1.5 pixel units, Ipeak = 5334

intensity value units, corresponding to a total signal intensity
∑

Isig k = 37 707. Also, Ibase = 0.)

FIG. 7: Cause of oscillations. Boundaries, selected in the first step of ImageJ, enclose fewer pixels

as the threshold is increased. Removing one pixel from the boundary causes a discrete jump in the

calculated particle position in Eq. (2). As the threshold increases, there is a sequence of jumps, as

the boundary becomes smaller, one pixel at a time. These jumps, in aggregate for many particles,

lead to oscillations in the rms error as the threshold is varied, a phenomenon we term the boundary

effect. The three columns correspond to three different true positions.

FIG. 8: Sub-pixel maps for N = 100 000 randomly distributed true positions. The signature of

pixel locking is generally more severe for higher thresholds. (Here, rspot = 1.5, Ipeak = 5334, and

Ibase = 0.)

FIG. 9: Simulation of slight lens defocusing. The optimal range of spot size lies between two other

ranges: for very small rspot, errors worsen due to pixel saturation; for very large rspot, they worsen

due to random errors. For our parameters, these two ranges are for rspot < 0.8 and rspot > 2.0,

respectively. Oscillations in the optimal range arise from a boundary effect similar to the one in

Fig. 7. (Here, Ith = 1000, Ibase = 0, and
∑

Isig k = 37 707.)

FIG. 10: The rms error as the intensity is varied, to simulate adjusting the illumination bright-

ness, the exposure time or the camera aperture. The main trend is that the error decreases with

increasing intensity due to an improved signal-to-noise ratio (SNR), as indicated by solid curves;

the opposite trend, indicated by dashed curves, is attributed to a pixel-locking effect that we term

the pedestal effect. (Here, rspot = 1.5, Ith = 740, and Ibase = 0.)

21



FIG. 11: Cross section of a bright spot, illustrating the “pedestal.” Pixels brighter than the

threshold identify the boundary for ImageJ in the first step. In the second step, both shaded

portions contribute to the calculated particle position if Ibase = 0, i.e., if no baseline is subtracted

in Eq. (2). The lower shaded portion, marked “pedestal,” can heavily influence the calculated

particle position. The pedestal can be reduced by choosing Ibase = Ibg, or eliminated altogether by

choosing Ibase = Ith.

FIG. 12: Test of different baselines. The best choice to minimize rms error is subtracting a baseline

equal to the threshold Ith in Eq. (2). (We used ImageJ, and rspot = 1.5, Ith = 740, and Ibg = 384.)

FIG. 13: Sub-pixel maps, using a baseline Ibase = Ith for two different thresholds (a) Ith = 1150 and

(b) Ith = 2950. Comparing these panels shows that the signature of pixel locking can be virtually

eliminated, as in (a), by making the best choice of threshold as well as choosing Ibase = Ith. (Here,

we used the same 100 000 images in Fig. 8.)

FIG. 14: Total error, using a baseline Ibase = Ith. Comparing to Fig. 6 where no baseline was

subtracted, errors have been reduced. The lowest rms error that can be achieved with these images

is 0.017, using the same optimal choice of parameters as in Fig. 13(a). (Here and in Fig. 13, we

used ImageJ, and the same 5000 images in Fig. 6.)

FIG. 15: Experimental bit-map images of a monolayer suspension of microspheres in a dusty

plasma. Here, (a) is 1/12 of the original image and (b) is a magnified view. A bright spot fills

about 5× 5 pixels. Compared to Fig. 1(a), the hardware was improved by slight lens defocusing.

FIG. 16: Choosing the coarse range of threshold using experimental images. Counting the particles

identified in 100 images, we choose the nearly flat portion 325 ≤ Ith ≤ 925 as the coarse range.

Outside this coarse range, many false particles appear at lower Ith due to noise, while many true

particles are missed at higher Ith. Labels a-h identify thresholds used in Fig. 17.

22



FIG. 17: Experimental sub-pixel maps for different thresholds within the coarse range. Here, (a)

is an entire map, and (b)-(h) show the lower left corner. We choose the lowest Ith with a weak

signature of pixel locking, 325. The signature is stronger for Ith ≥ 525, with a concentration of

calculated positions on pixel edges. Vastly better than Fig. 3(c), there is no obvious signature

of pixel locking for Ith < 525. (Here, we used ImageJ with Ibase k calculated from Eq. (7) and a

dark-field image.)

