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When an object such as a dust particle or spacecraft is immersed in a plasma flowing at a supersonic 
speed, an asymmetric screening potential forms around that object. The asymmetry is especially pro­
nounced on the downstream side, with an ion rarefaction in the wake followed by an ion focus region. 
This polarized screening potential helps explain recent laboratory results with dusty plasmas, where col­
lective interparticle effects were shown to be asymmetric. Using an electrostatic fluid simulation with 
cold ions and Boltzmann electrons, we have simulated the flow around spherical and cylindrical bodies, 
with and without a negative potential bias. Here, the flow speed v0 is assumed to be supersonic (faster 
than ion acoustic) and mesothermal ( vTi << v0 << Vre ). A numerical method is used, with a diffuse object 
that simulates the ion loss and space charge on an object's surface. This works with one or many objects, 
of any shape. We present solutions for systems of one and two particles in a simulation box, with period­
ic boundary conditions that help reveal collective effects. 

PACS number(s): 52.40.Hf, 52.65.-y, 52.35.Tc 

I. INTRODUCTION 

Supersonic flow of a plasma onto a solid object is of in­
terest for dusty plasmas and for spacecraft in low Earth 
orbit. A dusty plasma is a low-temperature ionized gas 
containing small solid particles, which become charged 
by absorbing electrons and ions from the plasma [1]. A 
spacecraft becomes charged for the same reason [2,3]. 
Since the ratio of the object size to Debye length is 
roughly the same for a dust particle in a laboratory plas­
ma as for a spacecraft in the ionosphere, the physics 
presented here applies equally to spacecraft and laborato­
ry dusty plasmas. The term "object" will be used here to 
refer equally to a dust grain or a spacecraft. 

Numerous theoretical and experimental studies of the 
problem of supersonic flow into an object have been re­
ported for both space and laboratory plasmas. Charging 
of a spacecraft in the ionosphere was the subject of early 
theoretical [4] and numerical [5] studies. They predicted 
a so-called plasma wake (rarefaction in the ion density) 
immediately downstream of the spacecraft followed by an 
ion focusing region (high ion density) farther down­
stream. The wake itself is due to the finite size of the ob­
ject, while the ion focusing is an electrical effect that will 
appear regardless of the object size. The wake region was 
clearly indicated by measurements around the space shut­
tle (6]. Both the wake and focus regions have been 
detected in laboratory experiments [7 -9]. Often particu­
lates are found in a sheath or double layer, where there is 
an electric field that accelerates the ions to supersonic ve-
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locities, as required by the Bohm sheath criterion. A re­
cent particle-in-cell simulation by Choi and Kushner [10] 
showed that wake and focusing effects may be important 
for the charging of dust particles in gas discharge plas­
mas. They looked at the charging of two particles, 
aligned so that one particle shadows the other, and found 
a significant difference in the surface potential of the two 
particles. 

Theoretical techniques also can be used to find approx­
imate solutions for the electric field and plasma density 
distribution around a charged object, moving at a veloci­
ty v0 relative to the plasma. Several methods are de­
scribed by Al'pert et a/. [4]. Some of these invoke 
quasineutrality, which is an unsuitable approximation. 
This is improved by solving the Poisson equation, which 
has been done in a Vlasov approach by several authors, as 
reviewed by Coggiola and Soubeyran (3]. A linear test 
particle approach (11,12] is also possible (see Sec. V) al­
though it does not include any loss of plasma particles, 
which is required for plasma wake effects. Test particle 
calculations by Chenevier, Dolique, and Peres [13] have 
shown that the Mach number M =v0 !c;, where c; is the 
ion acoustic velocity, is an important parameter for the 
shielding. Note that this Mach number is not defined us­
ing the ion thermal velocity, a distinction that is especial­
ly important for gas discharges where T; << Te is typical 
for the ion and electron temperatures. The symmetry of 
the screening depends on the regime of the flow speed, as 
summarized in Fig. 1. The screening is symmetric, i.e., 
the same on the upstream and downstream sides, for flow 
velocities well below the ion thermal speed, v0 <<uTi. 
Asymmetric shielding occurs in a regime extending from 
slightly below the ion thermal speed to slightly above the 
acoustic speed. In highly supersonic flows, v0 >>c;, ion 
orbits are undeflected and thus do not screen the charged 
object, resulting in symmetric screening, due to the elec­
trons alone. 
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FIG. 1. The regimes of flow speed and screening for a 
charged object in a plasma flowing at velocity v0 • For this 
sketch, Ti < Te. Our simulations are carried out for velocities 
that are supersonic and in the mesothermal regime. 

The mesothermal regime, which we have simulated, is 
specified by the velocity range vTi << v0 << Vre. It is typi­
cal of both a particle in a gas discharge and a spacecraft 
in low Earth orbit. In a laboratory plasma, micrometer­
sized dust particles are typically found near the edge of 
an electrode sheath, where the ion drift velocity has 
M = 1, or within the sheath, where M > 1. In low Earth 
orbit, oxygen ions flow toward a spacecraft with an ener­
gy of 5 eV, which is supersonic. 

In this paper we report numerical solutions of a self­
consistent fluid model describing the plasma flow into a 
charged object. The simulation was carried out in three 
dimensions (30) for a spherical object and in 20 for a 
cylinder aligned perpendicular to the flow. The plasma 
flow velocity v0 is assumed to be supersonic (M > 1). 

We use a two-fluid model with cold ions and 
Boltzmann electrons in an unmagnetized plasma, and a 
fixed potential on the surface of the object in the plasma. 
Using Boltzmann electrons is a good approach for meso­
thermal flows where vTi <<v0 <<vre· Our fluid approach 
should offer a good description of the overall structure of 
the flow, but it will not reveal kinetic effects such as elec­
tron heating, thermal wake filling, or velocity-space insta­
bilities in the wake and ion focus region. The unmagnet­
ized plasma assumed here is suitable when the ion Oebye 
length and object diameter are very small compared to 
the gyroradius. For dust particles in a gas discharge this 
requirement is easily satisfied. It is somewhat less appli­
cable to spacecraft in low Earth orbit, where the cyclo­
tron motion of ions alters the wake, as shown in experi­
ments aboard the space shuttle [6]. 

The polarity of the potential on the object is a crucial 
factor in determining the structure of the flow. We con­
sider here only negative potentials. Of course this at­
tracts ions, which is readily apparent in our results. Neg­
ative potentials are typical of laboratory dusty plasmas 
and of some cases with spacecraft and dust in space. Pos­
itive potentials, however, develop sometimes on space­
craft, due to photoelectric or secondary electron emis­
sion. 

The geometry assumed in our numerical method is 
nonperiodic along the streaming direction and periodic in 
the transverse directions. Periodic boundary conditions 
introduce collective effects since ghost objects are regu­
larly spaced outside the computational domain. Collec­
tive effects can be enhanced by reducing the spacing Ly 
(and Lz for the 30 case) in the periodic directions and in­
troducing several objects in the nonperiodic x direction. 
Collective effects are discussed further in Sec. III B. 

We report a method of using a diffuse body to simulate 
a solid object in the plasma. The key physics that must 
be retained are the surface charge and the surface collec­
tion of plasma ions. In a diffuse body, the charge and ion 
loss are distributed throughout the object's volume. The 
diffuse body is described by a distribution function S ( x) 
in the spatial coordinate x, as discussed in Appendix A. 

