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Characterizing potentials using the structure of a one-dimensional chain demonstrated
using a dusty plasma crystal
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A procedure was developed to characterize the interparticle potential in a lattice that is confined by an
external potential. The first of the two steps is to characterize the confining potential, which can be done using
various schemes involving observations of particle motion. The second step is to characterize the interparticle
potential using measurements of the equilibrium particle positions. This can be done with either of two
methods developed here, a force-balance method or a simpler equation-of-state method. To demonstrate and
test these methods, an experiment and a molecular dynamics simulation were performed with a one-
dimensional Coulomb chain of particles confined in a parabolic potential. The experiment used a dusty plasma
consisting of charged microspheres levitated in the plasma sheath above a narrow groove in a lower electrode.
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[. INTRODUCTION direction, the sheath has a strong electric field that levitates
particles against the downward force of gravity. In the hori-

We develop a procedure to characterize the interparticl@ontal direction, particles are confined due to the curvature

potential in a lattice that is confined by an external potential Of the sheath edge, corresponding to a small inward horizon-

based on knowledge of the external potential and equilibriunta! component of the sheath electric force, which compresses
positions of the particles. This procedure is useful for allthe particles together. _ _

kinds of interparticle potential, but here we will apply it only [N @ plasma crystal, the interaction between charged par-

to the case of mutually repulsive particles. t|_cles is a Coulomb repulsion, wh|ch is sr_:reened by the am-

Charged particles of the same polarity are mutually repulPient plasma. For only two particles levitated on the same

Ihorlzontal plane in a sheath, Konoplea al. [17] demon-

sive, and when they are confined in an external potential, ted that the bi int i el deled b
they can arrange themselves into a lattice structure. Electrorfs ated that the binary nteraction was accurately modeled by

at the surface of liquid helium can form into a two- aYukawa potential,
dimensional Wigner crystdl1,2], or they can be confined
. . . .. 2 e_m‘D
into a one-dimensional charged systE3h Atomic ions can ~Q
; . . e h(r)= , 1)
form into a one-dimensional Coulomb chain in a linear Paul Admey 1
trap[4], or a two-dimensional lattice in a cylindrical Penning

trap [5]. . _ _wherer is the distance between two particlé€3is the par-
The structure of a lattice subjected to an external potentigficie charge, and is the shielding length. In that experi-
is determined by the balance between the interparticle potefinent, only the potential in the horizontal plane were charac-
tial and the external potential. The mutual repulsion betweeferized.
like charges causes an outward pressure, while the external The potential can, however, be anisotropic with an small
potential counteracts this repulsion, forcing the particles toattractive element, due to an ion wakefield downstream of a
gether. Adding more particles compresses a crystal, reducingarticle in a flowing plasml8]. This wakefield has a sig-
the particle spacing. nificant effect for a multilayer particle suspension in a
In a dusty plasma, small particles of solid matter are elecsheath. Nevertheless, for a monolayer suspension, the wake-
trically charged and suspended in a plasma. Under some cofield has little effect in the horizontal plane where the par-
ditions, when there is sufficient damping, the particles willticles are suspended. Thus, it is common to model the inter-
arrange themselves into a lattice structure termed plasmaction for a monolayer plasma crystal as a simple Yukawa
crystal. A plasma crystal can be a three-dimensional suspempotential[19], as we shall do here.
sion [6], a two-dimensional lattice[7—-9], or a one- For a dusty plasma, various methods have been developed
dimensional chairf10,30. Like a conventional molecular for measuringQ and\, and these methods can be grouped
solid, this kind of crystal exhibits solid behavior such as aaccording to whether they rely on measurements of particle
melting-freezing transitio11,12 and phonon propagation motion or equilibrium particle positions. Methods relying on
[13-15. particle motion include vertical resonance vibratif20],
In a plasma crystal, the external potential is provided by garticle mean-square displaceme#l], and dispersion-
sheatt{16] above a horizontal lower electrode. In the verticalrelation fitting [22,23. Methods using measurements of
equilibrium particle position include approaches relying on
measurements of particle spacing within a two-dimensional
*Electronic address: bliu@newton.physics.uiowa.edu lattice [24] and of height in the vertical electric field of the
TElectronic address: john-goree@uiowa.edu sheath16].
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We have developed a complete procedure to characterize (@) video camera

