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Particle Interaction Measurements in a Coulomb Crystal Using Caged-Particle Motion
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A technique for characterizing the particle interaction potential of a Coulomb crystal is developed. The
mean-square displacement (MSD) is measured, showing both caged- and superdiffusive-particle motions.
By subtracting the center of mass of neighboring particles in computing MSD, only short-wavelength
particle motions are retained. This yields the lattice Einstein frequency, which contains information
about the interparticle forces and potentials. Video measurements of particle motions in a complex
(dusty) plasma are used to demonstrate the technique.
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Coulomb crystals have been studied for many years
and can be thought of as models for natural crystals. A
Coulomb crystal is a system of mutually repulsive par-
ticles that has self-organized into a lattice structure under
the influence of an external confinement. It exhibits many
of the same properties as ordinary crystals, such as the
development of topological defects and phase transitions
during heating. Thus, a detailed study of the properties
of a Coulomb crystal yields useful information about or-
dinary crystals.

Here, we describe a technique for characterizing the
particle interaction potential in a Coulomb crystal. The
methodology is generally applicable since it requires only
measurement of the mean-square displacement (MSD) of
the particles in the lattice, as a function of time. Particles
in a crystal, or a highly ordered or freezing liquid, cannot
diffuse freely but are trapped at short times by the “cage”
formed by the neighboring particles.

We filter out the particle motion associated with long-
wavelength phonons by computing the MSD of a particle
relative to the center of mass of the neighboring particles.
What remains are short-wavelength phonons which yield
information about the interparticle forces and potentials
through the Einstein frequency vE.

We demonstrate this technique using a two-dimensional
(2D) experimental model system called a complex (or
dusty) plasma. The complex plasma, so called in analogy
with complex fluids, consists of a suspension of highly
charged particles in a background plasma of ions and elec-
trons and confined by external electric fields. The particle
motions are damped by collisions with the neutral back-
ground gas, and phase transitions are frequently driven by
changing the neutral gas pressure [1,2]. Complex plasmas
are similar to aqueous colloidal suspensions [3] but have
damping rates and volume fractions which are smaller by a
factor of up to 105. The ambient plasma plays several roles:
it sustains a negative charge on the particles, it provides a
sort of Debye shielding in the vicinity of the particles, and
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it provides an inward long-range electric force Fext that
confines the mutually repulsive particles in a stable sus-
pension. The suspension is characterized by direct mea-
surements of the particle locations which yield structural,
such as topological defect statistics, as well as dynamical
information.

In the time domain, the dynamical measurements we re-
port here are MSD�t� and the mean-square velocity �y2�.
In previous experiments, MSD�t� has revealed diffusive
and superdiffusive motion at long times [4]; our data show
this as well, but we add analysis of short-time caged (os-
cillatory) motions, from which we also derive vE. Note
that it is possible to measure the MSD not only from di-
rect measurements of particle positions, as we have done,
but also, e.g., using dynamic light scattering in complex
fluids [5]. In the frequency domain, dynamical measure-
ments can also be made [6]; however, the spectra do not
yield vE in a straightforward way.

Information about the interparticle potential is embed-
ded in the MSD through the particles’ caged motions. The
equation of motion for a caged particle can be modeled
with a single-particle Langevin equation:
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Here, x�t� is the coordinate of a single particle, m is the
particle mass, mn dx�dt is the drag force due to the neu-
tral gas, mv

2
Ex is the springlike force due to the cage of

the neighboring particles, and j�t� is a random, fluctuat-
ing force that heats the particle [7]. The lattice Einstein
frequency vE is obtained from a Taylor series expansion
of the net force on a particle due to the particles around it.
In turn, the net force depends on the interparticle potential
and lattice configuration.

Equation (1) is the equation of motion for a driven,
damped harmonic oscillator, and it can be solved for
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where n0 � �n2�4 2 2v
2
E�1�2 and a is the mean interpar-

ticle spacing. Equation (2) is the solution for overdamped
oscillations, corresponding to n

2
0 . 0. In the underdamped

case of sinusoidal motion, n
2
0 , 0, Eq. (2) should be

modified by replacing n0 with in0. Since we can measure
MSD�t�, �y2�, and n, we can extract vE from Eq. (2).

The following assumptions have been made in Eq. (1)
and its solution Eq. (2): (i) The particle is permanently
trapped in its cage. (ii) Its neighboring particles do not
move �vE � const�. (iii) The random force j�t� is un-
correlated with the particle position for all times, �xj� �
�x� �j� � 0. (iv) The thermal velocity �y2� is independent
of time and is related to the random force �y2� ~ �j2� (see
Ref. [7] for a detailed discussion of this point).

