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Polygon construction to investigate melting in two-dimensional strongly coupled dusty plasma
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The polygon construction method of Glaser and Clark is used to characterize melting and crystallization in a
two-dimensional (2D) strongly coupled dusty plasma. Using particle positions measured by video microscopy,
bonds are identified by triangulation, and unusually long bonds are deleted. The resulting polygons have three or
more sides. Geometrical defects, which are polygons with more than three sides, are found to proliferate during
melting. Pentagons are found in liquids, where they tend to cluster with other pentagons. Quadrilaterals are a
less severe defect, so that disorder can be characterized by the ratio of quadrilaterals to pentagons. This ratio is
found to be less in a liquid than in a solid or a superheated solid. Another measure of disorder is the abundance of
different kinds of vertices, according to the type of polygons that adjoin there. Unexpectedly, spikes are observed
in the abundance of certain vertex types during rapid temperature changes. Hysteresis, revealed by a plot of a
disorder parameter vs temperature, is examined to study sudden heating. The hysteresis diagram also reveals
features suggesting a possibility of latent heat in the melting and rapid cooling processes.
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I. INTRODUCTION

Dusty plasma consists of microparticles immersed in
plasma [1–3]. In laboratory experiments the microparticles
are often made of a dielectric material such as a polymer, and
they can range in size from nanometers to micrometers. These
microparticles collect electron and ion currents and become
charged. In laboratory dusty plasma, the charge is usually
negative and quite large, typically thousands of electronic
charges for micrometer-size particles. Dusty plasma like this
is sometimes termed complex plasma.

Due to the large charge, microparticles interacting among
themselves can have potential energies larger than their kinetic
energies; when this happens the microparticles comprise a
strongly coupled plasma. In general, unlike more common
weakly coupled plasmas, strongly coupled plasmas can exhibit
the properties of liquids or solids [4] because the particles are
highly collisional with their nearest neighbors. When these
Coulomb interactions are so dominant that a particle is trapped
by its nearest neighbors, the strongly coupled plasma acts
like a solid called a Wigner crystal. The melting transition
between solid-like and liquid-like phases of strongly coupled
plasmas has been studied for many years. Many of the earliest
melting theories and simulations were carried out assuming a
1/r potential, that is, the one-component plasma (OCP) model
[5–10]. Experiments appeared later, when apparatus to cool
and confine pure-ion plasmas was developed [11,12]. Later,
simulations of melting in plasma were carried out assuming a
Yukawa (Debye-Hückel) potential [13–17].

In the field of condensed matter physics, melting is often
studied using model systems, which usually allow direct
observation of the positions and motions of the constituent
particles. A colloidal suspension is an example of a model
system that allows imaging of the positions of particles, which
is ideal for an experimental study of melting at an atomistic
scale [18,19]. Dusty plasma can serve as another model system,
and it allows imaging of particles and their motion with video
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microscopy [20–22]. Dusty plasma also allows manipulation
of microparticles, for example, by applying radiation pressure
forces from laser beams to increase the kinetic temperature of
microparticles [23,24].

One approach to study melting theoretically and experimen-
tally is with two-dimensional (2D) systems. Melting experi-
ments have been reported with many 2D or quasi-2D physical
systems, including colloidal suspensions [25–27], electrons
on liquid helium surface [28], liquid crystal films [29],
vibrated granular monolayers [30], magnetic bubble arrays
[31], ferrofluid spikes [32], vortex lattices in superconductors
[33], and gases adsorbed on graphite surfaces [34]. Two-
dimensional melting experiments have also been performed in
dusty plasmas with a single layer of microparticles suspended
in a glow discharge plasma [23,35–39]. Quasi-2D melting
experiments have also been performed in dusty plasmas, with
multiple layers [40–44].

Two-dimensional melting is often described as being
mediated by defects. Defects play a central role in several
theories and descriptions of 2D melting [45–51]. Identifying
defects in 2D simulations, and in 2D experiments that allow
direct imaging, is commonly done using Voronoi analysis [52].