We were motivated by two types of recent laboratory 
experiments with dusty plasmas. High-power sputtering 
plasmas produced unusual arrangements of particles that 
had coagulated [14], and low-power discharges levitated 
microspheres in a way that they were spaced in a crystal­
linelike lattice [15-17]. There were two surprising obser­
vations that might be explained by collective effects in­
volving dipole attraction. One is that the conglomerate 
that forms from coagulation is string shaped rather than 
fractal-like (as expected for isotropic coagulation) when 
they collide and stick [14]. Another is the vertical align­
ment of microspheres in the plasma crystals [15-17]. 
While it is not surprising that the spheres arrange them­
selves in hexagons in horizontal planes (perpendicular to 
the flow), it was unexpected that they tend to align direct­
ly above one another, rather than staggered as in bee and 
fcc crystalline structures. These experimental observa­
tions suggest that the interparticle potential is not strictly 
an isotropic repulsive monopole repulsion, but might in­
clude an anisotropic dipole attraction. 

Our simulation reveals that the wave effect causes the 
flowing plasma in the vicinity of a charged object to have 
a significant polarization and dipole moment. It also 
causes the ion flux collected by the object to differ on the 
up and downstream sides, leading to a polarization of the 
object itself, if it is nonconducting. These polarizations 
of the plasma and the object will lead to interparticle di­
pole forces that are attractive parallel to the flow, thereby 
partially overcoming the repulsive monopole forces be­
tween two negative charges. The force between a particle 
and its own sheath is also influenced by a dipole moment 
in the sheath [18,19]. 

The flowing plasma considered here is not the only way 
the sheath can acquire a dipole moment. A plasma 
nonuniformity, such as a density gradient and an external 
electric field, also polarizes the sheath. A density gra­
dient corresponds to a gradient in the Oebye length, lead­
ing to a slight positive potential region on the high­
density side of the sheath. This effect was studied by 
Hamaguchi and Farouki [18,19]. They were chiefly con­
cerned with finding the force on a single isolated particle 
in a laboratory plasma. Our results are also revealing for 
the behavior of a single particle, but it is collective effects 
between multiple charged particles that we are most con­
cerned with explaining. 
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II. FLUID EQUATIONS 

The plasma is modeled by a cold ion fluid and 
Boltzmann electrons, which respond self-consistently to 
the Poisson equation. With this treatment, the ions have 
a density n; and a flow velocity V; while the electrons are 
characterized merely by a prescribed uniform tempera­
ture Te and a density 

(1) 

Here n0 is the ion density at a point well away from any 
object in the plasma. 

In computing the flow of the ions around the object, we 
model the ion absorption with loss terms in the continui­
ty and momentum equations. In the Poisson equation, a 
fixed charge is specified, and it is assumed to be uniformly 
distributed on the surface, neglecting the tendency of the 
upstream side to collect more ions and charge more posi­
tively than the downstream side [3]. Based on our re­
sults, we will discuss later in qualitative terms how this 
nonuniform charging will take place. 

The continuity and momentum equations for the ion 
fluid can be written with the ion loss on the right-hand 
side: 

(2) 

Here the ion mass, electronic charge, and flow velocity 
are denoted m;, Z;, and V;, while rand r 0 represent the 
position vector and the object's surface, respectively. 

The ion loss in the continuity equation is the ion flux, 
y i• multiplied by a Dirac delta function 8, which de­
scribes the object's surface. For a perfectly absorbing 
surface, the ion flux at the surface can be written as [4] 

= ~-n;v;·n for v;·n<O, 

Y; o for v;·n>O. 
(4) 

Here n is a unit normal vector to the surface (pointing 
outward). 

In the momentum equation [Eq. (3)] we have assumed 
cold collisionless ions by neglecting the pressure and col­
lision terms. Since the object in the plasma is massive, 
ions are assumed to lose all their momentum when they 
strike. The momentum equation can be rewritten by 
combining it with Eq. (2) to yield 

eZ; 
a 1v;+v;·Vv;=---V¢J, 

m; 

where the ion loss term has conveniently canceled out. 

(5) 

The plasma flow is assumed to be irrotational. This is 
valid provided it is irrotational as it enters the simulation 
region, since the circulation is a conserved quantity for 
our conservative force [right-hand side (RHS) of Eq. (5)] 
[20]. Thus the convective term v;·Vv; can be written as 
V( vl /2) and the momentum equation [Eq. (5)] becomes 

(6) 

The Poisson equation is 

V2ifJ=- ~[n; -ne +zd8(r-r0 )/p] , 
Eo 

(7) 

where zd is the total number of elementary charges ·uni­
formly distributed on the surface, and p=2rrr0 or 4rrr5 
for a cylindrical or spherical surface, respectively. 

The full set of fluid equations we will solve are Eqs. (1 ), 
(2), (4), (6), and (7). These equations can be cast in dimen­
sionless form by normalizing all the variables: T=wp;t, 
X=x/A.ne• V=v;/C;. N=n;ln 0 , Ne=neln 0 , .::l=8A.0 e, 
r=y;fwp;Aoen0 , Zd =zd /pn 0 A.0 e, and <I>= -e¢1/KTe. 
The time has been normalized by the ion plasma frequen­
cy wp; =(e 2Zln 0 /E0m; )112

, where the density n; at a large 
distance from the object on the upstream side is specified 
as n0 . Distance is normalized by the electron Debye 
length "-ne=(EoKTe/e 2n0 )

112
, which is consistent with 

normalizing velocities by the ion acoustic velocity 
c;=(ZlkB Telm; )112

. 

The continuity, momentum, and Poisson equations in 
dimensionless form become 

aTN+Vx·(NV)=-ra(X), 

aTV+Vx(V2/2)=Vx<l>, 

Vi<I>=N -exp( -<I>)+Zd.::l(X). 

(8) 

(9) 

(10) 

For the loss term, the flux r can be written in terms of 
the Heavyside step function Has 

r=-NV·nH(-V·n). (11) 

For given boundary and initial conditions, this self­
consistent set of equations can in principle be solved, We 
do this numerically in a rectangular simulation box, using 
the method described in Appendix B. The flow is in the 
positive X direction, and the component of the velocity V 
in that direction is denoted U. 

The boundary conditions, which are summarized in 
Fig. 2, include specifications of the density, velocity, and 
electrical potential on the sides of the simulation box. 
The boundary conditions are periodic in the transverse 
direction and nonperiodic parallel to the flow (X direc­
tion). For supersonic flows (M > 1) given by Eqs. 
(8)-(11), boundary conditions for N and U must be 
specified only on the upstream side (X= 0) of the box, 
while <I> must be specified only on the downstream side 
(X=Lx ). However, in our numerical solutions we also 
were required to specify gradients of N and U on the· 
downstream sides, because we added small diffusion and 
viscosity terms to Eqs. (8) and (9), respectively (see Ap­
pendix B for more details). This changed the character of 
Eqs. (8) and (9) from hyperbolic to parabolic, requiring 
that Nand U also be specified on the outflow boundary. 

Neumann boundary conditions were used on the down­
stream edge of the simulation box 

(12) 
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FIG. 2. Computation domain and boundary 
conditions used in the 2D and 3D simulations. 
The flow enters a rectangular simulation box 
from the top with a velocity v0 =Me; in the X 
direction. In 3D, the box is the same in the Y 
and Z directions. The object is a cylinder (2D 
simulation) or a sphere (3D), and it is diffuse; 
i.e., it does not have a distinct surface. Our 
solutions are assumed to be nonperiodic in this 
direction and periodic in the transverse direc­
tions. Dirichlet and Neumann boundary con­
ditions are used for the inflow and outflow 
sides, respectively in the X direction. Periodic 
boundary conditions used in the other direc­
tions lead to ghost particles outside the com­
putation domain, which for a dusty plasma 
simulates collective effects. In the simulation 
results presented below, only the left half of 
the simulation box is shown, since the problem 
is symmetric about the center line. ..... t---Ly 

outflow 
boundary 
conditions: 

au ;aX(X=Lx, Y,Z)=O, 

a<I>;aX(X=Lx, Y,Z )=0 

ilv;/ilx=O 

iln; /ilx= 0 

ilq,/ilx= 0 

(13) 

(14) 

and Dirichlet boundary conditions on the upstream edge 

N(X=O,Y,Z)=1, 

U(X=O, Y,Z)=M, 

<I>(X=O, Y,Z)=O. 

