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Characterization of three-dimensional structure using images
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The pair correlation function g(r) and the number density n for particles in a three-dimensional (3D)
sample can be determined from a single two-dimensional (2D) image. The 2D image is obtained
experimentally with a simple setup: a cross-sectional slab of particles is illuminated with a laser
sheet and imaged with a single camera. After image analysis, to find positions of particles in two
dimensions, along with their brightness, one obtains g(r), also known as the radial distribution
function. The key for attaining high accuracy is to use only the particles that are brighter than a filter
level, which we refine to achieve greater accuracy. The density n is obtained from g(r). This method
is demonstrated in a dusty plasma experiment. Accuracy is quantified using simulation data; errors of
2% for both the pair correlation function and the number density are achievable. The method is useful
for dusty plasmas and colloids. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4914468]

I. INTRODUCTION

Number density n and the pair correlation function g(r)
are widely used to characterize the structural arrangement of
particles such as molecules in liquids and microspheres in
colloidal suspensions1,2 or dusty plasmas.3–5 The correlation
function g(r) expresses the probability of finding a particle
at a distance r from another particle.6 Quantification of n
and g(r) are often needed in both theory and experiments.
Here, we are mainly interested in systems, where the particles
fill a 3D volume but are viewed experimentally with only
two dimensional images. We will use subscripts 2 or 3 to
distinguish g2(r) obtained using a two-dimensional image and
g3(r) for the true pair correlation function of a 3D sample.
The true three-dimensional number density is denoted n3.

The standard calculation of g(r) can be done for either
two-dimensional (2D) or 3D systems. For a two-dimensional
system, the calculation of g2(r) requires as its input the
(x, y) coordinates of each particle. One counts the number
of particles in an annular ring centered on one central particle
and divides by the area 2πrdr between radii r and r + dr .
Repeating for all such central particles in the region of interest
and averaging, one obtains g2(r) for one value of r . This is
repeated for many values of r to generate a graph of g2(r). For
a three-dimensional system, the standard calculation of g3(r)
is similar, except that r is now a radius in three dimensions; an
annular spherical shell of volume 4πr2dr is used instead of an
annular ring when counting particles; the calculation of g3(r)
requires as its input the (x, y, z) coordinates of all particles.

In this paper, we demonstrate that n3 and g3(r) for a
three-dimensional sample can be determined with surprising
accuracy using only the two-dimensional (x, y) coordinates
along with the brightness of each particle. The advantage of
doing so is that the instrumentation is simplified; one can
use a common 2D imaging configuration.7 For micron-size
particles, such a two-dimensional imaging configuration is
sketched in Fig. 1(a) with a single camera. The depth of the
volume that is imaged is determined either by the camera
lens depth-of-focus or by the thickness of an illumination

laser sheet.8 If the particles are widely spaced, i.e., if their
volume fraction is small, they can be illuminated by a planar
sheet of light, and the camera views this sheet at 90◦. The
laser sheet has a finite thickness, with an intensity that must
vary gradually with distance from the midplane of the laser
sheet. It is obvious that this configuration for imaging particles
will work well for samples with particles that lie only in
a single plane (2D systems), and indeed it is widely used
for that purpose with 2D colloidal suspensions,9,10 2D dusty
plasmas,11–14 and 2D granular media.15

Here, we are interested in using this simple 2D imaging
configuration to measure particles filling a three-dimensional
(3D) volume. A theory16 predicts that g3(r) in a 3D homo-
geneous and isotropic system can be reproduced from 2D
observations of a thin slab of particles. This idea has also
occurred to previous experimenters who have reported g3(r)
determined with such a setup from two-dimensional images
recorded in a 3D dusty plasma.17–19 These experimenters,
however, did not specify the details of their image analysis
method, and the accuracy of the g3(r) depends on the choice
of particles included in the calculation, as we will show
in this paper. In this paper, we specify an experimental
method in detail, demonstrate its use, and find its accuracy for
determining g3(r) and n3 using a common 2D imaging setup.