the interparticle potential. As presented here, the procedure " (top view)
particles

works for a one-dimensional chain, i.e., a single row of par-
ticles of limited length. It might also be possible to extend
the procedure to two or three dimensions. This procedure has
two steps. First, the confining potential is determined. Sec-
ond, the interparticle potential is characterized using either
the force-balance method of Sec. Ill or the equation-of-state
method of Sec. VIII. Both of these methods require measur- electrode
ing equilibrium particle positions, and they assume that the
confining potential is the same, regardless of the length of
the chain. These two methods require measurements for
chains of at least two different lengths, if the interparticle (b) °
potential has two free parameters, e.@.,and \p for a
Yukawa potential

We apply this procedure to a plasma crystal. We carry out
both steps of the procedure, characterizing the profile of the
confining potential and then the interparticle potential be-
tween charged particles suspended in a plasma. Another ap-

plication of the force-balance method is as a sensitive sheath FIG- 1. (&) Sketch of the apparatugb) Sketch of particles,
diagnostic tool, as we will discuss. levitated in a plasma sheath above a groove in the lower electrode.

The combination of an interparticle repulsive potential and the con-
finement, provided by an electric sheath that conforms to the shape
1. CHARACTERIZING THE CONFINING POTENTIAL of the electrode, causes the particles to arrange themselves into a

. ) ) _ one-dimensional chain. Particles are imaged using a video camera
The first step of the procedure is to determine the profilgrom above.

of the confining potential. How this is done will depend on
the particular physical system. Here we review two methodgquilibrium positions of particles, and therefore do not re-
that have been used for a plasma crystal: single particle maqyuire any knowledge of particle mass.
tion and center-of-mass oscillation. The confining potential in our experiment is provided by
For a single particle in the plasma sheath, the profile othe apparatus shown in Figs. 1 and 2. Particles are levitated
the confining potential can be derived by analyzing the train a sheath, and this sheath has a curvature so that particles
jectory of the particle motion in the horizontal plane. are confined by a bowl-shaped potential that is parabolic in
Konopkaet al. [17] used a positively-biased probe to dis- every direction. The combination of a repulsive interparticle
place a single particle and then observed its motion as it wagotential and the confining potential causes the particles to
restored toward its equilibrium position. Another approacharrange in a one-dimensional chain, as shown in Fig. 3. More
which works even if the confining potential profile is not details of the experiment are presented in Sec. VI.
parabolic, is to accelerate a single particle using laser radia-

tion pressure[25]._ From the _particle’s trajecto_ry,_ one can IIl. FORCE-BALANCE METHOD
calculate the confining potential, as well as radiation pressure
and gas drag. The second step of the procedure is to use either the

The confining potential can be also characterized by théorce-balance method presented here, or the simpler
frequency of center-of-mass oscillation, which is the sameequation-of-state method in Sec. VIII, to characterize the in-
for multiple particles as for a single particle. One can ob-
serve the motion of all particles in a one-dimensional chain
and calculate the velocity of the center of mass of the par-
ticles. From the spectrum of this velocity, one can obtain a
resonance frequencyy, Ref. [26], which is sometimes
termed the sloshing-mode frequency. The confining potential
can then be calculated from, if the confining potential has
a parabolic shape. To verify that the profile of the confining
potential has a parabolic shape, one can check that harmon-
ics of w are absent from the spectrum.

All of the methods described above to characterize the
confining potential rely on measuring the motion of particles,
and therefore require knowledge of particle mass. After char-
acterizing the confining potential, the next step is to use ei- F|G. 2. Photograph of the lower electrode. Particles are shaken
ther the force-balance method of Sec. Ill or the equation-ofinto the plasma; they settle into the sheath above the electrode. Due
state method of Sec. VIII to characterize the interparticleto the curvature of the sheath, they collect, forming a one-
potential. These two methods are based on measurementsdifnensional chain above the central groove.