Here we will use polygon construction, an alternative to
Voronoi analysis developed by Glaser and Clark [49,50],
to analyze melting in a 2D strongly coupled dusty plasma
experiment. Beyond comparing the 2D structure in solid
and liquid states, we will also explore the development of
structure during rapid heating. The experiment we analyze was
previously reported, along with Voronoi analysis [53]. The
rapid heating that was employed in this experiment yielded
a short-lived superheated solid, that is, a structure with few
defects as in a solid but a temperature above the melting
point. Here we will further investigate the superheated solid,
exploiting the sensitivity of polygon construction.

We provide our source code for polygon construction
in the supplementary material [54]. Our intention is to
encourage readers to use it for other experiments or
simulations. We have validated this code by testing it using
a simulation with the same WCA potential as in [50] to verify
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that we obtain the same results (within statistical uncertainty)
for the abundance of various polygons. We carried out these
tests using the same temperature and density parameters as
in [50].

In Sec. II we review the motivation and method for
polygon construction, and compare it to Voronoi analysis. The
experiment and data analysis procedure are summarized in
Sec. III. In Sec. IV we present and interpret our results.

II. DEFECT IDENTIFICATION

A common way of identifying defects in 2D systems is
an analysis of coordination number, that is, the number of
nearest neighbors. This starts with measurement of positions of
individual particles [Fig. 1(a)]. Next, a map of bonds between
particles [Fig. 1(b)] is calculated by a Delaunay triangulation.
This map consists of triangles that fill the plane with a vertex
located at the position of each particle. The number of bonds at
a vertex is the coordination number. One can, as an additional
step, draw perpendicular bisectors of the bonds, yielding a
polygon map called a Voronoi diagram [Fig. 1(c)]. A perfect
2D lattice consists of triangles with hexagonal symmetry, and
in such a perfect lattice, the Voronoi polygons are all six sided.
Defects are identified as non-six-sided polygons, with five- or
seven-sided polygons being the most common. Two common
defect types are the disclination (which is identified by a single
non-sixfold polygon) and a dislocation (which is identified by
a pair of disclinations, one with five sides and the other with
seven), as seen in Fig. 1(c). The number of sides in a Voronoi
polygon corresponds to the number of nearest neighbors,
that is, coordination number. In this paper we will use the
term Voronoi analysis in a general sense to include methods
of analyzing coordination number with or without drawing
Voronoi polygons. Voronoi analysis has been used in 2D
colloid experiments [25–27,55,56] and in many dusty plasma
experiments, not only for planar 2D suspensions [38–43,57,58]
but also for surfaces in 3D suspensions [59].

Polygon construction [49,50] is a different way of charac-
terizing defects in a 2D structure with polygons. Like Voronoi
polygons, these polygons form a network that covers the entire
plane [Fig. 1(d)]. Unlike Voronoi polygons, however, the sides
of these polygons coincide with bonds identified by triangula-
tion, and there are usually fewer sides in the polygon. While
defects play a central role in both polygon construction and
Voronoi analysis, there are differences in the type of defects
that are identified and their significance. Geometrical defects
are identified in polygon construction, whereas topological
defects are identified by Voronoi analysis. In the polygon
construction method, polygons with four or more sides are
the geometrical defects. In Voronoi analysis, non-six-sided
Voronoi polygons are the topological defects. These two types
of defects do not have a one-to-one correspondence, as we
discuss below.

Glaser and Clark took the approach that an understanding
of melting requires an understanding of liquid structure. They
were motivated by Bernal [60,61] who compared solid and
liquid structure by identifying excess volumes in the packing
of hard spheres. These excess volumes, which correspond to
a local nontriangular packing, are especially common in 2D
liquids. For example, if four nearby particles are arranged so

FIG. 1. (Color online) A particle position map (a) produced
by analyzing an experimental image. This is used to construct
a triangulation map (b), which indicates bonds. The triangulation
map can be used to compute a Voronoi diagram (c), which depicts
topological defects, which are non-six-sided cells shown shaded. By
removing bonds that are opposite large angles from the triangulation
map, marked by bold lines in (b), we obtain the polygon construction
(d). Non-three-sided polygons in (d) indicate geometrical defects,
which do not have a one-to-one correspondence with the topological
defects in (c).

that their bonds are 90◦, there will be a larger empty volume
between them than if they were 60◦. Larger empty volumes
like these appear often in the 2D-liquid structure. Glaser and
Clark’s polygon construction identifies these excess volumes
and categorizes them according to the number of particles that
surround them.