The problem with using a 2D image to obtain the 3D
number density n3 is that there is seemingly no unique answer.
This can be seen by comparing the images in Figs. 1(b) and
1(c), which were recorded experimentally for the same sample
of dusty plasma but a different width for the illuminating
laser sheet. The experiment is described in Sec. III. In
these images, more particles are visible if the laser sheet is
thicker. If one simply counts the number of particles that are
visible and divides the number by a volume, the result is
unreliable because the volume is not well defined because
of a brightness that diminishes gradually in the out-of-plane
direction. Similarly, there is apparently no unique answer for
g3(r), based on such an image.

In this paper, we present a method that overcomes this
problem by exploiting the variation of brightness of particles
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FIG. 1. (a) Two-dimensional imaging configuration. Experimental images,
from the same experiment, of a slab of particles in a dusty plasma as illumi-
nated by a laser sheet of Gaussian half-width (b) wz = 0.64 mm and (c) wz

= 2.75 mm. Note that the spot brightnesses vary from one particle to another.
More particles are visible in the image in (c), due to a thicker laser sheet.

according to their position within the laser sheet.20 This
brightness variation can be seen in the images in Figs. 1(b)
and 1(c). In our method, we filter the particles according
to their brightness to determine which will be included in
the calculations. (In general, one could weight the particles
according to their intensities; our filtering step uses a
weighting function that is a simple step function.) After
filtering, we first obtain g2(r) with a two-step determination,
where the second step is a refinement of the first. Thusly,
obtained g2(r) is a reasonable experimental representation of
g3(r). Finally, from this representation of g3(r), we compute
the three-dimensional number density n3. In principle, this
method can be used with a single two-dimensional image, so
that the experimenter can obtain time-resolved measurements
of g3(r) and n3.

There are several other imaging methods that can yield
g3(r) and n3 in a 3D sample. They all require a more elaborate
instrumentation than the simple 2D setup we consider. One
approach is to scan the position of both the laser sheet and the
camera so that over time all the particles in the sample volume
are imaged.21 The data so obtained are not simultaneous,
meaning that this method is best used when particles move
very slowly. For sample volumes with small numbers of
particles, either stereoscopic imaging with three cameras22 or
digital holography23,24 with a single camera allows recording
the simultaneous determination of positions of particles in 3D.
In confocal imaging, as used in colloidal suspensions, a laser
beam is rastered and a stack of 2D image slices is collected by
progressively stepping the focal plane of the objective through
a sample to construct images within a 3D volume.2 These

methods yield the 3D positions of individual particles, while
the method we report does not. Our method yields g3(r) and n3
without providing more detailed 3D description of individual
particles, but it has the advantage of simplicity in its imaging
instrumentation.

II. ANALYSIS METHOD

A. Overview

The input for the method is a single two-dimensional
gray-scale image. Portions of such an image are shown in
Figs. 1(b) and 1(c). Starting with such an image, our method
has the following sequence:

• Preprocess the image.
• Make a two-step determination of g2(r) as a represen-

tation of g3(r).
• Find n3 using the g3(r) data.

B. Preprocessing

In a 2D gray-scale image, a particle generally fills mult-
iple pixels. The brightness of a particle will vary depending
on its position within the nonuniform intensity profile of the
laser sheet. Portions of such images are shown in Figs. 1(b)
and 1(c). A digital image is essentially a 2D array of integers
Ii j, where I represents the brightness within one pixel with a
position (i, j) in the image.

We preprocess a 2D image to obtain a list of particles
appearing in the image to yield three values for each particle:
its x and y positions and its intensity. Several standard
methods in the literature allow a determination of the x and
y positions with sub-pixel resolution. Any of these methods
could be used; the subsequent filtering step needs only the x
and y positions and intensities, and it is not crucial how these
quantities are obtained. For the purpose of the demonstration
in Sec. III, we will choose the moment method26 to obtain the
x and y positions. (In the moment method, the central position
of a bright spot is determined as a weighted average of pixel
positions i and j, where the weighting is proportional to the
intensities Ii j and pixels that are included are selected by a
thresholding scheme. The sub-pixel accuracy of the moment
method is improved by subtracting a background image and
making a careful choice of the threshold level.)

