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Skewness of steady-state current fluctuations in nonequilibrium systems
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A skewness of the probability for instantaneous current fluctuations, in a nonequilibrium steady state, is
observed experimentally in a dusty plasma. This skewness is attributed to the spatial asymmetry, which is
imminent to the nonequilibrium systems due to the external hydrodynamic gradient. Using the modern framework
of the large deviation theory, we extend the Onsager-Machlup ansatz for equilibrium fluctuations to systems with
a preferred spatial direction, and provide a modulated Gaussian probability distribution, which is tested by
simulations. This probability distribution is also of potential interest for other statistical disciplines. Connections
with the principles of statistical mechanics, due to Boltzmann and Gibbs, are discussed as well.
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I. INTRODUCTION

Recently, a non-Gaussian structure of fluctuations was
reported for the electric charge density and currents in quantum
and nanoscale systems [1–3]. In particular, the skew asymme-
try of the fluctuations’ probability distribution was found not
only for the nonequilibrium current [3], but also for the charge
density of an equilibrium system in the presence of an external
magnetic field. This discovery contrasts with the original
theory of fluctuations due to Onsager and Machlup [4,5], who
predicted a Gaussian probability distribution of the equilibrium
fluctuations.

In this paper, we provide evidence of the skew fluctuations
for a manifestly macroscopic system in a nonequilibrium
steady state (NESS), using laboratory experiments. We study
a hydrodynamic shear flow of a two-dimensional (2D) dusty
plasma, a complex noble gas plasma with massive charged
dust particles [6–9]. The fluctuating quantity will be the
instantaneous value of a current, which persists in the NESS
system due to an externally applied constant gradient. In our
study, the current is the xy component of the pressure tensor
Pxy or, in other words, the viscous flux of the x component of
the linear momentum in the y direction. The momentum flow
is maintained by the shear rate, a transverse gradient of the
streaming velocity.

To illustrate the skewness of a distribution, we sketch in
Fig. 1 three probability densities as functions of a variable J :
(a) is symmetric about zero; (b) has the same shape as (a), but is
displaced from the origin without skewness; (c) is both shifted
from the origin and skewed. We will find that the probability
distributions of instantaneous current fluctuations in a NESS
are not only shifted, with respect to the equilibrium case, but
also skew, as sketched in Fig. 1(c).

The skewness of a distribution is characterized by the third
probability moment. For a sample of M measurements, the
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skewness is calculated from

1

Mσ 3

M∑
i=1

(Ji − J̄ )3, (1)

where Ji , J̄ , and σ are, respectively, ith value of the
measurements, the sample mean, and its standard deviation.

In the presence of a hydrodynamic gradient, there is a
preferred spatial direction of the flow, which reduces the space
symmetry of the system with respect to that of its equilibrium
state. This leads to a bias of the current fluctuations, so that
their probability distribution is skew in the direction of the
flux. Hence, the fluctuations, which enhance the flow, are
favored over the opposite ones. While being subtle, this bias
remained unnoticed by earlier theories and experiments, which
were mainly concentrated on the near equilibrium regimes.
Nonetheless, it becomes quite evident in far from equilibrium
systems, where both the strength of the macroscopic current
and the skewness of fluctuations increase substantially.

As already mentioned, a similar observation was made
not only for a NESS current. In [3], fluctuations of the
charge distribution were found skew for an equilibrium
system, subject to an external magnetic field. There it was
argued that the presence of the magnetic field reduces the
symmetry of the system and alters statistical properties of
the microscopic stochastic noise. Consequently, the Gaussian
noise, considered by Onsager and Machlup in their dynamical
theory of fluctuations, may not be adequate to describe systems
with a preferred spatial direction.

To make a progress, we disregard the issues of fluctuations
dynamics, which still needs a substantial revision. Using a
suitable extension of the Onsager-Machlup original ansatz, we
developed a modulated Gaussian (MG) distribution to account
for the skewness of fluctuations. This MG distribution is a
natural model of the time-independent probability density for
fluctuations in systems with a preferred spatial direction. A
special case of the MG is the normal distribution, used in [4,5],
thus, the earlier theory of Onsager and Machlup is consistent
with ours.

