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Nonlinear Compressional Pulses in a 2D Crystallized Dusty Plasma
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Compressional pulses were launched in a two-dimensional Yukawa lattice, a hexagonal monolayer
of polymer microspheres suspended in a plasma. The pulsed wave was excited by a laser beam, and
nonlinear effects were observed for Mach numbers M . 0.07 and for variation of particle number density
dn�n . 0.1, but no steepening of the pulse was detected. The pulse propagation speed was found to be
comparable to the sound speed of compressional waves launched with sinusoidal excitation.
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Two-dimensional ordered lattices are found in a variety
of physical systems, including dusty plasmas [1–4] and
colloidal suspensions [5], where particles interact through
a screened Coulomb repulsion or Yukawa potential. Such
a lattice can have either a crystalline or a liquidlike or-
der. It sustains compressional waves and, in a crystalline
or highly ordered liquid phase, transverse shear waves
[5–12].

Here we report experiments with pulsed compressional
waves in a 2D plasma crystal. The term “plasma crystal”
refers to a suspension of small particles of solid matter,
which are immersed in a plasma containing free electrons,
ions, and neutral gas. The particles acquire a negative
charge Q, and in the presence of gravity they are levi-
tated by the electric field in the sheath above a horizon-
tal lower electrode. In the radial direction, particles are
trapped by weaker radial fields in the plasma. Experiments
by Konopka et al. [13] have shown that in the horizon-
tal direction the interparticle force is modeled accurately
by a Yukawa potential U�r� � Q�4pe0r�21 exp�2r�lD�,
where lD is the Debye length. When many such particles
are trapped in a horizontal monolayer, they arrange in a
triangular lattice with hexagonal symmetry. The lattice is
characterized by a screening parameter k � a�lD , where
a is the interparticle spacing.

A two-dimensional lattice with Yukawa interparticle
potential can be modeled as a network of masses con-
nected by springs to the nearest neighbors, and by weaker
springs to more distant particles. If the particle displace-
ment is small, the spring will be linear, with a restoring
force proportional to displacement [14]. Nonlinear effects
arise when the spring is compressed or extended by large
amplitude.

Linear sound waves in a two-dimensional screened-
Coulomb lattice have dispersion relations that have been
derived theoretically [5–10] and verified experimentally
[11,12]. For short wavelengths, they exhibit dispersion,
i.e., frequency v is not proportional to wave number k.
On the other hand, for long wavelengths, the propagation
of linear compressional sound waves is dispersionless,
with a speed v�k � CL given by [8]
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CL � Qa�4pe0ma3�21�2�4p�
p

3 �1�2k21�2, (1)

where m is the particle mass. Note that CL does not depend
on the wave amplitude. These theories are for linear waves
with small amplitude.

The nonlinear behavior of the waves at large amplitude
has not been studied as completely as the linear behavior.
Theoretically, the possibility that the compressional waves
can propagate in a nonlinear regime as solitary waves was
demonstrated for 3D weakly coupled [15] and 2D strongly
coupled [16] dusty plasmas. Experimentally, nonlinear
waves in dusty plasmas were possibly observed in the
laser-excited compressional Mach-cone experiments of
Melzer et al. [17], although the size of error bars did not
allow the authors to conclude this definitely. Here we
report an experiment intended to observe nonlinear effects
using a laser that is 3 times more powerful than in
Ref. [17], and by launching compressional waves in the
form of pulses instead of Mach cones. Laser excitation
provides a purely local initial perturbation, without dis-
turbing the horizontal forces that trap particles. In another
approach, an electrical wire launches pulses [16], but
additional long-range attractive and repulsive forces act in
the horizontal direction on the plasma crystal [18].

In our apparatus, Fig. 1, a plasma was produced using
a capacitively coupled parallel-plate rf discharge. To re-
duce the damping rate, we used Ar at a low pressure of
15 mTorr, so that the Epstein drag was only n � 2.9 s21

[19]. The plasma was sustained by a 13.56 MHz rf voltage
with a peak-to-peak amplitude of 138 V and a self-bias
of 290 V. Langmuir probe measurements at a point in
the bulk plasma, well above the sheath region, indicated
an electron temperature Te � 2.5 eV, plasma potential
Vp � 21 V, and ion density ni � 3.5 3 1015 m23.

Our polymer microspheres formed a hexagonal lattice
with a diameter of about 60 mm. Depending on the
number of particles that we introduced, a ranged from
486 mm to 1097 mm. The microspheres had a diameter
of 8.09 6 0.18 mm measured using TEM and a mass den-
sity 1.514 g�cm3. The particle charge was measured to be
Q � 29000 6 200e, and the Debye screening length was
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FIG. 1. Experimental apparatus. Polymer microspheres levi-
tate above the lower electrode in a capacitively coupled parallel-
plate rf plasma. The particles settle in a single horizontal layer,
arranged in a hexagonal lattice. Compressional pulses are ex-
cited in the lattice by applying a modulated laser sheet.

measured to be lD � 0.73 6 0.10 mm at the particles’
height, using a wave technique [12]. The pair correlation
function g�r� of the lattice had many peaks, and its transla-
tional order length was 4 to 20 interparticle spacings; this
indicates that the lattice was in an ordered state.