036410-2



CHARACTERIZING POTENTIALS USING THE . .. PHYSICAL REVIEW E 69, 036410 (2004

N=10 I N confining potential is not parabolic, it may be necessary to
perform an iterative loop to refine the parameters for the
N=19 * F B AAENsERN L RAS confining potential and the interparticle potential.

In comparison to other methods that require measure-

NEZl ¥ S3SAFsitizsldBbdrd trna @ ¥ 5 ments of particle motion, the force-balance method requires
only a few snapshots of particle positions, and it does not
2?.1 need information of local plasma conditions in the sheath. If

one chooses the simpler equation-of-state method in Sec.
FIG. 3. Image of chains of three different lengths. The particleVIll, our procedure is probably quicker than most methods
spacinga decreases witlN. Within a chain, the particle spacing is relying on measurements of particle motion.
compressed more in the center, due to the confining potential. The Our force-balance method is comparable to an earlier
three images shown here were recorded separately; there was oriyethod that was reported for a two-dimensional plasma crys-
one chain presented above the groove at a time. tal [24]. Both are based upon a balance of force or pressure
in a lattice, and they both use measurements of particle po-
terparticle potential. The development of these two methodsitions. Our force-balance method, however, differs from the
is the chief purpose of this paper. method of Ref.[24] in two ways. First, we use the exact
In this section, we develop the force-balance method for gosition of each particle rather than discarding this informa-
lattice that is confined by an external potential. This methodion by assuming a continuous medium. Second, we find the
can be used to characterize the interparticle potential usingelations between the interparticle potential and the external
knowledge of the external confining potential, as we shall daonfining potential, corresponding to lattices of two or more
in this paper(Alternatively, if the interparticle potential and sizes, and then we find the parameters they have in common.
its parameters were known, this method could be used i contrast, in Ref[24] the particle spacing or crystal size
reverse to determine the confining potential. was fit to a function of particle number.
The force-balance method is based upon a zero net force
acting on each particlein a lattice. Including the repulsions

applied by other particles and the external confining poten- V. FORCE-BALANCE METHOD FOR A YUKAWA

tial, the net force is zero if the particles at its equilibrium INTERACTION
position, In this section, we develop the force-balance method spe-
cifically for a plasma crystal, with a Coulomb interaction that
Z Vé(rir)+QE()=0, i=12,...N, (2 is screened by an ambient plasma. Here, we assume that the
i

interparticle potential is modeled as a Yukawa repulsion, and
the confining potential is provided by a curved sheath. We
where ¢ is the interparticle potential for the particles at po- neglect any additional forces a particle might experience in a

sitionsr; andr;, andE(r;) is the external electric field af. ~ plasma[27,28, and we assume that the only significant
In Eq. (2) we also assume the particles are identical, with thdforces in determining lattice structure in the horizontal direc-
same charg®. tion are the particle-particle interaction and the sheath elec-

Equation(2) is used to find the interparticle potential tric force. This is a reasonable assumption for one- and two-
and the way this is done will depend on the number of freedimensional plasma crystals because the other forces, such as
parameters in the interparticle potential. If the interparticlegravity, usually act in the direction perpendicular to a mono-
potential has only one parameter, for examlén the case layer suspension.

of a bare Coulomb repulsio@®/4meo|r;—r;|, then it is suf- In a plasma crystal, the force balance, E2), becomes
ficient to apply Eg.(2) to a single snapshot showing the

equilibrium positions of the particles in a single lattice. If the Q2 E—¢&

potential has two parameters, for examg@eand\ in the QE(&)= > 2 ! 3(1+|§j—§i|)e“§rfi|,
case of a Yukawa repulsion, then E&) must be applied dmeohp 71 | & &

using particle positions for not just one, but two different ©)
lattices. These two lattices can be distinguished by a different