We expect that the MG will describe the fluctuations of
instantaneous currents in a variety of physical systems. While
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FIG. 1. Illustration of probability distributions p, as a function of
J , with and without skewness: (a) a Gaussian distribution symmetric
about the origin with p(J ) = p(−J ); (b) a Gaussian distribution,
which is symmetric about J = A with p(A + J ) = p(A − J ) and
satisfies the Gallavotti-Cohen relation Eq. (2); (c) an asymmetric
skew-normal distribution [10], which is skew to the left. For the
curve (c) there is no constant B, such that p(B + J ) = p(B − J ) for
any J . Its negative skewness implies that p(A − �A) > p(A + �A)
for any �A > 0.

our theory concludes with the prescription that the modulated
Gaussian (MG) describes the instantaneous fluctuations, its
parameters have only a statistical meaning. Their physical in-
terpretation might not be possible, until the original stochastic
dynamics of Onsager and Machlup is properly generalized for
asymmetric systems.

Note that the temporal asymmetry, predicted for the
trajectories of the fluctuations in the NESS by the macroscopic
fluctuation theory (MFT) [11,12], differs from the bias of the
time-independent probabilities of the NESS fluctuations, stud-
ied here. The MFT uses the time irreversibility of the NESS,
which generalizes the time reversibility of an equilibrium
system in the Onsager-Machlup theory of fluctuations. This
approach, among other things, predicts various properties for
the evolution of the NESS current fluctuations. Nonetheless,
it alone might not be able to provide a model for their
probability distribution, analogous to the Gaussian model in
the Onsager-Machlup theory. The MG we proposed fills in this
gap between the present theories of equilibrium and the NESS
fluctuations of currents.

The topic of this paper is also different from fluctuation
relations, such as the Galavotti-Cohen fluctuation theorem
[13–18]. These relations deal with a distribution p(J ), which
is asymmetric in a way that

p(J )/p(−J ) = exp{−κAJ }, (2)

where κ and A are constants.
For example, this relation is satisfied by a Gaussian (b)

centered at A in Fig. 1 (e.g., [19]). In other words, the
Gallavotti-Cohen fluctuation theorem Eq. (2) can be satisfied
by a distribution with zero skewness [20,21]. The class of such
functions p(J ) is actually not limited to the Gaussian family.

The fluctuation relations do not apply to instantaneous
currents since they describe distributions that have been

averaged over a significant time interval. However, one can
use the MG expression to model the probability density of
these time-averaged currents. In [22,23], their distribution was
characterized by the cumulants. The time-averaged currents
should, in principle, have the same kind of skew bias, which
implies a nonvanishing third cumulant. This might lead to
a connection between the MG parameters and the results of
MFT. Nontheless, this idea is not pursued in this study.

Our laboratory evidence of the skew asymmetry is sup-
ported by our molecular dynamics (MD) simulations. These
computations were carried out for a 2D system, which imitates
our experiments, with particles interacting through the Debye-
Hückel (DH) potential. To demonstrate a broader extent of our
theory, also 3D simulations of a fluid were conducted, using
the Weeks-Chandler-Andersen potential (WCA [24]) [25]. In
particular, we consider further a system with N particles of
equal mass m. The current Pxy , caused by an externally applied
shear rate γ , is [26]

Pxy = L−D

N∑
i=1

(
pxipyi

m
+ Fxiyi

)
. (3)

Here, LD is the area or volume of the system, depending on
the number of its physical dimensions D; for the ith particle,
yi , pxi , pyi , Fxi are, respectively, the y coordinate, the x and y

components of the peculiar1 linear momentum, and the force
acting in the x direction due to the interactions with all other
particles.

Finally, the MG distribution, derived in this paper, in
principle, could also be relevant for other disciplines, which
use the large deviation (LD) theory [27]. The LD theory studies
deviations of an average over a large number of random vari-
ables, from its most likely value. Our formulation of the MG
relies solely on this approach [27]. Thus, we regard the current
of interest as a randomly fluctuating quantity, which satisfies
the principles of the LD theory. Therefore, the MG probability
distribution is not limited to its applications in physics.