In addition to the x and y positions of each particle,
we will also require its brightness. One can determine the
brightness most simply as the largest value Ii j of all the
pixels within the particle’s image, and we will find this simple
method provides adequate accuracy in our simulation test of
Sec. V. Alternatively, with slightly greater effort, one could
characterize the brightness of a particle by summing the
intensities of all pixels Ii j within its image; this would reduce
sensitivity to noise in a pixel.

C. Filter level

To obtain the three-dimensional g3(r) using the (x, y)
coordinates and brightness of particles instead of using the
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(x, y, z) coordinates, we will devote most of our attention to
the use of the brightness data. In particular, we will select
the particles that are included in the calculation of g2(r)
according to whether they are brighter than a “filter level.”
Only particles brighter than the filter level will be included
in the determination of g2(r). By choosing this filter level
appropriately, the g2(r) so obtained will closely match the
true g3(r).

The “filter level” is a particular choice of a minimum
brightness Imin. If the particles are all identical, all the particles
brighter than Imin lie within a slab inside the laser sheet. Thus,
a lower filter level means that a thicker slab is analyzed.
The requirement in choosing a filter level is essentially a
compromise, to make the slab neither too thick nor too thin,
so that the so obtained g2(r) will match g3(r).

Selecting the filter level is the key to obtaining an accurate
graph of the three-dimensional g3(r) using a two-dimensional
image. We will present two schemes of selecting the filter
level, yielding two different determinations of g3(r). Both
schemes use a graph of the number of particles that are brighter
than the minimum brightness Imin, as shown in Fig. 3. This
graph has a monotonic downward trend, meaning that if one
chooses a larger value of Imin, fewer particles will be counted.
This is so because the laser sheet’s illumination becomes
gradually less intense with greater distance from the midplane
of the sheet. This graph is our only use of the brightness data
for particles.

The two schemes that we choose the filter level are
presented in Secs. II D and II E. In the first determination
of g2(r), we choose a filter level graphically by examining
asymptotes in the particle-number graph. In the second
determination, the filter level is chosen differently, with two
inputs: the g2(r) data from the first determination and the
particle-number graph. The user could use only our first
determination of g2(r), but the second one can be valuable
in two ways: the g2(r) obtained this way is a more accurate
representation of the true g3(r) (according to our test with
synthetic data), and one can estimate the errors in the
determination of g3(r) by comparing the two determinations.

D. First determination of g2(r ) as a representation
of g3(r )

Before determining n3, we generate g2(r). In our first
determination of g2(r), we choose a filter level using a scheme
based on the variation trends in the particle-number graph.
We identify two asymptotes in the graph, and the filter level is
chosen as the value of Imin where the two asymptotes intersect.
This scheme is simple to use, and as its input, it only requires
the particle-number graph. Using the filter level from this
scheme to choose the particles in the image, one then uses
the standard two-dimensional method of calculating g2(r) by
counting particles in annular rings, as introduced in Sec. I.

E. Second determination of g2(r ) as a representation
of g3(r )

The second determination of g2(r) uses a different filter
level. To choose this filter level, we first examine the graph of

g2(r) from the first determination to find the radius rnn of the
largest peak. We next calculate a number of particles

Nf = CAr−2
nn, (1)

where A is the area of the analyzed region in the two-
dimensional image. The dimensionless coefficient C has a
typical value of 0.43, as we explain below. Finally, we examine
the particle-number graph, such as Fig. 3, and find the value
of Imin on its horizontal axis that corresponds to Nf on the
vertical axis.

The dimensionless coefficient C in Eq. (1) determines
how thick the slab will be. In this paper, we use C = 0.43,
which we determined empirically in the simulation described
in the Appendix for a slab of thickness

√
3rnn/4. We will find

in Sec. V that using this value for C, one can obtain g3(r) with
errors as small as 2%.