(15) 

(16) 

(17) 

Intuitively, one would expect the Neumann boundary to 
be physically correct far downstream from a charged ob­
ject, where the disturbance due to geometrical effects and 
shielding by the plasma is small. However, our numeri­
cal tests show that even if the downstream boundary is 
close to the charged object, using Neumann boundary 
conditions results in only a very small disturbance in the 
plasma flow as it propagates out of the simulation box. 

In addition to the boundary conditions, we also must 
specify initial conditions. The exact choice is not impor­
tant, as we shall only seek the steady-state solution. At 
T=O we used the initial conditions 

N = 1 , U=M , <1>=<1>0 , (18) 

where the flow is initially in the X direction and <1>0 is the 

initial potential found by solving the Poisson equation 
[Eq. (10)) with a uniform ion density N = 1. 

III. THE OBJECT IN THE PLASMA 

A. Numerical treatment of the object 

While Eqs. (8)-(10) can in principle be solved, the Pois­
son and ion continuity equations have an infinitely sharp 
1::. function that cannot be resolved numerically. We shall 
replace the 1::. function with a finite radial distribution 
that describes the object's shape: 

(19) 

where R is the normalized distance from the center line 
of a cylinder or the distance from center of a sphere, in 
2D or 3D, respectively. Our motivation for using this 
distribution function is described in Appendix A, togeth­
er with information aboUt how the constants C 1 and y 1 

are chosen. A plot of S 1 is shown in Fig. 3, where it is 
compared to another diffuse function S0 , as discussed in 
Appendix A. 

In the Poisson equation, Eq. (10), the 1::. representing 
the object's charge distribution is replaced by S. The ion 
loss in the equation of continuity, Eq. (8), is written as the 
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FIG. 3. Distribution function S of a diffuse object. This 
function replaces the delta function representing the object's 
surface in the Poisson and ion continuity equations. The dimen­
sionless distance R = r /A.oe is measured from the center of a 
spherical or cylindrical object. The two functions shown are 
given by Eqs. (A3) and (A8). In these plots the parameters 
R 0 =l, a 0 =a 1=0.5y0=l, and y 1=t were used, for a diffuse 
cylinder. 

product r 1S 1 (R ), where the flux into the diffuse object is 

V·R r 1 =-/3N--H(- v · Rl R . (20) 

The factor /3 > 1 corrects for insufficient ion loss, as ex­
plained in Appendix A. 

B. Collective effects for dusty plasmas 

In a dusty plasma there can be many charged dust par­
ticles per unit volume. This is mimicked in our simula­
tion by using periodic boundary conditions, which pro­
vide ghost particles at a regular spacing. For this reason, 
we summarize here the use of a parameter P, which is a 
common measure of the dust particle density [21]. This 
parameter is defined as 

(21) 

and it depends on eu !KTe, where u is the particle poten­
tial with respect to the surrounding plasma potential. 
For eu I KTe of the order of unity (which is typical for 
solid objects in a thermalized electron/ion plasma), P can 
be used to determine whether a solid object can be as­
sumed to be isolated (P << 1) or if collective effects are 
dominant (P?. 1). 

To use Eq. (21) for charged objects, we find the charge 
on the object as Zd = Cu I e and model C as the capaci­
tance of two concentric conductors. For spheres, the 
inner conductor is placed at r 0 (the radius of the object's 
surface) and the outer at r0 + Ane (the Debye sheath edge) 
so that C=47TE0r0 ( 1 +r0 /A.0 e). Using the normalization 
R o = r 0 I Ane• this yields 

(22) 

where Lx, Ly, and Lz are the mean separations between 
the particles in the x, y, and z directions. Similarly, for 
cylindrical objects the capacity per unit length of two 
concentric cylinders is C = 27TE0 /ln( 1 + Anelr0 ) giving 

(23) 

IV. RESULTS 

Our simulation yields spatial profiles of the steady-state 
ion density and electric potential. These are our main re­
sults, shown in the color plots Figs. 4 and 5. The ion den­
sity is shown in the upper half of these figures, and the 
plasma potential in the lower half. The plasma flows into 
the simulation box from the top, parallel to the X axis. 

We use a spectral method to solve the fluid equations, 
Eqs. (8)-(10). This is done with boundary conditions 
Eqs. (12)-(17) and initial conditions Eq. (18). In our 
solutions the steady state was reached after a time of 
40/wp; with Mach number M= 1. 5 and 20/wp; for 
M = 3. 0. Details of the numerical method are presented 
in Appendix B. 

Our simulation of the flow was carried out for a single 
object (Fig. 4) and for two objects aligned parallel to the 
flow (Fig. 5). Results for a 3D simulation of a sphere are 
shown in Figs. 4(d), 4(e), and 5(e), while the panels in 
Figs. 4(a)-4(c) and Figs. 5(a)-5(d) show 2D calculations 
with a cylindrical object (axis aligned perpendicular to 
the flow). The reader should refer to Fig. 2 for the 
geometry and axis coordinates in Figs. 4 and 5. Half the 
simulation box is shown in a cross-sectional view, since 
the problem is symmetric about the vertical axis passing 
through the objects. In examining these figures, recall 
that the object is diffuse. The black circle on these figures 
indicates the nominal radius of the diffuse object, R 0 , but 
the diffuse object has a charge and ion absorption that is 
finite both inside and outside this radius. The diffuse na­
ture of the object means that there is a finite ion density 
everywhere, even at the center of the object. Also recall 
that the density n; is normalized by its value on the 
inflow side, N=n;fn 0 , and the potential ifJ is also normal­
ized, but with a reversed polarity so that a negative bias 
on the object appears as a positive value of 
<I>= -eifJ/KTe. 

The parameters used in the simulations for the diffuse 
object were R 0 = 1 (radius equal to the De bye length at 
the inflow side), and a profile width half that large, 
a 1 = 0. 5. Except as noted, the size of the simulation box 
was Lx = 16 and Ly = 8, and for the 3D simulations the Z 
dimension was Lz = 8. 

A. One object in a plasma 

For a single object in the plasma, our calculations 
simulate the problem of a spacecraft or an isolated parti­
culate in a plasma. Or more precisely, they simulate a 
planar array of such objects, separated fairly widely by 8 
Debye lengths, due to the periodic boundary conditions. 

To assess the importance of the electric potential on 
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FIG. 4. Simulation results for the plasma flow into a single object. Here spatial profiles of the dimensionless ion density N = ni Jn 0 

and plasma potential <I>= -e¢J/KT. are shown in the upper and lower panels, respectively. The axes are the dimensionless spatial 
coordinates X and Y, where the plasma flows in from the top (as sketched in Fig. 2). In all panels the size of the object is R 0 = 1 and 
the simulation box is Lx = 16, Ly = 8, and Lz = 8 (for 3D calculations). The physical parameters that are varied between the figures 
are the object potential eu/kT. and the entering Mach number M. These are (a) 2D, eu/kT.=O, M=1.5; (b) 2D, eu/kT.~-2.0, 
M=1.5; (c) 2D, eu/kT.~ -2.0, M=3.0; (d) 3D, eu/kT.~ -2.0, M=1.5; and (e) 3D, eu/kT.~ -2.0, M=3.0. 
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FIG. 5. Simulation results for plasma flow into two objects. The objects are identical, and are aligned parallel to the flow. They 
are infinite cylinders in (a)-(d) and spheres in (e). The figures show profiles of Nand ct> with axes as in Fig. 4. In all panels R = 1, 
Lx=l6, eu/kT.~-2.0, and M=3.0. The separation distance L between the particles is varied between the panels. These varia­
tions are (a) 2D, L = 8, Ly = 8; (b) 2D, L =4, Ly = 8; (c) 2D, L = 8, Ly =6; (d) 2D, L =4, Ly = 6; and (e) 3D, L = 8, Ly = Lz = 8. 
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the object, we first ran the simulation with a zero poten­
tial, relative to the plasma at the inflow side. The results 
in Fig. 4(a) show that even when the object is unbiased, 
there is a wake (ion rarefaction) and an ion focus region 
(enhanced ion density) that form behind it. The ion loss 
on the object accounts for this disturbance of the plasma. 
The wake and ion focus appear as red and green regions, 
respectively, in the density profile of Fig. 4(a). The 
reason for the ion focus region is that the wake has an 
enhanced potential that attracts ions, causing them to 
stream inward toward the central axis at the same time as 
they stream downward. These results are forM= 1.5. 