Polygon construction starts with the same inputs as Voronoi
analysis: measurements of positions of individual particles
and a map of bonds. To identify excluded volumes using
this triangulation map, certain bonds are removed so that for
example two adjoining triangles are redrawn as a quadrilateral.
There are two practical approaches for this identification:
either remove an unusually long bond (which corresponds for
example to the diagonal of a quadrilateral) or identify a bond
that is opposite an unusually large angle between two of the
adjoining bonds. To illustrate this we have marked the bonds
selected by the latter approach in Fig. 1(b). Removing these
bonds yields the desired polygons, which can have four or more
sides [Fig. 1(d)]. This construction resembles a tiling, except
that the tiles are not exactly the same; they are individually
deformed so that their vertices coincide with particle locations.
We also note that this construction eliminates an ambiguity
that could occur in Delaunay triangulation, as we explain in
the Appendix.

The two types of defects measured by Voronoi analysis
and polygon construction are different. In Fig. 1 we see that
the geometrical defects identified by polygon construction do
not necessarily coincide with the positions of geometrical
defects identified by Voronoi analysis. For example, five to
seven disclination pairs in the Voronoi analysis [Fig. 1(c)]
are dislocations, that is, topological defects where rows of
particles terminate. Dislocations in a Voronoi diagram often
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appear near clusters of quadrilaterals or pentagons in a polygon
construction, but there is no unique one-to-one relationship
between the topological and geometrical defects. Moreover,
in polygon construction, quadrilaterals can appear where there
is some small distortion of the lattice far away from any
topological defects, as seen at the bottom of Fig. 1(d), and the
abundance of these quadrilaterals depends on the thresholds
chosen for removing bonds.

The polygon construction method has the advantage of
providing a gradation in the severity of geometrical defects.
Quadrilaterals are the least severe, while pentagons, hexagons,
etc. are progressively more severe. In contrast, defect identi-
fication using Voronoi analysis is usually a binary measure
when used in dusty plasma experiments, that is, at the location
of a particle, there is either a topological defect, or there is
not [42,53]. The gradation of defects in polygon construction
allows a greater sensitivity in identifying and classifying
disorder.

Although the polygon construction method has some
advantages when compared to Voronoi analysis, its use has
not yet become common. We find only two previous reports of
its use in the literature. It was introduced with 2D simulations
[49,50], and it was later used in an experiment with Cs atoms,
which were adsorbed on a Si-Ag surface, and imaged by
scanning tunneling microscopy [62].

III. EXPERIMENT AND ANALYSIS

The dusty plasma experiment that we analyze was first
reported in [53], where it was analyzed by the Voronoi
method. We briefly summarize the experimental conditions
and procedures here; further details are provided in [53], and
the apparatus is described in [24]. The dusty plasma is a
four-component mixture of neutral gas, positive argon ions,
electrons, and electrically charged microparticles. Argon gas
at 7 mTorr was partially ionized by applying a low power
rf voltage at 13.56 MHz with a 97 V peak-to-peak ampli-
tude. Monodisperse melamine formaldehyde microparticles of
diameter 4.83 μm were introduced into the plasma. The
mutual repulsion of these microparticles in the experiment can
be modeled by a Yukawa potential [63], with −4360e for the
electrical charge and 0.65 mm for the screening length. The
microparticles were levitated in an electric sheath above the
lower electrode. By limiting the number of microparticles
inserted into the plasma, a suspension was prepared with only a
single layer and a lattice constant b = 0.86 mm. In the absence
of manipulation, the microparticles self-organized in a solid
triangular lattice with sixfold symmetry.

Particle motion was tracked using video microscopy. A
digital camera operated at 55 frames/s imaged a 34.2 ×
25.6 mm2 region that contained about 1000 microparticles.
The particle positions, which are the starting point for our
polygon construction, were measured using an image analysis
procedure [64] for each particle in each video frame.