An experimental determination of vE yields information
about the interparticle force and potential, as we now dis-
cuss. The binary interaction force is Fi � 2=fi, where
fi is the interparticle potential. This pairwise force should
be summed over all of the neighboring particles. Includ-
ing a contribution due to the overall confining electric field
Fext yields the total net force on the caged particle. The
external confinement is radially inward and acts to hold the
repulsive particles together. When a particle is at its equi-
librium position, at the center of its near-neighbor cage,
Fnet �

PN21
i�1 Fi 1 Fext � 0, where N is the number of

particles in the lattice. For small displacements dr in any
direction r̂, Fnet � 2�v2

E 1 v2
ext�drr̂. Here, vext repre-

sents a global or rigid-body oscillation mode of the whole
crystal in the external confinement. In most experiments,
including the present one, Fext is very flat near the particle
locations, so that v2

ext ø v
2
E , and can be neglected. Thus,

we have

v2
E � 1�m

N21X
i�1

≠Fi�≠x , (3)

where the displacement dr is now taken to be along the
(arbitrarily oriented) x axis.

We conducted an experiment using a quasi-two-
dimensional complex plasma in which we have deter-
mined vE by examining the MSD of the particles. The
complex plasma consisted of two to three layers of
microspheres levitated and confined in the sheath of an rf
plasma. The particles were highly negatively charged due
to the collection of the plasma electrons and ions which
also acted to partly shield the interaction potential. The
plasma itself was sustained in a low-density neutral argon
gas. Further details on the experimental setup are given
in Ref. [8].

In addition to supplying the source for plasma ions and
electrons, the neutral gas also damps the particle motions
through frictional drag. In our parameter regime, i.e., neu-
tral gas pressures between 220 and 500 mTorr, the neutral
gas damping rate n is due to Epstein drag [9,10]. The ef-
fect of this drag is to cool the particles, at the same time
that electrostatic instabilities act to heat them [7,11,12].
The particles form a solid phase at the highest pressures
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and a liquid phase at the lower pressures. Caging is im-
perfect in the liquid phase where particles tend to diffuse
more easily.

For monolayer complex plasmas, the interparticle po-
tential is Yukawa [13]. Here, we have a multilayer system.
Particles in the various layers are vertically aligned due to
an anisotropy in the interaction potential which arises from
the ion focus phenomenon [14,15]. In effect, our particles
are like short vertical rods that move only in the horizontal
direction. The exact form of the inter-rod potential has
not been measured, but calculations of the interparticle
potential indicate a shielded Coulomb interaction [16],
which suggests that the inter-rod potential is roughly
Yukawa. The two dimensionality of the system was veri-
fied by the observation of strongly aligned vertical columns
of particles which moved together in the horizontal
direction [17].

Structural and dynamical measurements of the particles
were made by shining a laser sheet through the upper layer
of the particle suspension and imaging the particles with
a video camera. We identified and tracked �800 particles
for up to 20 s at each of 11 neutral gas pressures during
the transition. For comparison, the total particle suspen-
sion contained �40000 particles. A Voronoi analysis was
performed to identify nearest-neighbor bonds and topo-
logical defects in the lattice. By tracking the particles from
frame to frame, velocity measurements were made, yield-
ing the particle kinetic temperature [8].

We computed MSD�t� from the particle trajectories as
follows:

MSD�t� �
1

Na2

NX
i�1

�xi�t� 2 xCM�t�	2. (4)

Here, xi�t� is the trajectory of the ith particle position
vector, xCM�t� � 1�nn

Pnn

j�1 xj�t� is the center of mass
(CM) of the ith particle’s nearest neighbors, nn is the
number of nearest neighbors (usually nn � 6, except for
defects), and N is the total number of particles tracked.
The nn nearest neighbors are identified at time t � 0, and
the same ones are used to compute the CM at all future
times, even if they cease to be nearest neighbors of particle
i. Thus, at longer times MSD�t� measures the tendency
of a particle to escape its near-neighbor cage. At shorter
times it measures caged-particle motion.

Our method of subtracting the center of mass of the
neighboring particles in Eq. (4) achieves two purposes.
First, it filters out the long-wavelength components of the
phonon spectrum. Second, it eliminates the affect of secu-
lar motion of the particles.

The MSD curves in Fig. 1 show both caged- and
diffusive-particle motion. The curves are plotted as a time
series, where time is normalized by n21. Caged motion
occurs roughly for tn , 100, while superdiffusive motion
occurs at longer times. We deduce this by comparing the
slopes of the curves in Fig. 1(a) in the two time regimes.
At long times, the log-log slopes are .1 and characteristic
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FIG. 1. Mean-square displacement (MSD) versus time nor-
malized by the inverse damping rate (n21) on a log-log scale.
(a) Curves are shown for six representative neutral gas pres-
sures (damping rates n) during the melting transition. The small
slopes of the curves for tn , 100 indicate that the particle mo-
tion is caged. (b) A representative MSD curve is shown with a
fit to Eq. (2) plus a diffusionlike term. The fit yields the lattice
Einstein frequency (vE), after using the separately measured
particle kinetic energy m�y2�, n, and interparticle spacing a.
Note that here the axes are not log scale and the time resolution
is higher than in (a).

of superdiffusive-particle motion while at short times the
slopes are ø1. We identify the short-time behavior as
caged-particle motion.