After selecting the filter level using Eq. (1), we again
compute g2(r) using the standard method (as described in the
Sec. I), including in the calculation only those particles that
are brighter than the filter level.

F. Determination of the number density

After obtaining g2(r) as a representation of g3(r), and in
particular the radius rnn of its largest peak, we can determine
the three-dimensional number density. The expression to use
for this purpose is

n3 =
3

4π
ρ3

r3
nn

, (2)

where ρ ≡ rnn/aWS is a dimensionless ratio of rnn and the
Wigner-Seitz radius aWS. The Wigner-Seitz radius in three-
dimensions is defined by

n3 =
3

4πa3
WS

. (3)

The value of the ratio ρ will depend slightly on the
interaction potential. For a Yukawa potential, we empirically
find ρ = 1.79 ± 0.07 using simulation data, as described in
the Appendix. The ±0.07 variation corresponds to a ±4%
systematic error; it arises from sensitivity to thermodynamic
parameters. The ±4% uncertainty in ρ will correspondingly
cause an uncertainty of ±12% in the number density obtained
using Eq. (2).

Equations (2) and (3) are intended only for isotropic
liquids. For an anisotropic system, such as a dusty plasma in
the presence of flowing ions, the method of this paper can still
be used to calculate g3(r) and n3. However, the results might
not precisely describe the position of particles in all three
directions since g3(r) with a scalar r cannot be an adequate
structural measure for an anisotropic system.

III. DEMONSTRATION EXPERIMENT

We demonstrate the method in Sec. II using an experiment
with a dusty plasma, which is a collection of micron-size
particles of solid matter immersed in a partially ionized gas-
discharge plasma. Depending on the conditions, the particles
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can arrange themselves into a structure like that of molecules
in a liquid or crystal.

The setup of our demonstration experiment is shown in
Figs. 1(a) and 2. A radio-frequency (RF) discharge plasma
is made using Ar gas at a pressure of 200 mTorr and 13
MHz RF power with a peak-to-peak amplitude of 114 V.
Melamine-formaldehyde polymer microsphere particles of
4.8 µm diameter are levitated and confined by electric fields,
which are shaped by a glass box. The particles self-organize.
Their positions resemble the arrangement of molecules in a
3D liquid. A slab of the particles is illuminated by a horizontal
sheet of 576 nm laser light, which has a Gaussian intensity
profile in the vertical z direction. Particles so illuminated are
viewed from above with a 12-bit camera at 50 frames/s, with a
resolution of 12.9 µm per pixel. Bit mapped images, recorded
as 16-bit files, are produced for each video frame. For further
details of the experimental setup, see Ref. 25.

IV. ILLUSTRATION OF METHOD
WITH EXPERIMENTAL DATA

We next present further details of the analysis method in
Sec. II, illustrating them using data from the experiment.

A. Particle-number graph

The key to obtain accurate determination of g3(r) and
n3 is the choice of a filter level. The main tool for choosing
the filter level is a graph of the number of particles that are
brighter than an adjustable level Imin, Fig. 3. This graph is
prepared after the 2D images are preprocessed to yield particle
coordinates (x, y) and pixel intensity Iij. For our demonstration
experiment, this preprocessing identified 279 particles in a
single image. (The filtering schemes described below will
select some of the brightest of these 279 particles.) From the
preprocessed data for this single image, we count the number
of particles that has at least one pixel brighter than Imin, and
we plot that count vs. Imin, yielding Fig. 3. We will refer to
this as “the particle-number graph.”

FIG. 2. Dusty plasma experiment setup. The illumination scheme is sketched
in Fig. 1(a).

FIG. 3. Particle-number graph. The intersection of asymptotes in this graph
provides the filter level for the first determination of g2(r ); in this case, the
resulting filter level is a pixel brightness of 36 900. Also shown is the filter
level for the second determination of g2(r ), which in this case is 45 000.
Data are from the experiment, using a laser sheet width of wz = 0.64 mm, as
in Fig. 1(b).