23



(a) (b)

(c)

Fig.1

0.2 mm

0.2 mm2 mm



0 1000 2000 3000 4000 5000
0

1�104

2�104

3�104

4�104

5�104

intensity value

n
u
m

b
e
r

o
f
p
ix

e
ls

Ibg

1

10

100

1000

10
4

10
5

0 2500 5000

noise
peak noise

peak

Fig.2



x (pixel units)

x (pixel units)

0 0.5 1

(c)

0

2

4

6

8

10

0 2 4 6 8 10

y
(p

ix
e
l
u

n
it
s
)

(a)

0

0.5

1

0 0.5 1

y
(p

ix
e

l
u

n
it
s
)

x (pixel units)

(b)

I

II

III

IV

I

II

III

IV

Fig.3



(c)(b)(a)

Fig.4



(a) (b) (c)

Fig.5



0

0.1

0.2

0.3

0.4

0 1000 2000 3000 4000 5000

rm
s

e
rr

o
r

(p
ix

e
l
u
n

it
s
)

threshold (intensity value units)

ImageJ

Code K

Code A

Ith

Fig.6



800

1000

1200

1400

threshold boundaries (for three true positions)

(32.41, 32.16) (32.40, 32.47) (32.00, 32.01)
TP2TP1 TP3

Fig.7



x (pixel units) x (pixel units)

y
(p

ix
e
l
u
n
it
s
)

y
(p

ix
e
l
u
n
it
s
)

1

0.5

0

0 0.5 1

1

0.5

0
0 0.5 1

(a) Ith = 850 (b) Ith = 3350ImageJ

(c) Ith = 950 (d) Ith = 3600Code A

Fig.8



rm
s

e
rr

o
r

(p
ix

e
l
u
n

it
s
)

spot radius (pixel units)rspot

0

0.1

0.2

0.3

0 1 2 3

ImageJ

Code K

Fig.9



0

0.05

0.1

0.15
rm

s
e

rr
o
r

(p
ix

e
l
u

n
it
s
)

signal peak intensity (intensity value units)Ipeak

ImageJ

Code K

3000 5000 7000 9000

Fig.10



0

1000

2000

3000

4000

5000

6000
in

te
n

s
it
y

v
a
lu

e

Ith
Ibg pedestal

pixels included in boundary

1 pixel unit

Fig.11



rm
s

e
rr

o
r

(p
ix

e
l
u

n
it
s
)

signal peak intensity (intensity value units)

no baseline

baseline = I

baseline = Ith

bg

Ipeak

0

0.02

0.04

0.06

0.08

0.1

3000 5000 7000 9000

Fig.12



x (pixel units) x (pixel units)

y
(p

ix
e
l
u
n
it
s
)

0 0.5 1

1

0.5

0
0 0.5 1

(a) (b)

Fig.13



0

0.1

0.2

0.3

0 1000 2000 3000 4000 5000

rm
s

e
rr

o
r

(p
ix

e
l
u

n
it
s
)

threshold (intensity value units)Ith

baseline = Ith

Fig.13(a)

Fig.13(b)

Fig.14



2 mm

(a)

0.2 mm

(b)

Fig.15



a,b

c d gfe

0 500 1000 1500 2000

n
u
m

b
e

r
o
f

id
e
n

ti
fi
e
d

p
a
rt

ic
le

s
105

�1.5

104
�5

105
�1

threshold (intensity value units)Ith

h

Fig.16



(b)

(c) (d) (e)

(f) (g)

y
(p

ix
e
l
u
n
it
s
)

0

0.5

1

x (pixel units)

10 0.5 0

0

0

0 0 0

0.05

0.050.050.05

0.05

0.05

x (pixel units) x (pixel units)

y
(p

ix
e
l
u
n
it
s
)

y
(p

ix
e
l
u
n
it
s
)

(a)

(h)

0

0.05

Fig.17

Ith = 325

Ith = 325

Ith = 925

Ith = 425 Ith = 625

Ith = 725

Ith = 525

Ith = 825


	Article File #1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23

	Fig.1
	Fig.2
	Fig.3
	Fig.4
	Fig.5
	Fig.6
	Fig.7
	Fig.8
	Fig.9
	Fig.10
	Fig.11
	Fig.12
	Fig.13
	Fig.14
	Fig.15
	Fig.16
	Fig.17

