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The radiation of elastic waves from a localized source is observed experimentally in a two-dimensional
plasma crystal. An initial shear stress applied by a laser forms a small dipole source. The emerging
complex wave pattern is shown to consist of outgoing compressional and shear wave pulses. Subsequent
structures are identified as inward-going waves due to the finite size of the source region, which reappear
on the opposite side. The compressional wave forms a trailing wave train due to strong dispersion, while
the nondispersive shear wave evolves into a vortex-antivortex pair on either side. The experiments are

compared with a molecular-dynamics simulation.
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A crystalline lattice can vibrate with two kinds of sound
waves, compressional and shear, with longitudinal and
transverse polarization, respectively. In seismology these
two wave types are called P and S waves, and their differ-
ent propagation properties are used, e.g., to localize the
epicenter of an earthquake or for geological exploration.
The waves are usually excited by a localized pulsed source.
Elastic waves are also used, e.g., to measure the Young
modulus in thin diamondlike films [1]. The underlying
physics of these waves is essentially the same in two-
dimensional systems as in three dimensions. Therefore,
we explore the radiation of such elastic waves from a small
pulsed dipole source in a 2D Coulomb lattice (Wigner
crystal), which is a convenient model solid. In such 2D
lattices it is possible to study wave motion with video-
microscopy of individual particle motion with quasiatomic
resolution. This approach gives completely new insights
for intricate cases of wave generation, propagation, and
nonlinear interaction.

Plasma (Wigner) crystals [2-5] consist of a regular
arrangement of micron-sized particles embedded in a gas
discharge plasma. Under the influence of gravity flat
monolayer (or multilayer) crystals are formed. Plane com-
pressional waves in such systems were first excited with
biased wires [6] and later with focused laser radiation [7,8].
Recently, plane shear wave pulses were generated with a
rapidly scanning laser [9]. Supersonic objects [10,11] or a
laser spot moving at supersonic velocity were used to
excite compressional [12] and shear wave [13] Mach
cones. The multiple structure of compressional Mach
cones could recently be explained as an interference phe-
nomenon caused by the dispersive nature of compressional
waves [14].

While most of the earlier investigations were focused on
the dispersion relation of plane waves and their diagnostic
application, this Letter addresses the radiation problem
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from a small localized source. The chosen geometry of
a point-dipole source, is the most fundamental and can
be considered as Green’s function for more complicated
situations. The experiments are compared with molecular-
dynamics simulations in the same geometry. These obser-
vations contribute to the understanding of waves in the near
field of an antenna that emits elastic waves.

Using apparatus similar to that described in Ref. [12] we
suspend 8.1 um diameter polymer microspheres in an
argon plasma with 15 mTorr pressure and 18 W rf power.
They arrange themselves as a monolayer in a triangular
lattice, which in our 24 mm by 18 mm field of view
contains 990 particles with an average separation of
0.66 mm. The expanded beam of an argon-ion laser hits
the plasma crystal at a small (10°) angle of incidence
[Fig. 1(a)] and illuminates a nearly square spot of 4 mm
by 4 mm size, where the laser force causes a localized
shear stress that elastically deforms the crystal. The size of
this region is chosen as a compromise between smallness
and efficiency of wave excitation. Laser power (0.5 W) and
laser pulse duration (250 ms) are chosen to avoid breaking
bonds in the lattice.

In the x direction, the lattice is compressed ahead of the
laser spot and rarefacted behind it, while in the y direction
a symmetric shear stress is generated. The motion of the
individual particles is recorded with a video camera (640 X
480 pixels) at 30 frames per second and a total of
32 frames. The experiment was repeated 100 times after
5.9 s recovery time each. The velocity field is calculated
from particle positions with subpixel precision in subse-
quent video frames and interpolated to a fixed square grid
for averaging. The velocity field during the laser pulse
(frame 5) is shown in Fig. 1(b). It features a pronounced
pair of elastic vortices of opposite sign. Although
this velocity field resembles streamlines in fluids, there
is no macroscopic flow but only a momentary elastic
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FIG. 1 (color online). (a) Geometry for localized elastic de-
formation of a 2D plasma crystal by a laser force. (b) Vector
velocity map of particle motion during the laser pulse. The
particle velocities have been interpolated to a square grid for
averaging. The rectangles mark the stripes, which are used in
subsequent figures to display the temporal evolution of shear and
compressional wave.

deformation. After the end of the laser pulse, this elastic
deformation relaxes and expands over a larger region than
originally illuminated and is eventually radiated from the
source region as a complex pattern of compressional and
shear waves.