When the object has a finite negative potential, it at­
tracts ions. This leads to a shorter wake and a stronger 
ion focus region, compared to the unbiased object at the 
same Mach number. The enhanced ion focus effect is 
seen in the density profile of Fig. 4(b) as a purple region 
along the axis downstream of the object. We also see a 
(green) cone of ion density propagating downward and 
outward from the focus. This is probably an ion acoustic 
wave generated by compression .in this region. The num­
ber of elementary charges on the object Zd was chosen in 
this figure, and also in Figs. 4(c)-4(e), to yield a plasma 
potential <I>- 2 through the diffuse object. This simulates 
a physical object with negative surface potential 
eu I KTe = -2. 0. This is typical for a dust particle in a 
laboratory plasma. 

A higher Mach number leads to a larger downstream 
extension of the wake and focus regions. This is shown in 
Fig. 4(c), where the Mach number was M=3.0, twice 
that of Fig. 4(b). The wavelike cone is also compressed to 
a smaller angle. 

All the results discussed above are from a 2D simula­
tion for an infinite cylinder. Now we turn to the 3D 
simulation for a spherical body. Results are shown in 
Figs. 4(d) and 4(e) for M = 1. 5 and 3.0, respectively. 

The ion focus region is greatly enhanced for a sphere, 
as compared to a cylinder. The wake, on the other hand, 
is smaller for a sphere. This is probably a geometrical 
effect, since the sphere attracts ions from all around it, in­
cluding both the Y and Z directions compared to only the 
Y direction for a cylinder. At the higher Mach number, 
the focus region is extended farther downstream and the 
wavelike cone has a smaller angle, similar to the results 
for a cylinder. 

One of the most significant results to note is the polar­
ization of the plasma around the diffuse object. It can be 
seen most easily in the plasma potential profiles (lower 
panels in the figures). The normalized potential 
<I>= -efjJ/KTe is much more positive within and near the 
diffuse object, and less positive or even negative in the 
focus region. 

The polarization of the plasma surrounding the object 
means that the object together with the nearby plasma is 
a dipole. Within the object and in the wake region the 
space charge is negative, due to the object's negative bias 
and the low ion density in the wake. The focus region, on 
the other hand, contains a positive space charge due to a 
high ion density. 

If the uniform potential on the object assumed in the 
simulation were replaced by a dielectric surface, the ob-

ject itself would gain a dipole moment that would add to 
that of the plasma. Polarization of the object would be 
significant mainly if the object size is not much smaller 
than the Debye length. 

B. Two objects in a plasma 

By placing two objects in the plasma so that they are 
aligned parallel to the flow, we can better simulate collec­
tive effects between charged particulates. These calcula­
tions are relevant to dusty plasma experiments, as dis­
cussed in Sec. V. 

Two identical particles were placed in the simulation 
box, with the downstream one positioned in the wake or 
focus region of the upstream particle. In Figs. 5(a)-5(d) 
the particles are cylindrical, and in Fig. 5(e) they are 
spheres. All the results shown are for M = 3. 0. The Y 
spacing (transverse to the flow) was reduced to Ly = 6 in 
Figs. 4(c) and 4(d) to test the effect of a higher dust parti­
cle number density. Otherwise the same parameters were 
used as in Fig. 3. 

When two particles are spaced closely in the direction 
of the flow, the ion focus region between them disap­
pears. This is seen in comparing Figs. 5(a) and 5(b), 
where the spacing is L = 8 and 4 Debye lengths, respec­
tively. 

When the particles are spaced widely enough to get a 
focus region between them, the downstream particle lies 
in that focus region. It collects an enhanced ion flux on 
its upstream side due to the focus. This is seen in Fig. 
5(a), but not in Fig. 5(b), where the spacing is small 
enough to preclude a focus from forming. To quantify 
this effect, we have plotted in Fig. 6 the radial component 
of the incoming ion flux as a function of angle for both 
particles. The flux is computed for a surface at a radius 
2R 0 , which is outside the diffuse cylindrical object. Fig­
ures 6(a) and 6(b) correspond to Figs. 5(a) and 5(b). With 
the large interparticle spacing in Fig. 6(a), the down­
stream particle lies in the focus region created by the 
upstream object, and it collects a greatly enhanced ion 
flux on its upstream face (at o·). 

An artifact of the use of diffuse particles can also be 
seen in Figs. 6(a) and 6(b). The ion density in the wake 
(at 180•) would be nearly zero in the physical system with 
no thermal filling. However, in our simulation the ion 
flux there is finite, due to the use of a loss factor a: N, in 
Eq. (20), which causes the ion density to approach zero 
exponentially rather than becoming zero. Other numeri­
cal effects that might fill the wake arise from the small 
diffusion and viscosity terms. However, we checked this 
by varying these terms and found that they yield only a 
minor wake-filling effect for the values we use in our main 
results, E1 =£2 =0.1. Details of this and other numerical 
tests are presented in Appendix A. 

As a test of collective effects due to many particles, we 
reduced the spacing in the transverse direction. In Figs. 
5(c) and 5(d), the spacing is only Ly =6, compared to 
Ly = 8 in Figs. 5(a) and 5(b). This increases the collective 
effects due to the ghost particles outside the simulation 
box. The effect is seen more prominently in the potential 
(lower panels) than in the ion density. The plasma poten­
tial between the downstream particle and its ghost parti-
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cle is enhanced. Plasma with a large <I> (more negative 
plasma potential </J) fills the region between downstream 
particles. 

There are two effects that cause the plasma potential to 
be modified when particulates are closely packed. One 
phenomenon is the depletion of plasma electrons due to 
the negative charge on the particulate. This effect is 
parametrized by the value P [21], given in Eqs. (22) and 
(23). Second is the absorption of ions due to the finite 
size of the particulate. Both of these collective effects 
lead to a plasma potential </J that is negative, compared to 
the infinite plasma. This is also in good agreement with 
the lower panels in Figs. 5(a)-5(d), where decreasing the 
particle spacing causes the normalized potential 
<I>= -e</J/KTe to increase to a higher positive value 
throughout the simulation box, relative to the infinite 
plasma on the inflow side of our simulation box. In phys-

(a) 

(b) 

-- upstream object 
···-···· downstream object 

0 

180 

0 

90 

180 

FIG. 6. The ion flux collected by two cylindrical objects. 
The data in (a) and (b) correspond to Figs. 5(a) and 5(b), respec­
tively. The flux was calculated at a radius R 0 , which is outside 
the diffuse body. Far more ions are collected on the inflow side, 
o•, than on the outflow side, 180·. In (a), the downstream object 
lies in the beamlike ion focus region of the upstream object, and 
it collects an enhanced ion flux concentrated at o·. 

ical systems the second effect (absorption) is usually 
smaller than the first one, when r 0 /Aoe << 1, which is 
typical in space and laboratory dusty plasmas. This con­
dition is not met in our numerical solutions, where our 
choice of r 0 = Aoe probably leads to significant collective 
effects. 