number of particledN. where & =x;/\p, X; is the particle’s position, an&(¢;) is

Using Eq.(2), the force-balance method can be imple-the electric field due to the confining potential. Here, we
mented as follows(i) measure particle positions in a lattice assume that all the particles are on a common axis, i.e., they
that is confined by an external potentia(8) establish the form a one-dimensional chain. It might also be possible to
relations between interparticle potential and the external cordevelop Eq(2) for a two or three-dimensional lattice, but the
fining potential from Eq(2); (iii) if the interparticle potential math would be less simple.
has more than one parameters, find these parameters using aEquation(3) is written in a form that can be used for a
graph, in which the relation for each lattice is represented byonfining potential of arbitrary shape. Hereafter, however,
a curve and the intersection of the curves yields the desiredie will assume a parabolic confining potential. This assump-
parameters(iv) confirm that the particle positions and the tion can be verified experimentally as described in Sec. Il. In
result for the interparticle potential are consistent with thefact, most plasmas do have a potential profile with a maxi-
form of the confining potential that we used. Finally, if the mum that can be locally approximated by a parabola. In case
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that the potential is not parabolic, our method could in prin- 2x10’
ciple be extended by performing an iterative loop.

For a parabolic confining potentiQ E(¢) =mw?¢. Thus,
Eq. (3) reduces to

1 &~ &
né=—— 2 (1+]g-ghe a4 (@)
A F (gl 164
E o}
for the ith particle at positiorg;. Here we have defined a =
variable

27 euMw?

. ©)

which has units of m® and serves as a measure of the rela- 0
tive importance between the Coulomb repulsion in the de-
nominator, and the external confining potential in the nu-
merator. The right side of Eq4) only depends on patrticle
positions and\p. Using a value for\p, we calculate the
right side of Eq.(4) for each particld, and linearly fit the

4, (mm)

FIG. 4. Simulation results for the force-balance method for a
one-dimensional chain with a parabolic confining potential and a

. . S Yukawa interparticle potential. We computedwhich is a measure
data forz¢; from Eq.(4) vs &; to a straight line. This yields of the relative importance of the confining potential and interpar-

the slope of th(_a Ilne, which isy. We then repeat for other ticle potential, from Eq.4) using the particle positions after the

values ofAp, yielding a curve fory vs Ap. We term this  gimylation reaches equilibrium. The variation gfwith \p is a

curve as the “parameter curve.” parameter curve. The parameter curves for different chain lengths
The parameters for the interparticle potential are obtaineg@ross at nearly, but not exactly, the same point. This intersection

from the intersection of the parameter curvesofs Ap for  yields the parametel® and\, for the interparticle potential.

a minimum of two chains, each with a different length. This

method of solution assumes that the chains were measured V1. EXPERIMENT

under the same experimental conditions, so that the confining Here we describe an experimental test of the force-

