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Nonlinear Interaction of Compressional Waves in a 2D Dusty Plasma Crystal
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Nonlinear mixing and harmonic generation of compressional waves were studied in a 2D Yukawa
(screened Coulomb) triangular lattice. The lattice was a monolayer of highly charged polymer micro-
spheres levitated in a plasma sheath. Two sinusoidal waves with different frequencies were excited in the
lattice by pushing the particles with modulated Ar� laser beams. Waves at the sum and difference
frequencies and harmonics were observed propagating in the lattice. Phonons interacted nonlinearly
only above an excitation-power threshold due to frictional damping, as predicted by theory.
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linear three-wave mixing in a 2D dusty plasma crystal, 675� 14 �m. The lattice was in an ordered state; the pair
Two-dimensional ordered lattices are found in a variety
of physical systems, including Langmuir monolayers [1],
electrons on the surface of liquid helium [2], rare gas
atoms absorbed on graphite [3], colloidal suspensions [4],
and dusty plasmas [5–8]. In the latter two examples,
particles interact through a screened Coulomb repulsion
or Yukawa potential.

Sound waves, or phonons, are well studied in the linear
or low-amplitude limit, both theoretically and experi-
mentally, for a 2D Yukawa lattice. There are two kinds
of waves, compressional and transverse, and at high fre-
quency they exhibit dispersion, i.e., the frequency ! is not
proportional to wave number k. However, for low fre-
quencies !< 1:3!0, the propagation of linear compres-
sional sound waves has little dispersion [4,9,10], and a
speed CL � !=k [9]. Here, !2

0 � Q2=4	
0ma3 is a 2D
analog of the plasma frequency, where Q and m are the
particle charge and mass, respectively, and a is the inter-
particle spacing.

A dusty plasma is a convenient model system to study
waves in 2D lattices. Micron-size particles become
highly charged when suspended in a plasma. Because of
mutual repulsion and the plasma’s weaker radial electric
fields, they arrange themselves in a structure, called a
plasma crystal, with crystalline or liquidlike order. In the
presence of gravity, particles can settle in a 2D mono-
layer. Usually the plasma includes neutral gas, which
applies a frictional drag to moving particles. The par-
ticles can be imaged directly, and their positions and
velocities calculated, which allows studying the lattice
microscopically.

The properties of nonlinear waves have not been
studied as completely as for linear waves, in dusty plas-
mas. It has been shown theoretically that nonlinear pulses
can take the form of solitons in weakly [11] and strongly
coupled [12–14] dusty plasmas, although frictional gas
damping can suppress soliton formation [13,14]. In ex-
periments with large amplitudes, nonlinear pulses
[12,15] and harmonic generation [16] have been observed
in 2D lattices.

Here, we report an experimental observation of non-
0031-9007=04=92(8)=085001(4)$22.50 
and compare our results to a corresponding 1D theory.
The experimental conditions for our particles were simi-
lar to those in Ref. [17], where the interparticle potential
was experimentally shown to be nearly Yukawa, U�r� �
Q�4	
0r��1 exp��r=�D�, where �D is the screening
length. A lattice is characterized by the screening pa-
rameter � � a=�D. Our plasma crystal had a triangular
structure with hexagonal symmetry.

The three-wave mixing problem we investigate in a 2D
triangular lattice has two externally excited compres-
sional pump waves, propagating along a common axis.
They have frequencies f1 < f2, and wave vectors k1 and
k2, respectively. We analyze three-wave nonlinear mix-
ing, resulting in the generation of the waves with combi-
nation frequencies fsum;diff � f2 � f1, and second
harmonic generation fsum � 2f1 or 2f2.

In general, three-wave mixing requires satisfying the
phase-matching conditions ksum;diff � k2 � k1, which
are equivalent to momentum conservation for phonons.
Moreover, all the waves involved should satisfy the dis-
persion relation. For compressional waves propagating
along a common axis in an infinite 2D Yukawa lattice,
these conditions require that all the waves travel in the
same direction and have wavelengths long enough to
satisfy the wave’s dispersion relation in its acoustic limit,
where ! / k.

Using the same vacuum chamber as in Ref. [16], we
levitated a monolayer suspension of particles in the
plasma (Fig. 1). The particles had a diameter of 8:09�
0:18 �m [18] and a mass density 1:514 g=cm3. The par-
ticle suspension had a diameter of about 60 mm. The
suspension was not a closed system, because the particles
lost energy by frictional drag on the neutral gas. To
achieve a low damping rate, we used Ar at a pressure of
5 mTorr, so that the gas drag, which is accurately modeled
[18] by the Epstein expression, was only �d � 0:87 s�1.
The plasma was sustained by a 13.56 MHz rf voltage
with a peak-to-peak amplitude of 168 V and a self-bias
of �115 V.