Spherical particles were simulated in 3D in Fig. 5(e). 
Other parameters were the same as in Fig. 5(a), which is 
for cylindrical objects. The potential distribution around 
the downstream particle is nearly the same as around the 
upstream one. This is probably because the parameter P 
is smaller for the spherical simulation than for the cylin­
drical. For the sphere in Fig. 5(e), P =0. 049, which is 
only one-third of the value P =0. 14 for the cylinders in 
Fig. 5(a). These values were computed by doubling the 
results from Eq. (22) and Eq. (23), since our simulation 
box contains 2 particles. Despite our use of the same 
simulation parameters, P varies between these two cases 
because of the different electrical capacitance of a sphere 
and a cylinder. 

An analytic theory for the dependence of the plasma 
potential on the parameter P was presented by Havnes, 
Aslaksen, and Melands0 [21]. It has been adapted by 
Goree [22] to use a fixed ion density to better simulate 
discharge conditions. This theory predicts that the plas­
ma potential, averaged over all the volume in a dusty 
plasma, varies from 0 to about 3 times the electron tem­
perature, as P increases from zero to large values. This 
model is not strictly comparable to our simulation, be­
cause the model neglects ion absorption, and depends 
slightly on two parameters that do not appear in our 
model, the ion mass and the ratio of the ion and electron 
temperatures. Nevertheless, it is possible to make an ap­
proximate comparison of our results to the Havnes mod­
el. We find that the plasma potential is highly nonuni­
form in our simulation, and averaging over the simula­
tion volume the potential is modified somewhat more 
strongly than predicted by the Havnes model. This 
difference is probably due to ion absorption, which is 
quite significant for the large (r 0 /A0 e) particles in our 
simulation. This conclusion is consistent with a compar­
ison of Figs. 4(a) and 4(b), where the plasma potential is 
modified approximately twice as much when the particle 
has a negative bias compared to when it is unbiased. 

V. DISCUSSION 

A. Wake effects 

The wake is a. region of low ion density close to the ob­
ject on the downstream side. It is due to absorption of 
ions. The extent of the wake should increase with the 
size of the body. It also depends strongly on the Mach 
number M and the object charge Zd, as shown in Fig. 4. 
When the size of an object is comparable to Aoe• as in our 
numerical calculation, this wake alters the total space 
charge and creates an asymmetric field around the object. 
This effect is clearly seen from Fig. 4(a) where the object 
is uncharged. 

For most dusty plasmas in space and laboratory, 
r0 <<Aoe• and the wake probably will have little effect on 
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the total space charge. This is because the extent of the 
wake in the transverse Y direction scales as the particle 
cross section, which is a: r0 for cylindrical and a: r5 for 
spherical particles. The volume occupied by the wake 
would therefore become much less than the plasma 
volume that determines the Debye screening (sphere with 
a radius -A.0 e>>r0 around the charged object). 

B. Limitations of the Debye-Hiickel and 
Bernstein-Rabinowitz approximations 

Our results verify that the potential is strongly aniso­
tropic in mesothermal flows. This is shown in our nu­
merical solutions and the test-particle approach described 
below. In view of this, we conclude that central poten­
tials such as the Debye-Hiickel approximation, which in­
cludes only electron screening, are accurate for superson­
ic flows only for high Mach numbers (M >> 1) and small 
objects r 0 <<Ane so that the wake region does not con­
tribute significantly to the space charge. In subsonic 
flows, which we have not simulated, the Debye-Hiickel 
expression is probably valid also in the velocity regime 
u0 <<ur;, provided that A.ne is replaced by a Debye length 
that includes both electrons and ions. For dust particu­
lates in gas discharges this low velocity condition will sel­
dom be fulfilled, due to a very low uTi. 

Models such as Debye-Hiickel that assume a central 
potential may have some utility if they are applied only in 
the plane perpendicular to the flow. In that direction the 
ion density remains fairly constant. It is along the direc­
tion of flow where the potential is most strongly noncen­
tral, with ion focus and wake regions on the downstream 
side. In that direction Debye-Hiickel is unsuitable for 
mesothermal flows. 

Another model that has been suggested in several pa­
pers (e.g., Ref. [18]) uses a Bernstein-Rabinowitz equation 
for n0 which was derived for Langmuir probes [23]. This 
equation would replace a Boltzmann relation for the ion 
density, in cases where T; is low compared to Te. This 
model will, unfortunately, not be useful for mesothermal 
flows because of two unsuitable assumptions: ( 1) The 
theory in Ref. [23] assumes a central potential, which is 
accurate only for small object at a high Mach number 
M >> 1. For other velocities, the previously discussed an­
isotropy will exclude the central force assumption. (2) It 
also assumes a monoenergetic velocity distribution far 
from the object with cylindrical or spherical symmetry. 
This model cannot be applied for a mesothermal flow 
where ions enter from one direction, or have a finite ve­
locity distribution. 

For dusty plasmas in gas discharges, the only use for 
the expression for n; derived in Ref. [23] seems to be dust 
in the center of a discharge where u0 <<uTi. 

Yet another approach to modeling the potential 
around an object in a flowing plasma is a test particle 
method. This neglects ion loss, and thus it can be used 
only for r 0 << Ane· It is a linear theory that assumes 
small perturbations in the ion orbits. We therefore ex­
pect this theory to be imprecise for highly charged dust 
particles when u0 is in the subsonic or low supersonic re­
gimes. 

C. Polarization of the object surface 

The charge on an object in a plasma is due to collecting 
ions and electrons. If the object is a conductor, charge 
will adjust on the surface so that the surface is an equipo­
tential. On the other hand, if the object is a dielectric 
(and in most applications it is) the surface potential need 
not be the same everywhere. 

A dielectric object in a flowing plasma will charge 
differently. Due to the wake, it will collect few ions on its 
downstream side, and acquire a more negative potential 
there. This means that the object will acquire a dipole 
moment p. The electric force experienced by the particle 
will include not only the monopole force qdE but also a 
dipole force. Since p is proportional to the particle size, 
this will be important mainly for large particles. 

In a dusty plasma, a dust grain in the shadow of anoth­
er will be polarized in an even more irregular way. As 
shown in Fig. 5, a downstream particle rests in the ion 
focus region of an upstream particle if they are separated 
by a sufficient distance. This causes the downstream par­
ticle to collect an enhanced ion flux on its nose, but less 
elsewhere, as shown in Fig. 6(a). On the other hand, if 
the two particles are not greatly separated, the down­
stream particle will rest in the wake, where N is dimin­
ished, and the ion flux will be reduced on the nose of the 
object, as shown in Fig. 6(b). In either case, the surface 
polarization will have a more complicated charge distri­
bution than on an isolated particle. 

One might ask whether rotation of the object could 
average out the unequal collection of ions on the front 
and back surfaces. The time scales determine whether 
this can happen. The charge on an object can vary on a 
time scale called the charging time, which varies inverse­
ly with plasma density and the size of the object [1,24]. 
In ionospheric and laboratory plasmas the plasma density 
is high enough that the object will charge much faster 
than it could rotate. This means that rotation would not 
be a factor. 

D. Explanation of observations in dusty plasma experiments 

By placing two identical objects in the plasma, we 
simulate collective effects between charged particulates. 
These calculations are relevant to dusty plasmas. Of par­
ticular interest are two types of laboratory experiments 
that have been reported recently. 

In sputtering plasmas coagulated particles form into an 
unusual stringlike shape. This has been observed by 
several experimenters (cf. Ref. [14]). The string shape is 
quite different from the isotropic fractal shape, which is 
well known for conglomerates grown by isotropic coagu­
lation. This morphology is strong evidence that before 
two particles can collide and stick, they interact by a po­
tential that is anisotropic. The polarization of the plasma 
and the particle itself may explain this phenomenon. 