The experimenters controlled the kinetic temperature,
which describes the kinetic energy of random motion of the
microparticles. This kinetic temperature is not a thermody-
namic temperature because the surrounding gas and plasma
had different temperatures. The polymer material inside the
microparticles probably had yet another temperature that was

never hot enough to melt them. The melting that we study in
this paper is not for the polymer material itself, but rather for
the spatial configuration of microparticles that are suspended
in space.

The kinetic temperature was increased suddenly to cause
melting by abruptly applying laser manipulation. This laser
manipulation, which applied nearly random kicks to micropar-
ticles [24], was sustained for 55 s. Afterwards, laser heating
was abruptly turned off to allow a cooling due to gas friction.
The resulting time series for kinetic temperature is shown
in Fig. 2(a). In general, a melting point could be identified
several ways. We choose to use the phase diagram of Hartmann
et al. [17]. They identified the melting point by noting a sharp
decay of the bond-angular order parameter as temperature was
varied slowly in their 2D Yukawa simulation.

In polygon construction it is necessary to define a somewhat
arbitrary threshold when identifying unusually long bonds or
unusually large angles for bond removal. For bond length,
the threshold should be between b and

√
2b (where b is the

lattice constant for a perfect triangular lattice) in order to
identify quadrilateral arrangements. For bond angles, the
threshold should be between 60◦ and 90◦, again to allow
identifying quadrilateral arrangements. Here we use the bond-
angle approach, with the same 75◦ threshold as in [49,50].

We use this polygon construction three ways. First, to
determine how defects proliferate and cluster as melting
progresses, we inspect maps visually. Second, to characterize
disorder during the formation of a superheated solid and
subsequent melting, we count types of polygons, for example,
triangles and quadrilaterals. Third, to quantify our observations
of how defects tend to cluster, we will classify each vertex
according to the sequence of polygons around the vertex.

IV. RESULTS AND CONCLUSIONS

A. Comparing the structures of liquid and solid

Geometrical defects proliferate when sudden laser heating
is applied, and then diminish after laser heating is stopped, as
seen in Figs. 2(b)–2(g). Initially, before applying laser heating,
the collection of particles in the suspension had the structure of
a solid. The polygon construction for this solid consists mainly
of triangles [Fig. 2(b)]. Next, during the application of laser
heating, particles move and nontriangular polygons proliferate
in Figs. 2(c) and 2(d). During the cooling immediately after
the laser heating stopped, nontriangular polygons diminish in
Figs. 2(e) and 2(f). Finally, after the kinetic temperature drops
to its original value, we find that the geometrical defects in the
structure slowly become less numerous [Fig. 2(g)].

To identify which polygon types proliferate the most during
heating, we quantify them with order parameters P3, P4, P5,
and P6. These order parameters, defined by Glaser and Clark
[50], are a measure of the abundance of a particular polygon
type. For example, P3 and P4 are the respective number of
triangles and quadrilaterals, normalized by 2N , where N is
the number of analyzed particles. Time series results for these
order parameters are presented in Fig. 3.

These time series reveal that when comparing a liquid
to a solid, quadrilaterals are the most abundant geometrical
defect, followed by pentagons and hexagons. This ordering
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FIG. 2. (Color online) Results from an analysis of the sudden-
heating experiment of [53]. Starting with a low-temperature solid
structure, laser heating was suddenly applied and then later turned
off. (a) Time series of microparticle kinetic temperature reported
in [53]. Times marked b–g correspond to the panels below. (b)–(g)
Polygon construction: triangles are non-defects, while quadrilaterals,
pentagons, hexagons, etc. are geometrical defects. Starting with a
solid (b), after laser heating was turned on a proliferation of geo-
metrical defects is seen during melting, (c) and (d). Diminishment of
geometrical defects is seen during cooling, (e)–(g), as crystallization
gradually progresses.
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FIG. 3. (Color online) Time series for order parameters P3 to
P6 and the kinetic temperature (normalized by its maximum). The
abundance of geometrical defects, as indicated by P4 to P6, is greater
in a liquid than in the initial solid. Quadrilaterals, indicated by P4, are
the most frequent geometrical defect (in both a liquid and a solid),
while pentagons and hexagons are the next most frequent.

is as expected, since quadrilaterals are the least severe type
of geometrical defect. A similar ordering was observed in
WCA simulations [49,50]. Later, we will characterize the ratio
P4/P5, which reveals the relative abundance of these two kinds
of geometrical defects.