II. NON-GAUSSIANITY OF THE CURRENT
FLUCTUATIONS

The experimental results, discussed in this section, were
previously published in [28]. There, we observed a shear flow,
driven by laser manipulations in a monolayer of a dusty argon
plasma. The motion of dust particles was confined to a plane
and tracked using video cameras, which allowed us to study
properties of this system at a level of detail, similar to that of
MD simulations. Below we provide a further analysis of the
data, acquired earlier in [28]. We computed long time series
of Pxy for three separate regions of the flow with the shear
rate γ = 3.4 s−1 and average particles number 〈N〉 = 58. This
allows to neglect the time correlations in the collected sample
of measurements.

The histogram for Pxy in Fig. 2, obtained from our
experiments after subtracting the sample average P̄xy to
emphasize its skew asymmetry, reveals a skewness, which
we attribute to the presence of the applied shear. The bias of

1That is, relative to the streaming velocity of the fluid.
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FIG. 2. Histogram for p(Pxy − P̄xy) from our experimental mea-
surements. The skewness of the distribution can be detected by
looking at the peak of the Gaussian fit at the origin, which is shifted
slightly to the left from the maximum of the probability density. The
inequality P̄xy < P̃xy agrees with the observed negative skewness.

the probability density towards the negative values is small,
which is possibly a reason that it remained unnoticed so far by
experimenters.

To confirm the statistical significance of our experimental
result, we applied the statistical framework of hypothesis
testing [29,30] as well as the bootstrap techniques [31]. These
showed that the probability of error in the assessment of
skewness was less than 1%.

The MG distribution, which will be derived in Sec. III,
accounts for the skewness (skw{Pxy}) and the excess kurtosis
(krt{Pxy})2 of the sample, with an accuracy up to the fifth
significant digit. It fits the experimental data better than the
Gaussian, with its error δMG

err being three times smaller than δG
err

for the Gaussian, as reported in Fig. 2.
Our MD simulations show that the asymmetry of p(Pxy)

increases with the magnitude of the shear rate. In Fig. 3, the
observed skewness, indicated by the cross symbols, becomes
progressively negative with increasing γ .

Indeed, comparing Fig. 4(a) and Fig. 4(b), one observes that
the Gaussian model is quite inaccurate for the larger shear rate
of γ = 7.681 s−1 due to the notable skew asymmetry of the
underlying probability distribution. To neglect the effects of
time correlations, we made long pauses between consecutive
measurements of Pxy .

The MG model agrees very well with the histogram data of
our simulations in Fig. 4. The fitting error δerr is reduced more
than threefold at a low shear rate of 0.961 s−1 by using the MG
instead of Gaussian model, and it is reduced 12-fold at a higher
shear rate of 7.587 s−1. While, of course, the Gaussian cannot
account for the skewness of the distribution, the MG does it
quite well, as follows from the close agreement between the
skewness observed in Pxy data and the skewness of their MG
fit in Fig. 3.

The skew asymmetry of p(Pxy) is a characteristic property
of the current fluctuations in a NESS. The skewness of their

2That is, the third and fourth order moments of the probability
distribution, respectively.
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FIG. 3. Skewness of a time series Pxy(t) as a function of γ for
our 2D DH plasma simulations in SI units. The circles refer to the
skewness computed from Eq. (1), with the error bar estimated by the
bootstrap [31]. The crosses stand for the skewness of the MG fit.

probability distribution has the same sign as the average P̄xy

and the most likely value P̃xy , as can be seen in Fig. 4.
When approaching equilibrium conditions, the bias of p(Pxy)
gradually disappears. It vanishes completely only at the
equilibrium point γ = 0.

The skew asymmetry of the fluctuations appears in the third
order probability moment and, consequently, is more subtle
than the phenomenon of the fluctuations themselves, which
are of the second order. This implies that when the size of
the system approaches a macroscopic limit, while the variance
of the current probability distribution decreases, the skewness
decays even faster. However, the asymmetry of the distribution
still persists.