The particle count in Fig. 3 decreases monotonically with
increasing Imin. This trend is expected for an illumination
laser sheet that becomes less bright with greater distance z
from the laser sheet’s midplane. More particles near the edge
of the illumination laser sheet are eliminated in our filtering
process as Imin is increased. A higher filter level is equivalent
to reducing the slab width (in the z direction) of the particles
to be sampled.

B. First determination of g2(r )
Our determination of g2(r) as a representation of g3(r)

relies on selecting particles according to their brightness using
a filter level. In our first determination, we choose a filter level
as the intersection of the asymptotes in the particle-number
graph, as shown in Fig. 3. For our experiment, we find that two
asymptotes intersect at Imin = 36 900, as indicated by the two
dashed lines in Fig. 3. In the case of our experiment, this filter
level selects only 129 of the 279 originally identified particles.
Calculating g2(r) using the standard two-dimensional method,
for these 129 particles, yields the curve marked as scheme 1
in Fig. 4. A feature of interest in this graph is the radius rnn
of the first peak of g2(r).

C. Second determination of g2(r )
Our second determination of g2(r) relies on selecting

particles in a slab that has a thickness different from the first
determination. This is done by finding a different filter level
in two steps. First, we use the first determination of g2(r) to
estimate the radius rnn of its largest peak, yielding rnn = 0.51
mm for our experiment, as seen in Fig. 4. We then use Eq. (1)
to calculate Nf , which for our experiment is Nf = 76. Second,
using the particle-number graph Fig. 3, we find that the number
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FIG. 4. Pair correlation functions determined from experimental images.
Results marked as schemes 1 and 2 are from our two determinations, using
different filter levels.

Nf = 76 corresponds to Imin = 45 000, which is our filter level
for the second determination.

Again using the standard calculation method for g2(r), we
obtain our second determination of g2(r). For our experiment,
the result is also shown in Fig. 4, marked as scheme 2. We can
also now refine our estimate of rnn by fitting four data points in
the first peak of g2(r) to a parabola, yielding rnn = 0.543 mm.

D. Determination of number density

The number density n3 is determined using Eq. (2)
using the radius rnn of the largest peak of g2(r). Using
rnn = 0.543 mm in Eq. (2) with ρ = 1.79 yields our result
for n3, which is 8.552 mm−3. As discussed earlier, this
measurement could have an error of 12%, arising from the
uncertainty in ρ.

V. ACCURACY OF METHOD

The accuracy of our analysis method is evaluated using
data from a simulation. The advantage of a simulation, as
compared to an experiment, is that the true particle positions
are known, so that the true g3(r) and n3 are also known. We
generate synthetic images that are based on the true positions
and then perform the same analysis method starting with these
synthetic images exactly as we would with experiment images.
Comparing to the known values yields the measurement errors
for g3(r) and n3.

A. Simulation

We use a Langevin molecular dynamics simulation to
generate true particle positions (x, y, z) and the corresponding
true values for g3(r) and n3. This simulation mimics a 3D
volume of micron-size particles in a dusty plasma, tracking
individual particles by integrating the equation of motion for
each one. We confine N = 12 800 particles within a rectan-
gular volume of 132.0 × 81.0 × 79.4 λD3, corresponding to

Wigner-Seitz radius aWS = 2.4λD. The screening length λD is
a dusty plasma parameter explained in the Appendix; for the
simulation, in this paper, we chose λD = 0.083 mm, which is
typical for experiments. Figure 5(a) shows example results
for the simulated particle positions, with a 3D structural
arrangement that is typical of isotropic liquids. For further
details of the simulation, see the Appendix.