The particles in the suspension arranged themselves in
a triangular lattice. The interparticle spacing was a �
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FIG. 1. Experimental apparatus. (a) Particles arranged in a
triangular 2D lattice. Atop this image is a sketch showing
where the radiation pressure force from two modulated Ar�

laser sheets pushes particles, exciting sinusoidal compressional
pump waves. (b) The particles are polymer microspheres,
levitated as a monolayer above the lower electrode in a capaci-
tively coupled rf plasma.
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correlation function g�r� had many peaks, and it had
translational order length of 16a in an undisturbed lattice,
although this diminished to 4a when we excited large-
amplitude waves. We used a pulse technique [19] to mea-
sure CL � 21:6� 1:5 mm=s, Q � �9400� 900e, and
�D � 0:73� 0:10 mm at the particles’ height.

The particles were imaged through the top window
by a video camera, and they were illuminated by a hori-
zontal He-Ne laser sheet. We digitized movies of 68.3–
136.7 s duration using a digital VCR at 29.97 frames
per second. The 24� 18 mm field of view included
1000–1100 particles [Fig. 1(a)]. Particle coordinates and
velocities were then calculated in each frame using the
moment method [20].

We used a laser-manipulation method [21] to excite
two sinusoidal compressional pump waves with parallel
wave fronts in the plasma crystal (Fig. 1). Particles were
pushed by the radiation pressure force, which is propor-
tional to an incident laser intensity [18]. An Ar� laser
beam was split in two, and the intensity of each beam was
sinusoidally modulated with a separate scanning mirror
that partially blocked the laser beam. The total power of
the two laser beams incident on the lattice was varied up
to 3.69 W. At their foci at the particle location, the laser
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beams had a diameter of 0.5 mm measured at the level of
1=e2 of their maximum intensity, at a power of 0.61 W.
Two more scanning mirrors, oscillated rapidly at 200 Hz,
were used to raster each of the two laser beams into
sheets, which struck the lattice at an angle of 10	 with
respect to the horizontal lattice. The sheets extended
4.5 mm beyond each edge of the camera’s field of view,
and their intensity was uniform �10% in the y direction
within the field of view.

The excitation regions for the two pump waves were
the stripes where the two laser sheets struck the lattice
[Fig. 1(a)]. The two stripes were separated by 5.5 mm in
the x direction. We verified, by using a side-view video
camera, that there was no out-of-plane buckling of our 2D
lattice, thereby confirming that all the waves we observed
were in-plane.

To analyze the wave propagation, we spatially averaged
the x component of the particle velocity within 40 rect-
angular bins elongated along the y axis. We then com-
puted the power spectrum jvx�f�j2 for particle motion,
for each of the 40 bins in the x direction.

One of our chief experimental results is an observation
of sum and difference frequencies [Fig. 2(a)]. These com-
bination frequencies, f2 � f1 and f2 � f1, are a signature
of three-wave mixing between the pump waves. Higher
combination frequencies 2f2 � f1, 2f1 � f2, 2f2 � f1,
etc. are also present, and these are the result of either
three-wave or four-wave mixing.

The spatial profile of the sum-frequency wave f2 � f1
in Fig. 3(a) reveals how energy is transferred from the
pump waves to the wave at the sum frequency. Between
the excitation regions, where the two pump waves propa-
gate oppositely, the sum frequency is weak. Elsewhere,
the two pump waves propagate in the same direction, and
the sum-frequency amplitude grows with distance, as
energy is extracted from the pump waves, reaches a
maximum value, and then declines, due to pump deple-
tion and damping.

A threshold is seen in Fig. 4 for f1 � f2 and 2f1 � f2.
The combination frequencies were present only when the
excitation laser power Plaser was sufficient for nonlinear
effect to overcome damping. While the amplitude at the
pump is almost proportional to Plaser, the amplitude at the
combination frequencies grew faster than linearly, above
the threshold.

As in Ref. [16], our modulation method does not pro-
vide a single pump frequency. Second and third har-
monics were present in the laser modulation, with <1%
of the intensity, and this complicates the identification
of mixing due to harmonic generation in the lattice.
Observation of combination frequencies such as f2 �
f1, on the other hand, is a convincing indication of mix-
ing, because they are not present in the laser modulation.
Higher combination frequencies such as 2f1 � f2 are also
a convincing indication of mixing, although we cannot
identify whether they are the result of four-wave mixing
085001-2
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FIG. 3. Spatial profiles of the amplitude at the sum frequency
within a bandwidth of 0.06 Hz. (a) In the experiment, sinusoi-
dal compressional pump waves with frequencies f1 � 0:7 Hz
and f2 � 1:7 Hz were excited in the plasma crystal at the
locations shown by arrows, which were spatially separated.
(b) Theory, described near the end of this Letter, with both
pump waves excited at x � 0. In both the experiment and
theory, amplitudes at combination frequencies grew where
the pump waves propagated in the same direction.
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(b) Simulation

FIG. 2. Power spectrum of the particle speed jvx�f�j
2 aver-

aged over the camera’s field of view, for the highest excitation
laser power of 3.69 W. (a) In the experiment, sinusoidal
compressional pump waves were excited in the plasma crystal
with frequencies f1 � 0:7 Hz and f2 � 1:7 Hz. Combination
frequencies and harmonics were generated at high excitation
laser power, due to nonlinear mixing of the pump waves.
(b) 2D MD simulation, described near the end of this Letter.
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of pump waves at f1 and f2 or three-wave mixing of f2
with a harmonic 2f1 that was present in the laser modu-
lation. The spatial profiles of the harmonics 2f1 and 2f2 in
our experiment, not shown in Fig. 3, are similar to Fig. 4
of Ref. [16].