potential and the parameters for the interparticle potentiajhzjance method, which we will also use to test the equation-
were the same. In a plasma crystal, this requires that thgs.state method in Sec. VIII. In the experiment, we formed
chains should be formed at same discharge conditions.  gne-dimensional chains of various lengths in a radio fre-
qguency(rf) plasma and we measured the particle equilibrium
V. SIMULATION TEST OF THE FORCE-BALANCE positions.
METHOD We used the experimental setup sketched in Fig). A
lasma was produced in a capacitively-coupled rf discharge,
As a test of the force-balance method, we performed ‘gsing a 13.56 MHz rf voltage with a peak-to-peak amplitude
molecular dynamics simulation. We integrated each particle’ss g4 V, yielding a self-bias of 48 V. A sheath formed imme-
equation of motionmi; = — V(2 ¢;; + ®F*) —vemi;, where giately above the lower electrode, shown in Fig. 2. We used
¢i; is the binary Yukawa interparticle interaction of H@).  yenon gas at a low pressure of 5 mtorr. The plasma had a
The confining potential is parabolic®{*'=m(wx’  density of 1.2< 16° cm~23 and an electron temperature of 1.6
+wyyf)/2, and the gas drag isemi;. Here,r;=(X,y;) is eV, as measured by a Langmuir probe in the main plasma,
measured from the minimum of the confining potential. Wenot in the sheath where the particles were levitated. We used
allowed the simulation to run until all particle motion was a shaker to introduce a small number of particles with a
damped and the particles had settled into equilibrium posidiameter of 8.09um, as measured by TEM, and a mass
tions. It is important to note th& and\, are input param-  density of 1.514 g/cr) as reported by the manufacturer.
eters for the simulation. To image the particles, we illuminated them with a He-Ne
We used the particle equilibrium positions generated byaser sheet and viewed with a video camera at 29.97 frames
the simulation as the input for the force-balance method irper second. The camera has a field of view of 13x1@
Sec. IV. We produced parameter curvesiols A for three  mm. The video signal was digitized by a 8-bit monochrome
chains:N=16, 26, and 45, as shown in Fig. 4. We found theframe grabber and recorded as a series of images with a
three curves intersect not at a common point, but nearly saesolution of 64x480 pixels. Particle positions were then
with crossings ahp=0.61, 0.66, and 0.71 mm. measured in each frame with subpixel spatial resolUtaj.
Our test is to compare these values produced by the forcex particle’s velocity was calculated by subtracting its posi-
balance method with the value that was assumed in the simiions in two consecutive frames.
lation, A\p=0.66 mm. We conclude that the result from the A one-dimensional chain was externally confined by the
force-balance method is close to the actual value, with amatural electric fields in the sheath above the lower electrode.
accuracy of approximately 8%. The sheath conforms to the shape of the electrode, which had
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a groove-shaped depression along thdirection, as shown 3x10’
in Fig. 2, to form a one-dimensional chain. Everywhere N o
along the groove’s length, it has a parabolic shape inythe ® N=10
direction, as shown schematically in Figb}, with a depth
z=y?—4, wherez andy are both measured in mm. This \l/ °
depth was uniform with respect tq the position along the °
groove. o8
The first step of our procedure is to characterize the con- < oCe
fining potential along the chain, which can be done in several < o o
ways, as described in Sec. Il. One way is to manipulate a = o ®
single particle using lasers. We found that the resonance fre-
qguency of a single particle was 0.12 Hz, corresponding to °° ]
0=0.75 s 1, along thex axis. Another way to characterize o o
the confining potential is to measure the frequency spectrum ° o
of particle’s natural motion. We did this for three chains of o_e
different length, and averaged the three results, yielding oL _aca® 1 1 1
=0.80 s'1, for the x direction. Because this value is an av- 0.0 0.2 0.4 0.6 0.8 1.0
erage of three measurements, and because it is not based on A, (mm )
the motion of a single particléa single particle might not
happen to have a size in the middle of the partide size dis- FIG. 5. Experimental results for the force-balance method. Pa-
persion, we believe it is more accurate than the measurefameter curves ofy vs \p are shown folN=10 and 28. The inter-
ment for a single particle. _section gf these curves yield3 and \p, the parameters for the
The confinement in the vertical direction, with a vertical intérparticle potential.
resonance frequency of 15 Hz, was strong enough to prevent
any vertical buckling of the lattice. In a test, we verified that, for two chain lengthsN=10 and 28. The two chains were
as additional particles were added to the chain there was niermed at same plasma conditions, so that they should have
change of the vertical resonance frequency, and ther€jore the sameQ and\p, .

A= 0.86 mm

I
k.
[

o
x
=
o

2,
T
(o]
[ ]
1

was independent dfl. We now present results foé=10 and 28. Figure 5 shows
the intersection is atp=0.86 mm, which is one of the two
VII. EXPERIMENTAL RESULTS FOR FORCE-BALANCE desired parameters. From the valuespft the point of in-
METHOD tersection, we used Ed5) to computeQ/w=7800 s I,

) ) ) ) where e is the elementary charge. Using=0.8 s ! from
Figure 3 shows raw images for chains of different lengths g v yieldsQ= 620, which is the other desired param-
N=10, 19, and 28. Adding more particles to a chain causeg;g,.