To understand the simultaneously occurring wave phe-
nomena it is necessary to disentangle the two polarizations.
In earlier investigations [12], the compressional wave was
visualized in terms of a ‘“‘numerical Schlieren map” by
calculating the change in particle density dn/d¢. Here we
display the compressional wave by calculating the ‘“‘diver-
gence map” V- ¥ = —(1/n)dn/dt which, in a linear ap-
proximation, is equivalent to the ‘‘Schlieren map” [12]
because of conservation of particles. Similarly, we visual-
ize the shear wave by the vorticity V X © of the velocity
field. The vorticity is insensitive to compressional wave
activity and the divergence of a shear wave is likewise
negligible. In this way, independent information of the two
wave modes is obtained. The rectangular stripes in Fig. 1(b)
are the regions displayed in gray-scale maps of the shear
wave [Fig. 2(a)] and compressional wave [Fig. 3(a)].
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The initial situation for the shear wave in frame 2 of
Fig. 2(a) shows a pair of vortices with opposite sign of
vorticity. The positive and negative structures evolve in the
*y direction. This is the expected propagation direction
for a plane shear wave, if the excitation region were
extended in the x direction. Two pairs of lines are super-
imposed to guide the eye in tracing the propagation of the
individual structures. In frame 8, the splitting of the struc-
tures into an outward- and inward-going wave pulse be-
comes evident. After a crossover of the inward-going
waves in frame 10, these waves appear as outward-going
waves in subsequent frames. The wave field eventually
consists of two vortex-antivortex pairs propagating out-
wards. The leading vortex shows a stronger damping
than the subsequent antivortex.

Double vortices form a class of particularly stable ob-
jects in hydrodynamics and in aerodynamics. It is a central
result of these observations that the wave front of elastic
shear waves consists of similar structures. Because of the
weak dispersion of shear waves, the initially localized
shear stress remains localized in the wave front, which is
accomplished by forming a vortex-antivortex pair. This
property may find applications, e.g., for optimizing the
density of pulses in acoustical delay lines.

For the compressional wave [Fig. 3(a)] the situation is
similar, but not identical. The initial pair, compression and
rarefaction, in frame O propagates in the *x direction.
Again, the initial perturbation splits into ingoing and out-
going pulses. The ingoing pulses cross over in frame 2 and
reappear as outward-going pulses in subsequent frames.
Obviously the propagation speed for the compressional
wave is higher than for the shear wave. The leading com-
pressional pulse shows a stronger damping than the trailing
rarefactive pulse. Wave damping is caused by neutral gas
friction. While the wave field of the shear wave consists
of only two pairs of vortices, the compressional wave

FIG. 2.

Visualization of the shear wave in terms of the vorticity
of the velocity field (black = cw, white = ccw). (a) Experiment;
(b) molecular dynamics simulation. The stripes are 18 mm high.
Time is indicated by the frame number (at 30 frames/s).
Because of different values of « the propagation speed in the
simulation differs from the experiment.
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FIG. 3. Visualization of the compressional wave by the diver-
gence of the velocity field (black = compression, white =
rarefaction). (a) Experimental data; (b) molecular dynamics
simulation. The stripes of 24 mm width are labeled by their
frame number.

develops additional wave humps, as becomes evident from
frames 7-9. We attribute this behavior to the larger dis-
persion of the compressional wave.

The sound speeds of compressional and shear wave are
different for 2D crystals with Yukawa interaction poten-
tials [15]. The ratio of the two sound speeds is a way to
determine the shielding strength k = b/ Ap, where b is the
mean interparticle spacing and Ap the Debye shielding
length [12]. Here we find sound speeds of (Cp =
24 * 2) mm/s for the compressional wave and (Ct = 7 =
1) mm/s for the shear wave. From tabulated values of the
sound speed ratio [16] we obtain k = 2.2 % (.9. This value
is in accordance with earlier findings [7].