Our primary measurements were the particle velocities
and areal number densities, which we computed from the
particle positions. The latter were recorded for 64 consecu-
tive frames in a 30 frame-per-second digital movie, based
on a video recording using a top-view camera. The cam-
era imaged particles illuminated by a horizontal sheet of
HeNe laser light, and its field of view was 24 3 18 mm,
which included 400–2000 particles. The particle positions
were calculated with subpixel resolution using the moment
method [17].

We used the laser-manipulation method of Homann
et al. [14,20] to excite compressional pulses in the plasma
crystal. Particles were accelerated at a rate proportional
to the incident laser intensity [21]. An Ar laser intensity
was modulated with a scanning mirror that chopped the
laser beam on and off, while another scanning mirror that
oscillated rapidly at 200 Hz was used to expand the laser
beam into a sheet, which struck the lattice at an angle of
10± with respect to the horizontal lattice plane. The laser
power was 0.66–2.75 W, which we measured just before
the vacuum chamber window. At its focus in the vacuum
chamber, the laser beam had a Gaussian profile with a full
width at half maximum of 0.6 mm, at our lowest power of
0.66 W. The excitation pulse wave form was trapezoidal;
the rise time was 10% of the pulse duration, and so was
the decay time. The k spectrum corresponding to our laser
beam shape had 12% and ,1% of its power for ka above
0.6 and 1.6, respectively, for a � 0.8 mm. These values
of ka mark the onset of dispersion and its dependence
on the lattice orientation, respectively, according to the
theoretical dispersion relation [7].
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The video was synchronized to the excitation pulses us-
ing the triggering scheme described in Ref. [17], with one
laser pulse in each frame. This allowed us to average the
data for ten laser excitation pulses, all under the same con-
ditions, to improve the signal-to-noise ratio. The excitation
pulses were repeated at an interval of 2.4 s.

Each laser pulse excited a pulse of compressional waves
in the lattice, which we measured using our time-resolved
maps of the particle velocity and areal number density. To
analyze the pulse propagation, we divided the maps into
50 rectangular bins, which were elongated along the y axis.
In each bin, the yx component of the particle velocity was
averaged, while the yy component was ignored, because
it was much smaller. In this way, we prepared Fig. 2,
showing the particle velocity profiles in the direction of
pulse propagation x.

The pulse propagation speed C was measured by deter-
mining the position x0 of the peak in each frame, and then
fitting x0 vs t to a straight line. The peak’s position x0
was measured in a two-step process. As a first estimate of
x0, we identified the point xmax, where yx had its maxi-
mum. Then, to reduce the effect of noise, we calculated
the first moment of yx vs x using data in a range of x from
xmax 2 2.5 mm to xmax 1 2.5 mm. We found C in the
range 9 26.5 mm�s, depending on the interparticle spac-
ing. We found that the pulse propagation speed increases
with particle number density (decreases with screening
parameter k), in agreement with Eq. (1). The pulse was
damped, as it propagated away from the excitation region,
with a scale length of �10 mm, as expected based on
Epstein drag and the value of C.
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FIG. 2. Propagation of a compressional pulse. Particle veloc-
ity profiles are shown in the direction of the pulse propagation,
for screening parameter k � 1.45 and a laser power of 2.38 W.
The curves are separated by 0.1 s. The bold curves are after the
laser is off; these curves were used to measure the pulse propa-
gation speed. In the inset, the curves are shown shifted and
rescaled, so that their maxima coincide.
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We performed three different tests intended to observe
nonlinearity in the pulse propagation. First, we measured
the pulse propagation speed vs excitation laser power. Sec-
ond, we compared the pulse amplitudes measured in terms
of velocity and number density. Third, we evaluated the
pulse shape, looking for its possible steepening. In all three
tests, the pulse duration was a constant t � 0.5 s, to iso-
late the effects of nonlinearity from those of dispersion.

Our first test of nonlinearity, a measurement of the pulse
propagation speed for different values of excitation laser
power, provides evidence of nonlinearity. The results are
shown in Fig. 3. If the pulse were linear, its speed would
obey Eq. (1), independent of the amplitude. Instead, we
observed a faster propagation speed at higher excitation
power. This indication of nonlinearity is present at larger
values of k, but not at smaller values of k, apparently due
to our limited laser power.