We find that geometrical defects in strongly coupled dusty
plasma tend to cluster, so that a polygon tends to be adjacent to
another polygon of the same type. For example, quadrilaterals
tend to adjoin other quadrilaterals, as was noticed previously
by Glaser and Clark in their WCA simulations [49–51]. This
tendency of quadrilaterals to cluster is noticeable in both our
solid [Fig. 4(a)] and our liquid [Fig. 4(b)]. Additionally, in the
liquid we observe that pentagons tends to cluster with other
pentagons, as can be seen in Fig. 4(b).

When quadrilaterals cluster with one another, the result is
often a ladder-like structure. Examples for our experiment are

FIG. 4. (Color online) Enlargements (a) of Fig. 2(b) for the initial
solid and (b) Fig. 2(d) for a liquid. Quadrilaterals tend to cluster
with other quadrilaterals, often forming ladder-like structures like the
examples encircled here. Likewise, pentagons tend to cluster with
other pentagons, as seen in (b).
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FIG. 5. (Color online) The first 12 vertex types, among the 25
classified in [50]. Vertices are at the locations of particles. In a perfect
2D crystal, only type A would be found.

circled in Fig. 4(a) for a solid and Fig. 4(b) in a liquid. These
ladder-like structures are often linear, but sometimes they bend
or branch. Similar structures were observed in a WCA liquid
simulation [49–51].

To classify how polygons adjoin, we use the vertex
classification scheme of Glaser and Clark [50]. They identified
25 common configurations of polygons arranged around a
vertex, and labeled them with the letters A–Y . Some of
the vertex types that occur most frequently are sketched in
Fig. 5. In a perfect crystal, one would observe only vertex type
A, where six triangles join.

To quantify the abundance of vertex types, we calculate the
vertex fraction [50], which is the ratio of vertices of a certain
type to the total number of vertices in the polygon construction.
For example, in Fig. 2(b) we count 62 occurrences of vertex
type B, and 1066 total vertices, so that we calculate the vertex
fraction for type B as 62/1066 = 0.058.

Under steady conditions, we find that in the dusty plasma,
the vertex fractions are quite different in the solid and the
liquid [Fig. 6(a)]. Vertex type A is the most common in our
solid, but not in our liquid. The most common vertices in
our liquid are B, C, E, F , and G, in that order. All those
vertex types include a geometrical defect, and they are all
more common than A in our liquid. It is interesting also to
compare our vertex fractions to those of the WCA potential,
because the interparticle potentials are different. Using the
WCA simulation data from [50], we prepared Fig. 6(b). We
find that in a liquid the vertex fraction for type A is much
smaller in our dusty plasma experiment than in the WCA
liquid. The other vertex fractions are generally more abundant
in our liquid, especially D, G, H, P, S, and W , which have a
vertex fraction in our experiment that is at least double that of
the WCA liquid.

When heating was abruptly turned on and off in the
experiment, we observe some unexpected transients in the
vertex fractions. The time series for vertex fractions (Fig. 7)
reveal that while some of the non-A vertex types become
gradually more abundant as the temperature is increased,
others do not. Vertex fractions for types such as C and D

increase monotonically with temperature, but those for E and
F (and to a lesser extent B) have prominent spikes near the
times that heating was turned on and off.

We can suggest two possible explanations for these transient
spikes. Perhaps vertex types E and F are metastable states,
with an intrinsic time dependence during both melting and

10-6

10-5

10-4

10-3

10-2

10-1

1
ve

rt
ex

fr
ac

tio
n

vertex type

0.88
0.85
0.83
0.80

density

A

CB

(b) WCA simulation [50]

A F K P U

10-6

10-5

10-4

10-3

10-2

10-1

1

ve
rt

ex
fr

ac
tio

n

vertex type

liquid

solid
solid (crystallization)