In a second type of laboratory experiment, a crystal­
linelike lattice forms from particles suspended in the plas­
ma [ 15 -17]. In these so-called plasma crystal ex peri­
ments micrometer-sized spheres become charged, and 
they are electrostatically levitated in_ the plasma above a 
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horizontal electrode, where there is a balance between 
gravity and the electric forces. The vertical direction is 
also the direction of ion flow toward the electrode. 
Through their interparticle interaction, the microspheres 
separate themselves by a few Debye lengths, and they ar­
range themselves in a pattern that is hexagonal, as one 
would expect, in a horizontal plane. Surprisingly, howev­
er, in the vertical direction they usually align in columns; 
so that the 3D structure is one of hexagons aligned 
directly above one another with no displacement. This is 
contrary to the staggered planes familiar in hexagonal 
close-packed solid crystals. One would expect staggered 
planes for an isotropic repulsive interparticle potential. 
This too is a strong experimental indication that the in­
terparticle interaction in a plasma is anisotropic. 

In both the coagulation and plasma crystal experi­
ments there is an ion flow where the particles are located. 
They are typically levitated near the sheath edge, where 
the ion speed is M = 1. As our results have clearly 
shown, under these conditions the plasma is asymmetric 
on the upstream and downstream sides of a particle. This 
should cause a significant anisotropy that qualitatively is 
in good agreement with the experimental results. 

E. Plasma shielding 

Our solutions in Figs. 4 and 5 show a significant polar­
ization of the plasma as it flows around charged cylinders 
and spheres. This polarization is due to both ion absorp­
tion and asymmetric screening of the object charge by the 
ions. 

To understand the latter of these effects we invoke here 
a test particle approach, which is commonly used in the 
theory of ordinary dust-free plasmas, to study screening, 
drag forces, and wave-particle interactions. It does not 
include ion loss and therefore wake effects, which is suit­
able if r0 <<Aoe· Even though our numerical simulation 
does not meet this requirement, the test particle approach 
is useful to gain an understanding of the nature of the ion 
screening, and to identify when ion screening is impor­
tant. 

In a test particle approach the plasma potential ¢ is 
found from the dielectric function D (w,k) of the plasma 
medium, and can be written in terms of an inverse 3D 
Fourier transform, as 

</J(x)=-1_!!.:!__ J exp(ik·x) dk, 
81r3 Eo k 1D (w=O,k) 

(24) 

where w and k are a wave frequency and wave number. 
This equation is given in a frame in which the object is at 
rest. This differs slightly from expressions found in most 
textbooks on plasma physics, which use the plasma rest 
frame [11,12]. 

Although the integral in Eq. (24) in general must be 
evaluated numerically [13], it is not necessary, since 
much can be learned about the shielding of the particle 
by examining the dielectric function D. This is 

1 1 cl 
D(w=O,k)=1+-2-2---2- 2 

k Aoe Aoe (k·v0 ) 
(25) 

assuming an isolated object in a cold-ion, Boltzmann­
electron plasma. 

The first two terms in Eq. (25) correspond to the well­
known Debye-Hiickel shielding of the charged object 
[11], which is due to electrons only, while the last term 
contains the screening from the ions. We can compare 
these terms by taking their ratio 

1 s=----
cos2(0)M2 

(26) 

written in terms of the Mach number M and the angle e 
between k and v0• It should be noticed that this expres­
sion will not be valid for angles in the vicinity of 1T /2 or 
31T /2 where cos(() )~0. This is due to the cold ion mod­
el, which breaks down at these angles [13]. For angles 
not in the vicinity of these two, we see that s ~o, i.e., the 
ion screening is negligible, only for a very high Mach 
number M >> 1. This result is also in agreement with the 
discussion of ion motion presented by Chenevier, 
Dolique, and Peres [13]. 

Equation (26) predicts that asymmetric shielding 
should be apparent in our solutions, at least for the lower 
of the two Mach numbers we used, M = 1. 5. To see this 
best, one should compare Fig. 4(a) with Fig. 4(b). The 
object is uncharged in Fig. 4(a), and the plasma polariza­
tion is thus due only to the absorption of ions. In Fig. 
4(b) the object is charged, and the plasma is more asym­
metric, due to electrostatic effects. We have confirmed 
that this is due to shielding in a numerical test, by turn­
ing off the ion absorption and thereby excluding the space 
charge contribution from the wake region. In this case 
we also see an asymmetric flow around the charged ob­
ject, which can be explained only in terms of the shield­
ing. Our results as shown in Fig. 4 are therefore in agree­
ment with the theory of Chenevier, Dolique, and Peres 
[13] and Eq. (26) for low M numbers. 

For subsonic flows M < 1 (not considered in this pa­
per), Eq. (26) predicts s > 1, i.e., a larger screening from 
the ions than from the electrons, for all e angles. It 
should, however, be noticed that our cold ion assumption 
will break down when v0 approaches the ion thermal ve­
locity Vr;. Eq. (26) would therefore not be valid for sub­
sonic flow in space plasma where Te = T;, but can to 
some extent be used in a gas discharge where Te >> T;. 

Note added in proof Since writing this paper, the au­
thors learned of a related paper by Vladimirov and Nam­
bu [25] in which an approximate analytic treatment is re­
ported that is similar to our numerical solution for a sin­
gle sphere in Figs. 4(d) and 4(e). 
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APPENDIX A: DIFFUSE OBJECT 

In this paper we report a method of simulating an arbi­
trary number and shape of objects in a plasma. The way 
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we do this is to model the object as a diffuse body rather 
than a hard surface. This eliminates boundary conditions 
and discontinuous functions on the body's surface. 

Diffuse particles have been used previously in particle 
(PIC) simulations of electrons and ions, but our diffuse 
objects have a different character and serve a different 
purpose. In PIC simulations, the Poisson equation is 
solved for super plasma particles, which typically have a 
high charge and mass to simulate many real pointlike 
particles. The super particles are diffuse to avoid exag­
gerated Coulomb collisions and numerical problems. We 
use a diffuse particle for a different reason, to simulate 
the surface charge and surface absorption on the object. 
The diffuse nature of the particle avoids dealing with the 
surface boundary conditions and the numerical problems 
introduced by a sharp edge that is not aligned with a 
finite grid. Diffuse particies also offer large flexibility in 
simulating two or more solid particles and particles with 
arbitrary shapes. One diffuse dust particle represents a 
single physical object in the plasma. 

The diffuse object is characterized by a distribution 
function S (X), which is a function of the dimensionless 
spatial coordinate X. This function indicates where the 
ion loss occurs and where the electrical charge resides. It 
replaces the delta function a(X) in the charge density in 
the Poisson equation, Eq. (10), and in the ion loss term in 
the continuity equation, Eq. (8). These equations are then 

arN+Vx·(NV)=-rS(X), 

Vi<I>=N-exp(-<I>)+ZdS(X). 

(Al) 

(A2) 

Choosing a suitable function requires attention to mod­
eling the absorption in a physically meaningful way, as 
discussed in the sections below. Any finite distribution 
that will work well numerically will have certain disad­
vantages in how well it models the physical object. For 
one thing, a diffuse object is prone to allowing ions to 
flow through the object, requiring a correction to avoid 
insufficient ion loss. For another, there is a gradual 
reduction of the plasma density in the vicinity of the sur­
face instead of an abrupt decay on the surface itself. The 
latter is handled best by choosing a function with an ex­
ponential decay at large distances from the surface. 

Our method is general and can be used easily to simu­
late any surface shape. Here, we will consider cylindrical 
and spherical objects, with a characteristic radius r0 , or 
R 0 = r 0 1"-oe in dimensionless form. The dimensionless 
distance from the center of the cylinder or sphere is 
denoted R. 

1. Choosing a finite distribution 

Here we discuss two functions that can be used for 
S (R ). The first, which we denote S 0 , has the advantage 
that it approximates a delta function, but it has undesir­
able properties at R =0. The second, S 1, avoids those 
problems, so we used it for all the simulation results in 
Sec. IV. 