To assess the accuracy of our analysis method, we use the
method of Ref. 26 to generate synthetic images. Each particle
is assigned a brightness and is projected onto a 2D plane. The
laser illumination is assumed to have a Gaussian intensity
profile in the z direction, with a half-width wz = 150 µm.
In converting the brightness into pixel intensity, we integrate
the Gaussian intensity profile over each pixel’s area. After
integrating the intensity within a square pixel, a random error
is introduced into the intensity of that pixel.27 Figure 5(a) is
a snapshot in three dimensions, of the true particle positions,
with a darker color representing a brighter illumination. Figure
5(b) is a projection of these particles onto the x–y plane.
Assuming an 8-bit camera, as, for example, in the PK-4
experiment on the International Space Station,29–31 the pixel
brightness ranges from 0 to 255. The simulation mimics
experimental conditions, where an experimenter has followed

FIG. 5. True positions for the simulation in 3D (a), and their 2D projections
onto the x–y plane (b). A darker color indicates greater laser illumination.
A synthetic 8-bit monochrome bit-map image (c) is produced from the
projection. A computer file for this image can be downloaded from the
supplementary material.28
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the recommendation of Ref. 26 to adjust the camera exposure
so that just a few pixels in the image are saturated (at a level
of 255). In the PK-4 experiment, the camera resolution is
13.9 µm per pixel. Projecting the simulation volume onto
the x–y plane yields a 788 × 489 pixel monochrome bit-map
image shown in Fig. 5(c). This is the synthetic image we test
for errors.

B. g3(r ) and its error

We determine g3(r) from the synthetic images using the
same analysis method as in Sec. II. The synthetic images
are first preprocessed, yielding identified particles with their
coordinates and brightness data. We then prepare a particle-
number graph, Fig. 6.

For the first determination, we choose a filter level as
the intersection of two asymptotes, shown in Fig. 6. In this
example, the two asymptotes intersect as indicated by the two
dashed lines so that Imin = 235 is chosen as our first filter
level. We then use the standard 2D method to compute g2(r)
including only the 98 particles that are brighter than this filter
level. The result for g2(r) is shown as symbols in Fig. 7(b). For
comparison, we also show the true g3(r) as a smooth curve. We
see that even for this first determination, our method is already
achieving reasonable accuracy; the symbols in Fig. 7(b) almost
match the smooth true curve.

Also shown in Fig. 7(a), to demonstrate the importance of
the filter level, is a pair correlation function computed with no
filtering. We see that g2(r) determined with unfiltered particles
has much larger errors than when filtering is used.

Our second determination of g2(r) is shown as symbols in
Fig. 7(c). This result is calculated using 265 particles instead
of 98, as selected by our second filter level 174. (To choose
the second filter level we used the measurement rnn = 4.2 λD
from g2(r) in Fig. 7(b) to yield a desired number of particles
Nf = 265 as shown in Fig. 6, corresponding to a filter level
of 174.) Comparing to the true g3(r), we see that the second
determination of the pair correlation function from Fig. 7(c)
has been refined, so that the agreement with the true g3(r) is
quite good.

To continue our test, we seek a single number that
quantifies how closely the determined g2(r) matches the true

FIG. 6. Particle-number graph from synthetic images. Two filtering levels
are chosen using the same two schemes as for demonstration experiment.

FIG. 7. Comparison of pair correlation functions: 3D accurate (smooth
curves) and 2D measurements (symbols). The result in (a) is calculated
using unfiltered particles. Results determined using our method with filtered
particles: (b) first determination with a filter level of 235 and (c) second
determination with a filter level of 174. We expect that for most applications,
the refinement provided by the second determination is sufficient.

g3(r). We do this two ways. First, we calculate a fractional
root-mean-square (rms) error 1.5rnn

0 [g2(r) − g3(r)]2dr 1.5rnn

0 g3(r)dr
. (4)

The integration limits correspond to the first minimum in the
pair correlation function. The data for Eq. (4) are discretized
in position, so that the integrals in Eq. (4) are computed
numerically, using Origin graphics software. The result for
the fractional rms error, calculated for our synthetic image,
is 6.3% and 4.6% for the first and second determinations of
g2(r), respectively.

Second, we evaluate an error using only the first peak
in the pair correlation function. As seen from Figs. 7(b) and
7(c), the first peaks are taller than that for the true g3(r). The
error is 10% and 2% for the first and second determinations,
respectively.