A

C
B

(a) dusty plasma experiment

A F K P U

FIG. 6. (Color online) Vertex fraction, calculated as the number
of observations of a particular vertex type such as A or B, divided by
the total number of vertices observed. (a) Dusty plasma experimental
data. Error bars based on counting statistics are too small to plot. Many
video frames were used in the calculation: 1000 frames for the solid,
2000 for the liquid, and 500 for the solid undergoing crystallization.
The latter is for the time interval 92.2–100 s. (b) Data from Table I
of Glaser and Clark’s simulation of a 2D WCA system [50], where
density was varied instead of temperature. Densities of 0.88 and
0.80 correspond to a solid near melting and a liquid near freezing,
respectively. Lower densities of 0.85 and 0.83 correspond to dense
liquids.

solidification. Alternatively, E and F might have no particular
time dependence and they might occur only in a narrow range
of temperature. Further studies, comparing results with both
slowly and rapidly varying temperature, would be helpful in
determining the special nature of vertex types E and F .
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FIG. 7. (Color online) Time series of vertex fractions for the
experiment. The vertex types shown contain at least one geometrical
defect. Some but not all of these vertex types are more common
in a liquid than a solid. Unexpectedly, for vertex type B, spikes
appear during sudden heating and again when laser heating is turned
off. More prominent spikes appear for vertex types E and F during
sudden heating, and again when laser heating is turned off, but during
steady conditions these vertex fractions are nearly the same in our
initial solid and the liquid.

B. Hysteresis diagrams

One can combine two time series, the kinetic temperature
and a measure of disorder, to prepare a hysteresis diagram.
In [53] this was done using, as the measure of disorder, the

defect fraction computed by counting defects in a Voronoi
diagram. Here we do the same, but with a different measure
of disorder based on polygon construction. We calculate this
disorder parameter as P4 + P5 + P6. Results for the hysteresis
diagrams are shown in Fig. 8(a) for the defect fraction
based on Voronoi analysis, and in Fig. 8(b) for P4 + P5 + P6

based on polygon construction. In both kinds of hysteresis
diagrams features are visible that indicate solid superheating
and the development of crystallization. Additionally, the
hysteresis diagram in Fig. 8(b) also reveals a pair of previously
unremarked features: one marked H that occurs during sudden
heating and one marked C that is seen during the early stages
of cooling after the heating is turned off. We discuss these
results in detail.

C. Solid superheating

A superheated solid has the structure of a solid at a temper-
ature above the melting point. Superheating can be achieved
by two methods: suppressing surface melting or transferring
a large amount of energy to a bulk solid in a brief time. The
latter method was used in the experiment analyzed here [53].

At the start of the experiment, the structure is solid, in the
lower left corner of the hysteresis diagram (Fig. 8). When
laser heating was applied, the kinetic temperature increases,
ultimately leading to a liquid in the upper right corner.
Later, during cooling, the temperature diminishes and the
structure gradually crystallizes, eventually returning to the
solid condition in the lower left corner. The signature of a
superheated solid is a horizontal row of data points after the
temperature exceeds the melting point, and this is identifiable
in both hysteresis diagrams, as indicated by the broken lines in
Figs. 8(a) and 8(b). After the brief lifetime of the superheated
solid, melting is completed with a rapid increase in disorder
but little further increase in temperature.

Polygon construction allows us to expand what was known
about the structure of a superheated solid. From our experi-
ments, we find that despite having more defects than a solid, a
superheated solid has quadrilateral and pentagon defects with
proportions that are like those for a solid, not a liquid. This
is shown in the time series of the quadrilateral to pentagon
ratio (Fig. 9). We expect this ratio to have a smaller value as
disorder increases, due to an increased proportion of pentagons
as compared to the less severe quadrilaterals. In Fig. 9 this ratio
is indeed much smaller for a liquid than for a solid. What is
interesting is that during the time interval of a superheated
solid, this ratio is almost the same as for a solid, not a liquid.
Thus, we conclude that the defect structure of a superheated
solid more closely resembles that of a solid than a liquid.

D. Crystallization

We can study crystallization by examining the development
after turning off laser heating. First there was a period of
rapid cooling, then crystallization. During crystallization, the
random kinetic energy remains nearly constant at a level, below
the melting point, and defects gradually diminish. Here we
report the results for vertex fractions during crystallization in
comparison to steady states, solid and liquid.