Since S (R) for a physical object with a hard surface is 
a a distribution centered at R 0 , it is obvious to choose a 
Gaussian centered at R 0 • In a slight variation on this, we 
tested the Gaussian 

(A3) 

centered at y 0> where y 0 is evaluated to provide the 
correct ion loss into the diffuse particle. This is plotted in 
Fig. 3. _ 

The parameters a 0, c0 , and Yo are chosen as follows. 
The distribution width a 0 should be specified as small as 
numerical aliasing allows. We found that a 0 /R 0 

-0. 5-0. 25 is the smallest usable value to resolve the 
particle when R 0 is of the order of or less than the Debye 
length and 64 or 128 grid points were used. The normali­
zation constant c 0 is determined fr~m the integral 
J'::_

00
S 0 (R)dR =1 [which gives c0 =(Y7Ta0 )- 1] so that 

this function approaches a(R -R0 ) in the limit a0~0. 
The parameter y 0 will, on the other hand, be determined 
analytically so that in the high velocity limit M 2 » 2<1> 
the diffuse particle will absorb the same ion current as a 
physical one with radius R 0 • In this limit ions are unper­
turbed by the electric potential, and the total ion loss is 
2R 0 and 1rR 6 for a cylindrical and spherical particle, re­
spectively. This total ion loss should equal the loss found 
by integrating the right-hand side of Eq. (Al) over all 
space. For N"" 1 and V constant we then get 

R 0 = f"'RSdR (A4) 
0 

for a cylindrical and 

R 0 = [ f
0

"' R 2 S dR ]
1 12 

(A5) 

for a spherical particle. For a general ratio of a 0 /y 0, the 
integral in Eqs. (A4) and (A5) can be written in terms of 
the error function and the relation between y 0 and R 0 
will be complicated. For small a 0 /y 0 values this relation 
can, however, be approximated by 

(A6) 

and 

(A7) 

for cylindrical and spherical particles, respectively, with 
an error of the order of (a 0 / R 0 )

3
. 

A difficulty in using S 0 arises because it has a finite 
value at R =0. Nor is its spatial derivative at R =0 well 
defined, as it depends on the direction as R approaches 
zero. These problems can be overcome by choosing a 
different functionS, which has as ;aR =0 at R =0. 

We found a suitable choice, 

(AS) 

which is compared to S 0 in Fig. 3. Like S 0 , this function 
peaks around y 1, in the limit of small width a 1 <<y 1• 

The normalization constant c 1 is determined from the in­
tegral J ~ "'S 1 (R )dR = 1 which gives 

c I = -v; 1 2 [1 + (a I I r I )2 /2]- I 
1TatY! 

(A9) 

and y 1 can be related to R 0 by Eq. (A4) or Eq. (A5) if a 1 
is specified. This relation can be approximated for small 
atlrt by 
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Yt = [ 1-(a 1/R 0 )
2 ]R 0 (AIO) 

and 

y 1 = [ 1-5(a1/R 0 )
2 /4 ]R 0 (All) 

for cylindrical and spherical particles, respectively. The 
error will be of the order of (a 1 I R 0 )

3
• 

2. Correction for insufficient ion loss 

A diffuse object does not absorb ions in the same way 
as a physical solid object. The effect of using a finite 
S(R) instead of the !:J.(R -R 0 ) function in Eq. (8) is a 
smaller ion absorption than into a physical dust particle 
with radius R 0 • In our numerical simulations, the ab­
sorption was typically only 30-50% of the physical 
value. This happens because the ion density is dimin­
ished before it arrives at the nominal R 0 surface, and be­
cause some ions flow right through the object. 

To correct this, we evaluate two methods to increase 
the ion absorption by a diffuse object. The first method is 
to use the ion density N = 1 far away from the dust parti­
cle instead of the actual ion density N in Eq. (11), which 
gives a more efficient ion absorption inside the diffuse ob­
ject as N gets small. Physically this is a suitable approxi­
mation for large M values where the ion orbits are only 
slightly perturbed as they enter the dust particle. The ion 
flux r can then be approximated by 

V·R r 0=---H(-V·R). 
R 

(A12) 

For numerical reasons H must be approximated by a 
smooth function, where we have used 

H~ 1 
l+exp[R·V/(8V)]' 

(A13) 

which approaches H in the limit 8 << 1. We have shown 
the effect of changing 8 in Fig. 7. Here we plot N and <I> 
along the center line indicated in Fig. 2. From the figure 
we see only a small change in the solutions, as 8 is re­
duced from t to+· This test [with parameters from Fig. 
4(b)] and tests on other parameters, shows that 8=t 
gives sufficient accuracy. 

The second method is to multiply the ion loss term by 
a fudge factor {3 > 1. This gives 

V·R r 1=-{3N--H(-V·R). 
R 

(A14) 

The constant {3 must be calibrated to a known expres­
sion for the ion loss. We chose {3 by running our simula­
tion for M 2 >>2<1>, where we know that the cross section 
for ion absorption should be 1T R 6 for a sphere or 2R 0 for 
a cylinder. The ion loss is underestimated by a factor 
1 /{3. This yields a value for {3, which we assume is valid 
for the lower Mach numbers for which our results are re­
ported. To give an example of how the solution depends 
upon the choice of S and r, we have shown Nand <I> 
along the center line in Fig. 8. Here we show numerical 
solutions for different S values [Eqs. (A3) and (A8)) and r 
values [Eqs. (A12) and (A14)] for the parameters used in 
Fig. 4(b). 
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FIG. 7. Numerical test of the sensitivity of the simulation re­
sults to the parameter 8 in Eq. (Al3). This equation gives a 
smooth approximation of the Heavyside step function H in our 
numerical calculations. Equation (Al3) approaches H in the 
limit 8~0. Shown are Nand <I> along the center line for three 
values of 8. The other parameters are the same as in Fig. 5(b). 

0 
1:: 

4 

~- 3 
II z 
~ 
-~ 2 
CD 
"0 
1:: 
.Q 

0 

0 

S- VARIATION 

,:--.:\ 
I,'/~\ 
, l \. 
q ·. 
,· "· ,I \ 
' \ ; .. 
i ... 
I ~-
/ \ . ~ 
I . 

--s1 & rt 
--------s1 & ro 
---·So & rt 
---so & ro 

i ~-
i ~-
- ~-
/ '-
I '-., 
i 
i . / 

\ _,_: 
·~.-.. .-:--·· 

4 8 

distance X=xl A.
09 

12 16 

FIG. 8. Numerical test of the sensitivity of the simulation re­
sults to the choice of functions for the diffuse object distribution 
Sand the ion flux r lost on the object. The functions S0 and S 1 

are given by Eqs. (A3) and (A8), and r 0 and r 1 are given by Eq. 
(A12) and (Al4). Shown are Nand <I> along the center line for 
the same parameters as Fig. 5(b). 
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APPENDIX B: NUMERICAL METHOD 

Here we provide details of our numerical method of 
solving the system of fluid equations, which are Eqs. 
(8)-(10) with 11 replaced by S to define the diffuse object. 
We are interested in finding the steady-state solution. 
The boundary conditions are described earlier in this pa­
per and are illustrated in Fig. 2. Recall that the flow 
enters a rectangular simulation box in the positive X 
direction. The boundary conditions are periodic in the 
directions transverse to the flow, and non periodic 
(Dirichlet and Neumann) on the inflow and outflow sides. 

We carried out our simulations in 2D and 3D for an 
infinite cylindrical and a spherical object, respectively. 
The infinite cylinder is aligned perpendicular to the flow. 
The principles involved are the same for both geometries, 
so we shall give details below only for the 2D calculation. 

The system of equations is solved by a spectral method 
where the solutions q (q =N, U, V, and ct>) are expanded 
in mx terms of Chebyshev (</J) and my terms of Fourier 
polynomials in the nonperiodic and periodic directions, 
respectively. The dimensions of the rectangular simula­
tion box are [O,Lx] X [O,Ly ]. 