It is a common characteristic of nonlinear waves that the
speed of wave propagation C depends on the wave ampli-
tude in velocity space y. Although we do not have an ana-
lytic theory of this dependence for our 2D Yukawa crystal,
it is instructive to consider the following expression for the
different case of an adiabatic sound wave in an ideal fluid
[22]:

C � CL 1 0.5�g 2 1�y . (2)

Here, g is the adiabatic coefficient.
In Fig. 3, both the pulse propagation speed and the pulse

amplitude are normalized by the speed of pulse propaga-
tion at a low amplitude corresponding to our lowest exci-
tation laser power of 0.66 W. This allows us to present the
data for all values of k together, showing the dependence
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FIG. 3. Dependence of the pulse propagation speed C on the
pulse amplitude in velocity space y. Both axes are normalized
by the pulse propagation speed C0.66 W for the lowest laser power
we used, 0.66 W. Nonlinear effects are revealed by the speed
of the pulse increasing with its amplitude; this trend is indicated
empirically by the straight line, which is a fit to all the data.
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on amplitude. The pulse propagation speed has a gen-
eral upward trend with pulse amplitude, in agreement with
Eq. (2). Perhaps our data in Fig. 3 should be fitted to some
shape other than a straight line as suggested by Eq. (2),
because our experimental system is a 2D hexagonal lat-
tice where the sound speed is independent of temperature,
whereas Eq. (2) was originally derived for an adiabatic mo-
tion in an ideal fluid, where the sound speed depends on
the temperature.

Our second test of nonlinearity, the dependence of the
particle speed y vs variation of particle number density
dn�n, also revealed nonlinear effects. In this test, we com-
pared the pulse amplitude measured in velocity space with
the pulse amplitude measured in number density space.
For this purpose, we define the amplitudes of y and dn�n
as their peak value for profile at a given time. In theory,
linear waves with no dispersion are characterized by

y�CL � dn�n . (3)

Our results in Fig. 4 deviate from Eq. (3), indicating non-
linear motion. This deviation is apparent when dn�n .
0.1, for higher values of k and higher laser power. The
effect is biggest in the excitation region, because the am-
plitudes are largest there. The straight line in Fig. 4 cor-
responds to the sound speed CL of linear waves, using
Eq. (3). Note that Eq. (3) is based on conservation of the
particle number, which was satisfied in our experiment and
analysis.

As the third test of nonlinearity, we evaluated the pulse’s
shape, as it propagated through the lattice. In the inset of
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FIG. 4. Pulse amplitude in velocity space y vs pulse amplitude
in number density space dn�n. Both amplitudes decrease as
the pulse propagates through the lattice. Shown are data for
two values of the screening parameter k � 1.45 (circles) and
k � 0.90 (triangles). The excitation laser power was 2.38 W.
Solid symbols represent data recorded outside of the excitation
region, and open symbols inside it. Deviation from the linear
dependence of Eq. (3) is an indication of nonlinearity.
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Fig. 2, we shifted the velocity profiles of the propagating
pulse at different times so that their maxima coincided,
and we rescaled the vertical axis to eliminate the effect of
damping as the pulse propagated through the lattice.

Unlike the first two tests, the third test did not show any
nonlinear effects that we could identify. The pulse’s shape
showed no significant change as pulse propagated through
the crystal. In particular, we observed no visible steep-
ening of the wave front, as would be expected in shock
formation, for example. Perhaps steepening of the pulse is
a less sensitive test of nonlinearity than the other two tests.
Or, perhaps this method requires that nonlinear effects ac-
cumulate over a distance that is a much greater multiple of
the pulse width than in our experiment. The pulse shapes
shown in the inset of Fig. 2 actually broadened, rather than
steepened, as they propagated away from the excitation re-
gion; this might be an indication of dispersion.

To test the role of dispersion in the pulse propagation,
another experiment was carried out, using different dura-
tions of excitation pulse, t � 0.05 0.2 s. To isolate the
effects of dispersion from those of nonlinearity, the pulse
energy, i.e., the product of excitation laser power and the
pulse duration, was kept constant at 0.14 J. We expected
shorter pulses to have more spectral content at high fre-
quencies. For the entire range of t that we tested, we note
that 2p�t . 1.5v0, where v0 is a 2D analog of plasma
frequency, v

2
0 � Q2�4pe0ma3, and m is the particle

mass. Compressional waves in a 2D lattice show devia-
tion from acoustic dispersion for frequencies v . 1.3v0

[7]. Therefore, one might expect to detect dispersion in
this test. However, we found no obvious dependence of
the pulse propagation speed on the duration of excitation
pulse, and, hence, on the pulse’s frequency spectrum. This
means that, given the size of error bars, dispersion is not
detectable using this method at these experimental condi-
tions. This might be due to the limitation posed by the k
spectrum corresponding to the laser-beam’s spatial profile,
which had only 1%–26% (depending on a) of its energy
at wave numbers ka . 0.6, corresponding to v . 1.3v0.

In conclusion, we can say that we observed nonlinear
effects in the pulse propagation, but for the laser excita-
tion levels we used these nonlinear effects were weak. In-
creasing the laser power from 0.66 to 2.75 W gave rise
to an increase in the pulse propagation speed of up to
22%, in the case of k � 1.26. In our experiment, we
achieved pulse amplitudes of y�CL , 0.1 in Fig. 3 and
dn�n , 0.13 in Fig. 4, while in the excitation region the
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highest Mach number for particle speed we achieved was
y�CL � 0.39 and the maximum variation of number den-
sity was dn�n � 0.22. This latter value is comparable to
the highest level achieved in the laser-excited Mach cone
experiment of Melzer et al., and half that in the wire-
excited pulse experiment of Samsonov et al. [16].
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