For comparison, we have performed molecular-dynam-
ics simulations of localized wave excitation. The simula-
tion starts with a regular triangular 2D crystal with
b =0.75 mm. The simulation area of 24 mm by
19.486 mm corresponds to 32 by 30 particles. The static
lattice is continued with periodic boundary conditions in
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four principal ( £ x, £y) and in four diagonal directions to
confine the particles in the simulation box. The particles in
the neighboring boxes are fixed, to avoid wave excitation in
the exterior region. This approach allows studying the
wave field until the faster wave reaches the boundary of
the box, where it becomes reflected. The interparticle
distance, the total number of particles (960), and the par-
ticle charge O = 14 000e were chosen similar to the ex-
perimental conditions. The shielding factor k = 1 was
chosen for comparison with the theoretical dispersion
curve in [14] and is lower than the experimental value,
but the difference does not affect the topology of the wave
modes, which is the major objective of this study. For
immediate comparison with the experiment the simulation
data are displayed as gray-scaled contour plots in Fig. 2(b)
(shear wave) and Fig. 3(b) (compressional wave).

The simulation matches the experiment in several ways.
The compressional and shear waves propagate in the *£x
and *y directions, respectively. The pulse splits into four
features, and oppositely propagating features cross in the
center. Only the compressional wave develops extra oscil-
lations, attributable to dispersion, in frames 8 and 9. The
damping for the leading pulse is stronger than for the
following structure.

Our experimental and simulation results include not
only the antenna’s near field but its far field, where the
wave fronts become circular. For the compressional wave
the intensity distribution is inhomogeneous and resembles
the cos?a distribution that is typical of dipole sources, and
« is the angle with the x axis, while for the shear wave it is
nearly sin’a.

This topologically different behavior of compressional
and shear waves can be further illuminated by a simple 1D
model. Here we follow the evolution of an initially S-
shaped perturbation. This structure is decomposed by fast
Fourier transform into elementary waves a(k, w), which
are allowed to propagate according to their individual
phase velocity v,,(k) in *x direction. The dispersion of
the compressional lattice wave is approximated by w =
CLk — Dk? in the range ka < 1, with normalized coeffi-
cients C;, = 2.44 and D = 0.67 taken from Eqs. A7 and
A9 in [14].

The shear wave has a nearly strictly acoustic dispersion
o = Crk. The result for the nondispersive wave is shown
in Fig. 4(a), where the splitting of the positive and negative
humps into right- and left-going pulses, crossover, and
outgoing pairs of S-shaped structures is evident. In the
case of the dispersive (compressional) wave [Fig. 4(b)],
splitting and crossover of the original humps is seen again,
but the dispersiveness of this wave leads to the formation of
an oscillatory wave train. For typical conditions, the dis-
persion of this wave type is large enough to generate the
additional humps seen in the experiment.

In summary, we have shown that the complex wave
pattern from a localized, pulsed elastic stress applied to a
plasma crystal can be decomposed into compressional and
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FIG. 4. 1D-model for pulse splitting and propagation (a) for
the case of purely acoustic dispersion and (b) for the dispersion
of a compressional wave. The horizontal scale extends over x =
*+32b. The individual traces cover normalized times wpqf =
0-10 where w,q = (Q3/€yMyb*)'/? is the dust plasma frequency
and Q4,M, are the charge and mass of the particles.

shear waves, which eventually form spherical wave fronts.
The intensity distribution of the two wave types is found
dipolelike with orthogonal orientation. The finite size of
the excitation region leads to the generation of additional
inward-going waves, which cross at the center of the
source region and reappear on the opposite side. The shear
wave is found to be nondispersive, whereas the pronounced
dispersion of the compressional wave leads to the forma-
tion of a wave train. A simple 1D model demonstrates that
the dispersion is sufficiently large to explain the observed
additional humps in our experiments. In our space-time
measurement of the compressional wave the formation of a
wave train is equivalent to the purely spatial interference
structures found earlier inside the Mach cone of a compres-
sional wave [12,14], which is absent in the less dispersive
shear Mach cones [13]. Because of the weak dispersion, the
initial shear stress in the excitation region remains confined
to the wave front of the shear wave. This is accomplished
by the formation of a vortex-antivortex pair. Theoretical
studies of large Coulomb clusters [17] had shown earlier
that the energetically lowest modes of excitation in con-
fined systems of more than 100 particles are vortex-anti-
vortex pairs. The spectra of large Yukawa clusters were
recently studied in [18]. In the present investigations vor-
tex-antivortex pairs are found as the building blocks of the
wave front of shear waves. This is a further hint at the
important role of double vortices for elastic waves.
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