the chain to be more compressed, i@decreases wittN. We performed a test to determine how sensitively the re-
Computing the average of the individual particle spacing gt depends on the experimental precision in measuring par-
ticle positions. In our test, in the shorter chain which had a
a=(N— 1)—12 (X=X _1) (6) I(_ength of 6(_)0 pixels, we altered _the pos;_itior_1 of a single par-
i ticle by a displacement of one pixel, which is larger than the
subpixel uncertainty in particle position. This resulted in a
in Fig. 3, we finda=1.25, 0.8, and 0.73 mm, corresponding change of\ of 0.1%.
to N=10, 19, and 28, respectively. Next, in the force-balance method, we confirm that the
Within the chain, the particle spacing is not uniform. The confining potential is a parabola. This is done using the re-
confining potential causes the chain to be compressed at tisilts forQ and A from above. Figure 6 shows the electric
center. This can be seen in Fig. 3, wharis smallest in the field, calculated from Eq(3), as a function of particle posi-
center of the chain, and largest at the ends. tion, for N=10. The electric field is almost linear, which
In the force-balance method we find a parameter curveorresponds to a parabolic potential. We note that calculating
relating the interparticle potential and the confining potentialthe electric field in this way can be used as a sensitive diag-
for each chain, and then we find the intersection of the curvesostic tool for the sheath in a plasma. A small number of
for chains of different lengths, yielding the desired param-particles, levitated in a plasma, can be used to measure the
eters for the interparticle potential. For a Yukawa chain withpotential profile, in the direction parallel to the electrode, in
a parabolic confining potential, this is done using Ej.to  the sheath.
computen from the measured particle positions, for a par- As a test, we now compare our results fprand \p to
ticular value of\p . Repeating this calculation for a range of values obtained using another method. We observed the natu-
value of\p yields the parameter curve. We prepared paramfal motions of the one-dimensional chains and measured
eter curves for a minimum of two chain lengths. We then findtheir dispersion relations using a method similar to that of
the intersection of two parameter curves, yielding the paramRef. [23]. Comparing the measured dispersion relations to a
eters for the interparticle potential, which a@eand\p in  theory[30] that assumes an infinite chain length and a uni-
the case of a Yukawa potential. Results are shown in Fig. 5orm a, we foundQ= 7800 and\,=0.88 mm. These val-
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T T | 3x10 T
2 - ® measured ® force balance method, Eq. (4)
linear fit ® using particle positions
equation-of-state, Eq. (8)
------ a=1.20mm
= 1 - a=1.25mm .
2 2x10" | ---- a=1.30mm -
o -
Y —
0 - ;
5 3
2 =
8 7
o -1 - 1x10
2 -
1 1 1
-8 -4 0 4 8 0
position x (mm) 0.0 0.2 0.4 0.6 0.8 1.0
4, (mm)

FIG. 6. Profile of the horizontal electric field in the sheath of a
plasma. We computed the electric field using the experimental par- F|G. 7. Test of the equation-of-state method's sensitivity.to
ticle positions and Eq(3). The data fit a straight line; this test pata are shown foN= 10. Usinga=1.25 mm, which is the aver-
serves as a confirmation that the confinement is a parabolic poterge particle spacing in the experiment, the equation-of-state method
tial. yields the solid line, which agrees well with the data points from the

force-balance method. Curves for the equation-of-state method are

ues are close to the results of the force-balance method prefso shown for the values afthat bracket the average value of 1.25
sented above. From this comparison, we conclude that th@m to illustrate the sensitivity of the parameter curve to the value

force-balance method can yield reasonable values of the paf a.

rameters.
est neighbors. Taking the first derivative of E@) and solv-
VIIl. EQUATION-OF-STATE METHOD ing dU/da=0 yields an equation of state
In this section, we present an equation of state, describing
the relation between lattice constants, sucta@sd N, and N—1 1+x (N=2) (1+«)
the parameters for the interparticle potential. This equation pad= A + , (8
of state is developed as an alternative to the force-balance ] ) e« (N=1) e
method; either method can be used as the second step of our 2 (2i—1)