We found the lattice Einstein frequency vE from the
MSD in the caged regime. The technique is illustrated
in Fig. 1(b), which shows an expanded view of the caged
regime for n � 113.5 s21. Here, we have fit the mea-
sured MSD to Eq. (2) plus a quasidiffusive term, Dtb .
The parameters �y2�, m, and n were measured or com-
puted from other data. The 6.5 mm diameter particles had
a mass m � 2.2 3 10210 g, and the particle temperature
Tp � m�y2� ranged from 0.06 to 0.15 eV.

Including only caged and quasidiffusive motion, our
model adequately fits the experimental MSD, Fig. 1(b),
with three free parameters: b, D, and vE . Typical val-
ues for the fit parameters were b � 1.3, D � 4.0 cm2, and
vE � 40.0 s21. If the long-time particle motion were pure
diffusion, one would expect b � 1. Our result, b . 1,
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indicates a superdiffusive process which might be attribut-
able to shear motion of particles near crystallite boundaries
during rotational domain slipping [4].

In order to extract further information from vE , we as-
sume that the interparticle potential is of Yukawa type:
fi � Q�r exp�2k�. The parameters entering the poten-
tial are the particle charge Q, distance from the particle r,
and the screening strength k � a�l, where l is the Debye
screening length. For the Yukawa potential, assuming an
ideal triangular lattice and summing Eq. (3) over nearest
neighbors only, we have

v2
E �

3Q2

ma3 exp�2k� �1 1 k 1 k2� . (5)

Equation (5) is valid for k . 4; for smaller values of k,
more particles need to be included in the summation of
Eq. (3). This is easily done, and for the results presented
here the summation was carried out over 20 sets of nearest
neighbors yielding an error in v

2
E of less than 5% at k � 1.

A partial derivation of this result is given in Ref. [18].
We obtain an important element of the interaction po-

tential, the charge Q, by inverting Eq. (5) and using the
fit vE values. Note that we must also assume a value for
the screening strength k, for which we do not have a di-
rect measurement in this experiment. In Fig. 2, we illus-
trate the k dependence of Eq. (5) by plotting Q�e versus k

for vE � 40 s21 (where e is the electron charge). Here,
note also the difference in the curves at small k depending
on the number of particles included in the summation in
Eq. (3).

In Fig. 3, we take k � 1 and k � 2 as representative
values, consistent with previous experiments [19,20], as
well as k � 4, and present the computed charge num-
bers Q�e as a function of the damping rate n. We find
that Q varies little with n, consistent with previous re-
sults [2]. The mean and standard deviation for all n is

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5

κ

Q
/e

Σ1

Σ5

Σ20

FIG. 2. Particle charge Q�e versus screening strength k for
vE � 40 s21 assuming a Yukawa interaction potential in a 2D
lattice. Three curves are shown representing summations of
Eq. (3) over 1, 5, and 20 sets of nearest-neighbor particles.
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FIG. 3. Particle charge Q computed in three different ways:
from the fit value of vE , obtained from caged motion in the
MSD, with k � 2 ��� and k � 4 ���; from separate vertical
resonance measurements ��, ��; and from an OML charging
model using measured Te (assuming ne � ni , QOML�10 plotted,
�). The charge and screening length k determine the interpar-
ticle potential in the Yukawa approximation.

Q�e � 3000 6 200 for k � 1, Q�e � 3500 6 300 for
k � 2, and Q�e � 6000 6 400 for k � 4.

For comparison, two additional charge measurement
techniques were carried out for the same experimental
conditions. These results are also presented in Fig. 3.
First, we measured the charge using the vertical resonance
technique, where the resonance frequency of the vertical
particle trap is measured and used to obtain the charge
[21,22]. Second, we computed the charge from the orbit-
motion limited (OML) model for particles in a flowing
plasma. The results of this model for various plasma con-
ditions are tabulated in Ref. [7]. Measured electron tem-
peratures �Te � 3 eV� [8] and estimated ion temperature
�Te�Ti � 80� and flow velocity (equal to the ion sound
speed) were used to obtain this result for 6.5 mm par-
ticles. Charge values obtained using these techniques are
within an order of magnitude of those obtained using the
caged motion technique. Note that none of these tech-
niques are more accurate than a factor of 2 in measuring
the charge due to various approximations. Other common
charge measurement techniques, such as Mach cones [23]
or horizontal compressional waves [18], are not practical
here since they are primarily limited to low neutral pres-
sure regimes �#10 mTorr� and monolayer crystals.

In summary, we have demonstrated a technique for char-
acterizing the particle interaction potential directly from
the observed particle dynamics. The caged-particle MSD
yields the Einstein frequency of the lattice, which in turn
yields information about the interparticle forces and po-
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tentials. If one further assumes a particular form of the
interparticle potential (e.g., Yukawa), parameters for that
potential such as particle charge can then be extracted from
the Einstein frequency. Since caged-particle motions occur
naturally, this technique has the advantage that no external
perturbation of the system is required in order to make the
measurement.
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