Comparing the vertex fractions during crystallization vs the
original solid [Fig. 6(a)] reveals that the fractions for vertex
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FIG. 9. Samples of the time series for P4/P5. This ratio dimin-

ishes as pentagons (which are a more severe geometrical defect)
become more abundant as compared to quadrilaterals. Each data point
here corresponds to one video frame. As judged by this measure of
defect severity, a superheated solid more closely resembles a solid
than a liquid.

types B–R are higher during crystallization than in the steady-
state solid. Only a few vertex types that contain pentagons
(S, T , U, V , and Y ) are more abundant during crystallization
than in a solid. Vertex type A, of course, is the most common
in a solid, and we have verified that its vertex fraction increases
with time during crystallization.

Hartmann et al. [65] performed an experiment with a similar
2D dusty plasma and found that crystallization occurred
with two time scales: a short one dominated by individual
particle motion and a longer one where crystallites undergo
collective rearrangement. Our data for crystallization in
Fig. 6(a) correspond to the longer of the two time scales.

E. Hysteresis features for sudden temperature changes

Two previously unremarked features can be observed in
the polygon-construction hysteresis diagram [Fig. 8(b)]. The
first feature is an upward row of data points marked H
that is observed in the sudden heating process. The second
feature is a downward row of data points marked C that is
observed during the cooling process. Both of these features
appear near the melting point, where there is a significant
change of disorder parameter without much change in kinetic
temperature. First we will comment upon the reasons why
these two features have a profound signature in the polygon-
construction hysteresis diagram [Fig. 8(b)] compared to the
Voronoi hysteresis diagram [Fig. 8(a)]. Then we discuss the
physical significance of these features.

The previously unremarked features H and C are visible
with a more profound signature when the hysteresis diagram is
prepared using a measure of disorder on polygon construction
[Fig. 8(b)]. We attribute the clarity in detecting these features
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to the sensitivity of the polygon construction method due to
the gradations of geometrical defects as compared to the more
binary measure of the presence of topological defect.

Feature H in the sudden heating process suggests that
(at least in this experiment) sudden melting is a three-step
process. First, when the temperature has reached the melting
point in the experiment, there is a marked increase in disorder
without any temperature increase, as indicated by the vertical
row of data points enclosed by a box. Second, there is a
superheated solid, revealed by a horizontal row of data points.
Third, the superheated solid melts with little further increase
in temperature, and this appears as another vertical row of data
points.

Both features H and C appear as vertical rows of data
points in Fig. 8(b), suggesting that the underlying physical
process may involve a latent heat, which would be an indication
of a first-order melting transition. In general, the latent heat
in a first-order transition corresponds to a change in internal
potential energy, that is, the potential energy for interparticle
interactions, without a change in temperature. Our disorder
parameter serves as an indirect indication of a change in the
potential energy landscape. To make a definitive conclusion of
whether these features indicate a first-order transition would
require measurements of other thermodynamic quantities such
as the internal potential energy of the system.

Perhaps one reason that feature H has not been previously
remarked upon is that earlier solid-superheating experiments
did not allow the preparation of a hysteresis diagram like
Fig. 8(b). This diagram requires data for both structure and
kinetic temperature. Previous solid-superheating experiments
relied on diagnostics, for example electron diffraction, that
indicate structure but provide no time-resolved data for kinetic
temperature. Thus, at present it is not known whether feature
H is common to physical systems other than dusty plasmas.

One might ask whether feature H in the sudden heating
process is related to the formation of the metastable states,
vertex types E and F that we detected in the time series
for vertex fractions (Fig. 7). Feature H occurs from 27.5 to
27.8 s, whereas the spikes for vertex types E and F in Fig. 7
are observed later during sudden heating at 27.95 and 28.04 s,
respectively. This suggests that feature H is not related to the
formation of metastable states.

We have not yet identified any special features in the
structure while feature C occurs, during cooling. Certainly the
abundances of the different polygons changes during feature
C, as indicated by the value of P4 + P5 + P6 in Fig. 8(b).
However, we determine by a qualitative inspection of polygon
constructions, during the time interval corresponding to feature
C, that there were not any other developments, such as the
formation of crystallites.