III. MODULATED GAUSSIAN DISTRIBUTION

To account for the deviations from the Gaussian structure
of fluctuations, which was suggested in the theory of Onsager
and Machlup, we repeat their initial ansatz [Eq. (2–11) in [4]].
Namely, we are looking for a probability density function of a
fluctuating variable x in the form

p(x) = exp

{
S(x)

kB

}
, (4)

where kB is Boltzmann’s constant and S is some function
of x.

The theoretical justification of the treatment that follows
below is provided in the context of LD theory and can be found
in the Appendix with other details. Here we only mention that
Onsager and Machlup interpreted S(x) as the entropy of the
macroscopic state x. Since we are going to extend their idea to
NESS, S can not be connected with the equilibrium entropy. In
the modern framework of the LD theory [27], S(x) is related
to the LD function.
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FIG. 4. Histograms for the probability density p(Pxy) from our 2D DH plasma simulations in SI units (N = 60 and N/LD = 4.7 mm−2):
(a) a low shear rate, (b) a high shear rate. The fitting error of the MG δMG

err is of the same order at the low and high shear rates, while the fitting
error of the Gaussian δG

err notably grows for the larger γ , which indicates the increase of non-Gaussianity with the shear rate.

As in [4] we proceed expanding the function S(x) from
Eq. (4) in a power series about the most likely (macroscopic)
value x̃, which is the global maximum of S(x), up to a
prescribed order n. Denoting Si = diS(x)/dxi |x=x̃ , we obtain

S(x)

kB

� S(x̃)

kB

+
n∑

i=1

Si

i!kB

(x − x̃)i

def= − S̃

kB

+ �S(�x)

kB

, respectively, (5)

which defines a constant S̃ and a fluctuation cost function
�S(�x) of the deviation �x = x − x̃.

Since S(x) is expanded in Eq. (5) about its global
maximum x̃, we have S1 = 0. Due to the symmetry, which
does not favor any direction of fluctuations in equilibrium
systems considered by Onsager and Machlup, it follows that
�S(x − x̃) = �S(−x + x̃). Hence, using a trivial substitution
y = x − x̃, one can easily find that in such systems S3 = 0.

Summarizing the above arguments, the approximation
order n = 2 in Eq. (5), as chosen by Onsager and Machlup [4],
is actually accurate up to the fourth order. Absence of the third
order term S3, as it occurs in a system without a preferred
spatial direction, leads to an approximate Gaussian structure
of fluctuations.

Naturally, to account for the skewness we have to use a
higher order of approximation, retaining only the property
S1 = 0:

�S(�x) = S2

2
�x2 +

n∑
i=3

Si

i!
�xi

= S2

2
�x2

{
1 + 2

n∑
i=3

Si

i!S2
�xi−2

}

= S2

2
�x2�n, (6)

where we call the expression between the curly braces a
modulating factor �n, to which the MG distribution owes its
name.

Then, Eq. (4), together with Eqs. (5) and (6), give

p(x) = exp

{
− S̃

kB

+ �S(�x)

kB

}
= exp

{
− S̃

kB

+ S2�n

2kB

�x2

}
,

(7)

where the normalization of the total probability requires that

exp

{
S̃

kB

}
�

∫ ∞

−∞
dx exp

{
�S(x − x̃)

kB

}
.