C. Number density and its error

As in the experiment, we obtain the number density
using Eq. (2). We use a measurement rnn = 4.32λD from the
first peak of g2(r) in Fig. 7(c). The number density is then
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calculated to be n3 = 0.0170λD−3. The true number density is
n3 = 0.0173λD−3, so that the error of our determined number
density is about 2%. As discussed earlier, in general, n3 deter-
mined by our method could have an uncertainty of as much
as 12%, due to the unknown value of ρ for an experiment.

VI. CONCLUSION

We demonstrated that n3 and g3(r) for a three-dimensional
sample can be obtained with good accuracy using only the
(x, y) coordinates and the brightness of each particle. This
determination requires a 2D image of a slab of particles in a
3D volume. The advantage of this approach is that it can be
done using a simple imaging setup with a single camera.

Our method to determine g3(r) and n3 was demonstrated
experimentally using a 3D volume of micron-size particles
immersed in a glow-discharge plasma.

The pair correlation function is determined first, in two
steps with slightly different filter levels. The second filter level
is a refinement based on the first determination. The number
density is then obtained from the first peak of g3(r).

We tested the accuracy using simulation data, with known
true positions to generate synthetic images that resemble those
in dusty plasma experiments. We found that we can achieve
errors as small as 2% for both g3(r) and n3.

The choice of a filter level has a significant impact on
the accuracy. The main result of this paper is that there is a
method of choosing the filter level to achieve good accuracy.
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APPENDIX: SIMULATION

Here, we present the details of our Langevin molecular
dynamics simulation.

1. Method

We use a Langevin molecular dynamics simulation. We
integrate each particle’s equation of motion, which includes
the gas drag force, a fluctuating force corresponding to the
kinetic temperature Tp, particle-particle interaction due to a
Yukawa repulsion, and the electric force due to electrostatic
confinement. Here, we present a summary of the simulation
method; further details can be found in Ref. 32.

The physical system we simulate is described by two
dimensionless parameters. The Coulomb coupling parameter
is defined as

Γ =
Q2

4πε0aWSkBTp
,

where Q is particle charge. The screening parameter is

κ =
aWS

λD
,

where λD is a screening length. In this paper, the screening
length is λD = 0.083 mm. In a dusty plasma, the screening
length λD is due to the ambient ions and electrons that fill the
space between the micron-size charged particles.

Our simulation includes N = 12 800 particles confined in
a rectangular volume. To vary κ, we use different sizes for the
simulation volume. For κ = 2.4, the size is 131 × 81 × 69 λ3

D.
The other values used in our simulation are κ = 1.4 and 4. The
results presented in the paper are mainly for κ = 2.4; the other
values for κ were used in tests to generate empirical values
for the ratio ρ and the coefficient C of Eq. (1).

FIG. 8. Pair correlation function, g (r ), for 3D Yukawa system, using pa-
rameters typical for dusty plasmas. The first peak position is located near
rnn/a ≈ 1.79, for curves all that have a first peak height of gmax > 1.3.
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Our simulation covers a wide range of system states.
We vary Tp, with a coupling parameter in the range of
27 < Γ < 105. This range includes system states from non-
ideal gases to cold liquids. Figure 5(a) in Sec. V shows
a structural arrangement of a cold liquid for Γ = 312 and
κ = 2.4.

2. Pair correlation function g(r ) for 3D dusty plasma

Figure 8 shows examples of the 3D pair correlation
function g3(r), for a wide range of Γ and κ. These were
calculated from snapshots of the 3D particle positions from
our MD simulation data. For the parameters we simulate, the
height gmax of the first peak of g3(r) is in a range of 1 to 4.5,
corresponding to system states from non-ideal gases to cold
liquids.

We find that the first peak of g3(r) is centered at rnn/aWS

that is typically in a range between 1.4 for a hot liquid and 1.9
for a cold liquid near freezing point, depending on Γ and κ.
Averaging all the data having gmax > 1.3, we find an empirical
value

ρ ≡ rnn/aWS = 1.79 ± 0.07,

where the ± uncertainty is due to the range of values that
depend on Γ and κ. For a non-ideal gas with gmax < 1.3, the
ratio ρ should be chosen in the range 1.3–1.4.
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