procedure. This equation-of-state method requires only a
single step of solving two equations for two unknown vari-
ables,» and\p. The solution can be found easily using a wherexk=a/\p.
graph ofy vs A . This graph has a form similar to Fig. 5 for ~ The equation of state in E¢8) can be used for various
the force-balance method, but the data plotted-faare ob-  purposes, depending on the information that is known. If the
tained in a simpler way. As a result, this method can yield araverage particle spacirggand particle numbeX are known,
estimation ofQ and Ap much more rapidly than the force- it is possible to compute a parameter curvepfivs \p,
balance method, although it is less accurate due to the ajsimilar to that in the force-balance method, e.g., Fig. 5. One
proximation that we assume a uniform can then find the intersection of a minimum of two parameter
For any lattice, an equilibrium particle spacing corre-curves for chains of different lengths. This is our primary use
sponds to a minimum potential energy, i.e., the first derivaof Eq. (8). Another use of Eq(8) is to predict the particle
tive of the potential energy with respect taa is zero. For a  spacinga, if the interparticle potential and the confining po-
one-dimensional chain with a parabolic confining potentialtential are known. Although we have not done so here, this
and a Yukawa interparticle potential, the total potential en-might be useful, for example, in planning an experiment.
ergy is Using this equation-of-state method for our experimental
data, we obtained 5 =0.82 mm andQ=590C. These are
Q% e o reasonably close to the valuesp=0.86 mm and Q
Teyg @ = 6200 obtained from the force-balance method. The force-
balance method should be more accurate than the equation-
Q% e %o of-state method, because it does not ignore the nonuniform
Ame, 2a (7 particle spacing and the interactions with particles beyond
the four nearest neighbors. Nevertheless, the simple method,
This is an approximation because it assumes ¢hist uni-  which requires much less computational effort, yields almost
form and it includes only the interactions with the four near-same result.

N2
mw?a?

U=— i21(2i—1)2+(N—1)4

+(N—2)
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In using the equation-of-state method, one must first calthe force-balance method of Sec. Ill, or the equation-of-state
culate a suitable representative value of the interparticlenethod of Sec. VIII. One first computes parameter curves for
spacing from the experimental data. Recall that in the experilattices of different sizes, and then from the intersection of
ment, the particle spacing is not uniform, but is compressethe curves one can find the desired parameters for the inter-
near the center of the chain. To choose a single valuetof  particle potential.
use in this method, we simply compute the average of the The force-balance method is based upon the balance be-
individual spacings using Eq6). Usinga=1.25 mm and tween mutual repulsion and external confinement. We tested
Eqg. (8), we calculated a parameter curve fbr=10, as this method using a molecular dynamics simulation. As an
shown in Fig. 7. We note that the agreement is very goodlternative to the force-balance method, the equation-of-state
with the data points which were computed using Ej.for = method was also developed, based upon an equation of state.
the force-balance method. The equation of state can predict a parameter curve, if the

As a test of the sensitivity of the equation-of-state methodattice constants, such as particle spacing and number, are
to the value ofa that is used, we also show parameter curvesknown.
calculated using Eq(8), for values ofa that bracket the The potential profile in the sheath was also diagnosed
averagea=1.25 mm. The error ifQ and\, will depend on  using the force-balance method, verifying that the confining
not only the uncertainty im, but also the slope of a param- potential was parabolic in the experiment.
eter curve for a second value Nf which would intersect the Finally, note that, after preparing this paper, we learned a
curve shown in Fig. 7. If the second curve were from themethod recently reported by Hebner and Ri[&{] for de-
chain withN=28, a+0.05 mm uncertainty im will yield a  termining the interparticle potential for a one-dimensional

30% uncertainty il . chain confined by a parabolic potential in a dusty plasma.
Their method is comparable to the force-balance methods in
IX. CONCLUSIONS Secs. lll and 1V, beginning with the same equations for force

) balance, but to determin@ and\  they use a fitting method
A complete procedure was developed to characterize thgyther than an intersection of parameter curves. The present

interparticle potential for a lattice that is confined by an ex-paper includes a force-balance method similar to that of Ref.
ternal potential. This procedure includes two steps: charagai], as well as an equation-of-state method.

terizing first the confining potential and then the interparticle
potential using knowledge of particle positions. This proce-
dure was demonstrated in an experiment using charged par-
ticles in a plasma crystal arranged in a one-dimensional
chain. We thank L. Boufendi for TEM measurements of particle

In the first step of the procedure, one must characterizsize. We thank G.A. Hebner for helpful discussions. This
the spatial profile of the confining potential. In the secondwork was supported by NASA and the U.S. Department of
step, the interparticle potential is characterized using eitheEnergy.
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