The solution procedure involves first a Fourier expan­
sion of q 

my/2-1 

q(5, Y, T)= ~ ~k(5, T)exp(27TikY !Ly), (Bl) 
k= -my/2 

where the Fourier coefficient ~ k ( 5, T) is a function of 
time T and a spatial coordinate 5, which is related to X 
by X=(Lx/2)(1+5). This new variable is introduced to 
map the X interval [O,Lx] into the interval [ -1, 1] nor­
mally used for the Chebyshev polynomials. 

The Fourier coefficient is then expanded in terms of 
Chebyshev coefficients as 

m"-1 

~k(5,n= ~ i!j,k(r)rj(5), 
j=O 

(B2) 

where the expansion coefficients are assumed to be time 
dependent. 

In the 5 (i.e., X) direction, q is found at the so-called 
Chebyshev-Gauss-Lobatto points [5j =cos( 7Tj lmx ), 
j =0, 1, . .. , mx ], which allow us to specify boundary 
conditions at both 5= -1 and 1. Gauss integration tech­
niques can be used to obtain the expansion coefficients 
[26]. 

Expansion in terms of Chebyshev polynomials also al­
lows us to use a fast-Fourier transform in the 5 direction, 
which gives an effective computation of the expansion 
coefficients for large mx and my values. 

In order to obtain a stationary solution of the set of 
equation, Eqs. (8)-(10), it is necessary to add small 
diffusion (E 1 Vi Ni ) and viscosity terms (E2 Vi Vi ) to Eqs. 
(8) and (9), respectively. This is due to a nonlinear nu­
merical effect, which after a finite time leads to unreason­
ably large gradients in the solution at the wake edge and 
at the ion focusing point behind the wake. To illustrate 
how the diffusion (E 1) and viscosity (E2) coefficients 

change the solution, we have shown solutions for 
different values of E=E1 =€2 in Fig. 9. These figures, 
which show N and ct> along the central line, indicate that 
reducing E causes a strong increase for N in the ion focus 
region. The ct> value in this region will, on the other 
hand, not depend so much upon E. When there is no dis­
sipation or viscosity (E=O), the cold fluid model predicts 
the ion density profile is a delta function, which physical­
ly is not viable, as nonlinear effects would lead to wave 
breaking, or thermal effects would broaden the profile. 

The flow is assumed to be irrotational. However, it 
should be noticed that the numerical viscosity term may 
change the circulation. We believe the effect is small due 
to our choice of a small E2 ( :S 0. 1) in the numerical calcu­
lations, although we were unable to test this. 

In the time integration of Eqs. (8)-(10), we used an im­
plicit time integration for the terms with the highest­
order spatial derivative (diffusion and viscosity terms), 
since the stability of the time integration is determined 
mainly by these terms. 

The ion velocity in Eqs. (8) and (9) is written as 
Vi= V 0 + V 1 where V 0 is the streaming velocity at a dis­
tance far away from the dust particle. All the terms that 
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FIG. 9. Numerical test of the sensitivity of the simulation re­
sults to the numerical diffusion (e-1) and viscosity (e-2 ) terms. 
Shown are N (a) and <I> (b) along the center line for three values 
of e-=e-1 =e-2. The other parameters are as in Fig. 5(b). Note 
that due to our assumption of cold ions, the ion density profile 
in the focus region becomes more like a delta function as the 
viscosity and diffusion are turned off (E---+0). 
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involve V0 • V x are also integrated implicitly to improve 
stability for large M values. 

The Poisson equation (10) is rewritten as a diffusionlike 
equation 

The stationary solution of this equation will be identical 
to that of the Poisson equation. 

Since we are mainly interested in finding the stationary 
solution of Eqs. (8)-(10) and not an accurate time in­
tegration, we used a time integrator with only a first­
order accuracy with respect to the time step !::..T. For the 
implicit and explicit terms we used forward and back­
ward Euler integration, respectively. 

After applying this time integration to the equations 
and applying a Fourier transform, the equations are re­
duced to a relation between the Fourier coefficients given 
by 

Nn+ 1-itn 
k k +u _2_a ir+l 

t::..T o L s k 
X 

-E [_±_a2-k247T2 [Nn+l=fn (B4) 
I L1 s L2 k I ' 

X y 

[1] J. Goree, Plasma Sources Sci. Techno!. 3, 400 (1994). 
[2] E. C. Whipple, Rep. Pro g. Phys. 44, 1198 ( 1981 ). 
[3] E. Coggiola and A. Soubeyran, J. Geophys. Res. A 5, 7613 

(1991). 
[4] Ya. L. Al'pert, L. Gurevich, A. Quarteroni, and L. P. Pi­

taevskii, Space Physics with Artificial Satellites (Consul­
tants Bureau, New York, 1965). 

[5] J. C. Taylor, Planet. Space Sci. 15, 155 (1967). 
[6] G. B. Murphy, D. L. Reasoner, A. Tribble, N. D'Angelo, 

J. S. Pickett, and W. S. Kurth, J. Geophys. Res. 94, 6866 
(1989). 

[7] N.H. Stone, J. Plasma Phys. 26,351 (1981). 
[8] N.H. Stone, J. Plasma Phys. 26, 385 (1981). 
[9] R. L. Merlino and N. D'Angelo, J. Plasma Phys. 37, 185 

(1987) . 
[10] S. J. Choi and M. J. Kushner, J. Appl. Phys. 75, 3351 

(1994). 
[11] D. R. Nicholson, Introduction to Plasma Theory (John Wi­

ley & Sons, New York, 1983). 
[12] P. K. Shukla, Phys. Plasma 1, 1 (1994). 
[13] P. Chenevier, J. M. Dolique, and H. Peres, J. Plasma 

Phys. 10, 185 (1973). 
[14] G. Praburam and J. Goree, Astrophys. J. 441, 830 (1995). 

(B6) 

(B7) 

where 

L!=- ~ as[Nn(un-U0 )]+ay(NnVn)-rnS(X), 
X 

and 

The Chebyshev coefficients given in Eq. (B2) can be 
found from these equations by a method described in 
Dennis and Quartapelle [27] . This method involves 
transformation of Eqs. (B4)-(B7) to the Chebyshev space 
where it is shown (from the properties of the Chebyshev 
polynomials) that 'iJ.j,k can be found by solving a quasi­
pentadiagonal matrix where the boundary conditions are 
imposed. For more details see Ref. [26] or [27]. 

[15] J. H. Chu and Lin I, Phys. Rev. Lett. 72, 4009 (1994). 
[16] Y. Hayashi and K. Tachibana, Jpn. J. Appl. Phys. 33, 

L804 (1994). 
[17] J . B. Pieper, J . Goree, and R. Quinn (unpublished). 
[18] S. Hamaguchi and R. T. Farouki, Phys. Rev. E 49, 4430 

(1994). 
[19] S. Hamaguchi and R. T. Farouki, Phys. Plasma 1, 2110 

(1994). 
[20] L. D . Landau and E. M. Lifshitz, Fluid Mechanics (Per­

gamon, Oxford, 1959). 
[21] 0 . Havnes, T. K . Aslaksen, and F. Melands0, J. Geophys. 

Res. 95, 6581 (1990) . 
[22] J. Goree (unpublished). 
[23] I. Bernstein and I. Rabinowitz, Phys. Fluids 2, 112 (1959). 
[24] F. Melands0, T. Aslaksen, and 0. Havnes, Planet. Space 

Sci. 41, 321 (1993). 
[25] S. V. Vladimirov and M. Nambu, Phys. Rev. E 52, 2172 

(1995). 
[26] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. 

Zang, Spectral Methods in Fluid Dynamics (Springer, New 
York, 1988). 

[27] S. C. R. Dennis and L. Quartapelle, J. Comput. Phys. 61, 
218 (1985). 