For p(x) to be integrable in Eq. (7), n has to be restricted
to even integers. When n = 2, i.e., �n ≡ 1, Eq. (7) turns into
a Gaussian distribution. Taking the next admissible order of
approximation n = 4, we replace the three parameters Si (i =
2,3,4) in �4 by another set of three parameters: scale � > 0,
asymmetry A, and non-Gaussianity B � 0, respectively. These
parameters acquire a clear statistical interpretation, when used
in Eq. (7):

p(x) ∝ exp

{
�S(x)

kB

}

= exp

{
−�x2

2�2

[
1 − 2

√
2/3AB

�x

�
+ B2 �x2

�2

]}
. (8)

Equation (8) is the modulated Gaussian distribution. The di-
mensionless constant B controls the level of non-Gaussianity.3

Furthermore, A causes the asymmetry of p(Pxy), which is
skew to the left (right), when A < 0 (A > 0), respectively. The
coefficient 2

√
2/3 of the term with A in Eq. (8) was chosen

to make �S(x) a nonconcave function of x for −1 � A � 1.4

Violation of the nonconcavity condition would admit more
sophisticated shapes of the probability density because of
additional critical points.5 Unless there is a physical argument
for these special points, when fitting a statistical sample,

3p(Pxy) is Gaussian when B = 0.
4To check this, one needs to solve a quadratic inequality

d2�S(x)/dx2 � 0 for x.
5That is, the points of change between the convex and concave

behavior.
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numerical artifacts may emerge due to the approximate nature
of Eq. (8). To avoid this, the desired MG expression should be
restricted to nonconcave solutions.

The superior accuracy of MG over the Gaussian approx-
imation was already demonstrated in Sec. II. The above
theoretical arguments, though, miss a proper generalization of
the stochastic dynamics suggested by Onsager and Machlup,
which would lead to the skew time-independent probability
distribution of fluctuations.

IV. CONCLUSION

Our experiments and numerical simulations demonstrate
the skewness of the probability distribution for instantaneous
fluctuations of the viscous shear current in a NESS. We
attribute this property to the asymmetry of our system in
the presence of a preferred spatial direction of the flow. By
the same argument, the skewness of instantaneous current
fluctuations, as well as that of their time averages, should
also be expected in similar situations, e.g., for a heat flux in
the presence of a constant temperature gradient.

The skewness of NESS current fluctuations notably in-
creases for large externally applied forces, as observed in
our and similar studies [1–3]. Therefore, a non-Gaussian
probability distribution is especially important to describe
fluctuations far from equilibrium or equilibrium systems
subject to a large external potential fields.

The MG probability distribution accurately describes the
probability of fluctuations and, in particular, their skew
asymmetry. This model is justified here using the LD theory. It
extends the Onsager-Machlup original idea, by considering
higher order terms in a power series expansion of the
LD function. We verified its accuracy experimentally and
numerically.

The skew asymmetry of the fluctuations’ probabilities
poses a new constraint on the LD function of the current
fluctuations. Since this function must manifest this asymmetry,
it should consist not only of a quadratic form, which leads
to the normal distribution, but involve some asymmetric
contributions. This is consistent with particular results found
for some simple mathematical models of the NESS [32,33] and
prior observations in quantum and nanoscale systems [1–3].

In the Appendix, the probability of current fluctuations is
also characterized by their entropy cost in the Boltzmann
approach to statistical physics [34]. The entropy cost was
identified as the decrease of the LD function produced by
a fluctuation from the most likely state of the system. This
approach may be further related with that of a fluctuation free
energy (cf. [31]).

A possible direction for future developments is the dynami-
cal theory of current fluctuations [21]. A suitable correction of
the Langevin equation, suggested by Onsager and Machlup
for equilibrium fluctuations [4,5], is a viable approach to
deal with this problem. There are various modifications
of the Langevin equation, which produce a skew time-
independent probability distributions, e.g., a non-Gaussian
noise. Thus, a proper dynamical representation, which would
account for the preferred spatial direction and the time
irreversibility, addressed in the MFT approach, remains yet to
be found.
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APPENDIX: THE MODULATED GAUSSIAN AND THE
LARGE DEVIATION THEORY

In this Appendix, we provide the theoretical details of
Eq. (4) for x = Pxy . Considering each term of the summation
operator in Eq. (3) as a random variable, we assume that
the spatial average Pxy satisfies the LD principle. From this
assumption, note the following (cf. [27]):

(1) There exists a non-negative rate function, which is also
called the LD function:

I (Pxy)
def= − lim

N→∞
[S(Pxy)/(NkB)] (A1)

for the exponential decay of the probability density

p(Pxy) ∼ exp[−NI (Pxy)]. (A2)

(2) This rate function has a global minimum at the most
likely value of Pxy = P̃xy , which satisfies

I (P̃xy) = 0. (A3)

Since by definition �S(�Pxy) in Eq. (5) is zero for the most
likely value P̃xy , Eqs. (A1), (A3), and (5) suggest

I (P̃xy) = lim
N→∞

S̃

NkB

= 0,

I (Pxy) = − lim
N→∞

�S(�Pxy)

NkB

. (A4)

Moreover, invoking Eq. (A2) of the LD principle, for a
finite N we pose that Si ≈ −NdiI (Pxy)/dP i

xy |Pxy=P̃xy
. Then,

it follows that the first derivative S1 vanishes and that the
second derivative S2 is positive6 because I (P̃xy) is the global
minimum of the rate function by definition. This allows us to
express �S(�Pxy) as done in Eq. (6).

These developments can be readily connected with sta-
tistical mechanics. According to the Boltzmann principle,
given a measure of system’s microstates w(Pxy), for a given
value of Pxy , and the total number of accessible microstates
W = ∫ ∞

−∞ w(Pxy)dPxy under the specified macroscopic con-
straints of temperature, shear rate, etc., the time-independent
probability density of a steady state p(Pxy) and the Boltzmann
entropy SB(Pxy) are given by

p(Pxy) = w(Pxy)

W
, SB(Pxy) = kB ln w(Pxy). (A5)

Due to the existing controversies on the entropy concept for
nonequilibrium systems, we have to note that the Boltzmann
entropy can be always defined for a steady state using its time-
invariant probability density via Eq. (A5) [34]. In particular,
this approach neither relies on, nor verifies, thermodynamic
relations for equilibrium systems or their widely criticized

6We exclude the possibility of S2 = I ′′(P̃xy) = 0 for consistency
with the Laplace saddle point approximation, usually assumed
applicable in the LD theory [27].
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formal expansions. Equations (A5) may be regarded merely as
the “frequentist” interpretation of the probability.

Using the notion of a total entropy Stot = kB ln W after [34],
we deduce from Eq. (A5) that

kB ln p(Pxy) = kB ln w(Pxy) − kB ln W

= SB(Pxy) − SB(P̃xy) + SB(P̃xy) − Stot

= �SB(Pxy) + SB(P̃xy) − Stot, (A6)

where in the second equality we added and subtracted SB(P̃xy),
to introduce the Boltzmann entropy difference �SB(Pxy) =
SB(Pxy) − SB(P̃xy).

Comparing Eq. (7) with Eq. (A6), one sees that

− kB ln p(P̃xy) = S̃ = Stot − SB(P̃xy),

�S(Pxy − P̃xy) = �SB(Pxy), (A7)

because �SB(Pxy) and �S(Pxy − P̃xy) are both zero at Pxy =
P̃xy by definition.

Equation (A7) provides the physical interpretation of
�S(�Pxy) as well as of the constant S̃. The most likely
value of Pxy = P̃xy maximizes the Boltzmann entropy [cf.
Eq. (A5)]. Consistently, �S(�Pxy) � 0 is the entropy cost
of a fluctuation Pxy = P̃xy + �Pxy .7 The constant S̃ is the
remaining total entropy, after subtracting the Boltzmann
entropy of the most likely macrostate. It is opportune to note
that one may restate the derivation of MG distribution, using
the principle of maximum Boltzmann entropy, instead of the
global minimum of the LD function, as done above.

Finally, the Gibbs entropy, given by a functional SG[p], for
the distribution Eq. (7) is

SG[p] = −kB

∫ ∞

−∞
dPxyp(Pxy) ln p(Pxy)

= −kB〈ln p(Pxy)〉 = S̃ − 〈�S(Pxy)〉, (A8)

which provides S̃, up to a constant term 〈�S(Pxy)〉.

7One can also define the free energy cost of a fluctuation �F =
�S(Pxy)T , cf. [35].
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