V. SUMMARY

The polygon construction method of identifying geo-
metrical defects in 2D structures is used to analyze data
from a strongly coupled dusty plasma experiment in several
conditions: a solid, a superheated solid during rapid heating, a
liquid, and a solid undergoing crystallization. We exploit the
advantage of polygon construction that it distinguishes defects
according to severity.

Comparing solids and liquids under steady conditions, we
find that while both quadrilaterals and pentagons become more
numerous in a liquid, their ratio does not remain constant.
We find that the quadrilaterals tend to cluster with other
quadrilaterals in ladder-like structures in both our solid and
liquid. We also find that the pentagons tend to cluster with other
pentagons in our liquid. In order to classify the arrangement
of polygons, we measure the vertex fractions. We find that
almost all vertex types, except for type A which is typical for
a hexagonal crystal, become more numerous in a liquid as
compared to a solid.

The hysteresis diagram we prepared from the polygon
construction suggests that sudden heating has three steps.
First, at a temperature near the melting point, there is an
increase in disorder without much change in temperature.
Second, a superheated solid appears at temperatures above
the melting point. Third, the superheated solid melts, yielding
a liquid. The first of these three steps was not remarked
upon previously, when a hysteresis diagram was prepared
using Voronoi analysis. Further experiments or simulations
are needed to determine whether this step commonly occurs
during sudden heating.

Finally, polygon construction is used to characterize the
nature of geometrical defects present during the transient con-
ditions of solid superheating and crystallization. Geometrical
defects in a superheated solid are more numerous than in a
solid, and less numerous than in a liquid. We find that the
nature of the geometrical defects in the superheated solid more
closely resembles that of a solid than a liquid. This conclusion
was made possible by polygon construction, which allows a
calculation of the ratio of quadrilaterals (which are less severe
geometrical defects) to pentagons (which are more severe).

Additionally, we also observe a transient burst in the
abundance of certain vertex types during rapid changes of
temperature, for both heating and cooling. The vertex types
that exhibit the most profound bursts are E and F , which each
contain a single quadrilateral. Further studies are needed to
determine whether these vertex types are abundant only in a
narrow temperature range, or whether they are a metastable
configuration with a short lifetime.
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APPENDIX: TRIANGULATION

Polygon construction starts with measurements of individ-
ual particle positions and map of bonds calculated by Delaunay
triangulation. Particle positions correspond to vertices in
the triangulation and bonds correspond to the the lines
drawn between these vertices. Delaunay triangulation usually
identifies bonds uniquely for a given configuration of particle
positions. But under extremely rare circumstances it is possible
for this bond calculation to be ambiguous. Here we discuss this
ambiguity in Delaunay triangulation and discuss how it does
not affect polygon construction.
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FIG. 10. (Color online) Sketch of four vertices arranged nearly
in a square. (a) Usually a small circle (circumcircle) can be drawn
so that it passes through only three vertices. (b) Uncommonly, the
circumcircle passes exactly through four vertices, so that Delaunay
triangulation has two possible outcomes, one with bond ac and the
other with bd .

Bonds are calculated by Delaunay triangulation which
includes a criterion that no vertex should lie inside a circle
that passes through any other three vertices. A circle passing
through each of the three vertices of a triangle is a circumcircle
of that triangle. For example, consider the arrangement of

four particles in Fig. 10(a). The circle is the circumcircle of
triangle abd and vertex c lies outside. In this case, Delaunay
triangulation has an unique solution.

Ambiguity of bonds calculated from Delaunay triangulation
arises when a fourth vertex lies exactly on the circumcircle of
a triangle. For example, consider the vertex arrangement in
Fig. 10(b), where vertex c lies on the circumcircle of triangle
abd. In this instance, Delaunay triangulation may yield two
different diagrams, one with bond bd shown with a solid
line, and the other with a bond ac shown with a dashed
line.

Polygon construction is not sensitive to this ambiguity
because ambiguous bonds in Delaunay triangulation are
generally long, and long bonds are removed in polygon
construction. In Fig. 10(b) both of the ambiguous bonds and
bd are longer than the other bonds, and they are opposite
angles that are larger than our threshold angle. Thus, both
ac and bd would be removed in the polygon construction.
This illustrates an advantage of polygon construction: its
outcome is unambiguous, even when Delaunay triangulation
is ambiguous.
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