In a test of the phase-matching conditions, by varying
the higher pump frequency f2, we found that the ampli-
tudes of all combination frequencies increased with f2
up to f2 � 1:3!0=2	, and even beyond for some combi-
nation frequencies. Nonlinear mixing was observed for
f2 as high as 3!0=2	, even though the compressional
waves have significant dispersion for much of this fre-
quency range. For pure plane waves with discrete wave
numbers, one would not expect mixing when there is
dispersion and ! / k is not satisfied. However, in our
experiment, the wave vectors k had a bandwidth in both
direction and magnitude, due to the finite width of ex-
citation regions, and the finite size of the lattice and
damping, respectively. We estimate that damping by itself
provides a bandwidth as large as �k � 2�d=CL. Within
these bandwidths, there are wave numbers that satisfy the
phase-matching conditions.
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We compare our experimental results to a theory based
on the 1D chain model developed in Ref. [14]. To apply
this theory to waves propagating along a common axis in
a 2D lattice, we substituted the 1D chain’s sound speed
with its value for a 2D lattice [14].

Our model begins with a nonlinear equation of mo-
tion for an infinite chain, Eq. 15 of Ref. [14]. Accounting
for the nature of our experimental system, which is not
closed, this equation includes gas damping. A uniform
particle spacing is assumed, with a binary interaction
for four nearest neighbors, and the linear and quad-
ratic nonlinear terms are retained after expanding the
interparticle force for small displacement. Here, we omit
terms that would result in dispersion. Assuming sinusoi-
dal waves yields @v1=@x� �d v1=CL � �iA!1�v2vdiff �
vsumv


2�=2C

2
L, describing the spatial evolution of the

amplitude v1 of the first pump wave, measured as the
particle speed. Here, �d is the gas friction; v2, vsum, and
vdiff are the amplitudes at !2, !1 �!2, and !2 �!1,
085001-3
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FIG. 4. Wave amplitudes, averaged over the camera’s field of
view, within a bandwidth of 0.06 Hz. The amplitude of the
pump waves at f1 � 0:7 Hz and f2 � 1:7 Hz was almost pro-
portional to Plaser. In agreement with theory, sum frequencies
were generated only above an excitation-power threshold de-
pending on the sum frequency. Pump wave harmonics were
present at any Plaser, perhaps due to imperfect modulation of the
laser’s intensity. Also shown is the background amplitude at a
frequency where there is no laser excitation or combination
frequency.
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respectively, and A� ��3� 3�2� 6�� 6�=��2� 2�� 2�
is a coefficient for the nonlinear term, for a Yukawa
potential. The model also yields four similar equations
for the amplitudes of the waves at 2!1, !2, !1 �!2, and
!2 �!1. To calculate the theoretical curves in Fig. 3(b),
we solved the system of five equations, yielding vsum�x�,
v1�x�, v2�x�, vdiff�x�, and v2!1

�x�. We assumed both pump
waves were excited at x � 0, unlike the experiment where
the two excitation regions were displaced. We used ex-
perimental values for CL, �d, A, v1�0�, v2�0�, vsum�0�,
vdiff�0�, and v2!1

�0�, where the three latter values were
assumed to be the thermal noise levels.

We found that this theory yields the following predic-
tions, which are in agreement with our experiment. First,
three-wave mixing can occur, but not if pump waves
propagate in opposite directions. Second, the amplitudes
of the combination-frequency waves grow and then de-
cline with distance (Fig. 3). Third, due to frictional damp-
ing, the generation of combination frequencies requires
that the pump amplitude must exceed a certain threshold.
Fourth, amplitudes at the combination frequencies in-
crease with the pump amplitude and frequency, as long
as the dispersion is weak.

We performed a 2D MD simulation using parameters
similar to those of the experiment. Unlike the theory,
which is a solution of a wave equation including a non-
linear term, this simulation is a solution of the equation of
motion for 5000 particles, including a binary interpar-
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ticle Yukawa repulsion, which is the only source of non-
linearity. Particles are confined by an external harmonic
potential. The simulation retains features of the experi-
ment including nonuniform particle spacing, finite-size
effects, the laser intensity profile, and lattice defects. The
laser force was chosen 9% smaller than calculated in
Ref. [18], to match the amplitudes of the pump waves in
the experiment.

Simulation results for the power spectrum jvx�f�j
2 in

Fig. 2(b) are similar to the experimental results in
Fig. 2(a), suggesting that our simulation incorporated
the essential physics of our experiment. However, the
amplitudes of the peaks in Figs. 2(a) and 2(b) do not all
agree. While the amplitudes at f1, f2, 2f1, 2f2, 3f1, and
3f2 are similar, the amplitudes at the combination fre-
quencies are smaller in the experiment than in the simu-
lation.We cannot fully account for this difference, but one
possibility is that the actual interparticle potential is not
exactly Yukawa.
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