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Waves and instability in a one-dimensional microfluidic array
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Motion in a one-dimensional (1-D) microfluidic array is simulated. Water droplets, dragged by flowing oil, are
arranged in a single row. Due to their hydrodynamic interactions, the spacing between these droplets oscillates
with a wave-like motion that is longitudinal or transverse. The simulation yields wave spectra that agree well
with experiment. The wave-like motion has an instability which is confirmed to arise from nonlinearities in
the interaction potential. The instability’s growth is spatially localized. By selecting an appropriate correlation
function, the interaction between the longitudinal and transverse waves is described.
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I. INTRODUCTION

Flows at a micron scale, called microfluidic flows, are of
interest in fields such as molecular analysis, molecular biology
and microelectronics [1]. Some microfluidic flows include a
dispersed phase, such as droplets, bubbles, biological cells, or
colloidal particles. In microfluidics, there is a flow in a channel
that has at least one dimension that is hundreds of microns or
smaller. In such a channel, a dispersed phase such as water
droplets can be made to align in an array consisting of a single
row, as sketched in Fig. 1; structures like these have been
termed a one-dimensional (1-D) array [3,4], a 1-D stream [5],
or a 1-D crystal [6-8]. Such 1-D arrays have applications
in protein crystallization [3,4] and flow cytometry [9], and
they can exhibit physical phenomena such as waves [5—8] and
instabilities [6-8,10].

In this paper, we report a numerical simulation that mimics
the experiment of Beatus ez al. [6]. In that experiment, a 1-D
array of water droplets was dragged by a flow of oil in a
microfluidic channel, as sketched in Fig. 1. Due to the friction
they experienced on the floor and ceiling of the channel,
the water droplets moved more slowly than the oil. As they
were injected into the oil flow, the water droplets at first
self-organized in a single row with a highly regular spacing
along the centerline of the channel. The authors described
this regularly spaced array of droplets as a 1-D crystal. One
discovery in the experiment of Beatus et al. was that the
droplets fluctuate about their unperturbed crystal positions
with a wave-like motion that was surprisingly not overdamped
by viscous dissipation. This wave-like motion, termed phonon
by the experimenters, included displacements in two directions
with respect to the flow, parallel and perpendicular, corre-
sponding to longitudinal and transverse waves, respectively.
Another finding in the experiment was an instability that
developed farther downstream. This instability, in which a
local fluctuation grew to a large amplitude, was attributed by
the experimenters to nonlinear effects due to two factors: large
amplitude motion and an interaction between longitudinal and
transverse waves. Eventually, the 1-D structure was destroyed
by an extreme transverse displacement of droplets that allowed
them to move past another in the longitudinal direction. The
system of droplets was driven out of equilibrium by the
imposed flow of oil, which was also the energy source for
phonons and instabilities in the system [6].
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The wave motion and instability in the dispersed phase were
described by Beatus et al. [6—8] as the result of hydrodynamic
interaction. One droplet disturbs the surrounding flow, which
in turn disturbs another droplet via a drag force on the droplet
due to the relative velocity between the faster oil and the
slower droplet. Manifestations of this kind of hydrodynamic
interaction have been reported for other microfluidic flows;
these include self-assembly patterns [11-13], shock waves
[5,8], and oscillatory waves. The latter were discovered
experimentally by Beatus et al. [6,8] and studied in simulations
where the flow field, scattered by droplets or particles, is
modeled as a superposition of the far fields of dipoles [6,8]
or is calculated by a Stokesian-dynamics method [14].

As in Refs. [6,8], our simulation treats individual droplets
as particles that move according to a well-defined equation
of motion. Instead of computing the entire flow field for the
oil, we model the hydrodynamic interactions in the droplets’
equation of motion. The model we use for the hydrodynamic
interactions was developed theoretically by Beatus et al. [6,8],
who treated the oil flow as a potential flow.

The simulation we report here shows agreement with
the wave spectrum, dispersion relation, and instability
in the experiment [6]. We use the simulation to verify that
the instability is due to nonlinearity, as proposed by Beatus
et al. [6]. We also use the simulation results to describe the
interaction of the longitudinal and transverse waves; we do
this by selecting an appropriate correlation function based on
the time series of the longitudinal and transverse microscopic
currents.

The physics that will be studied here, in a 1-D microfluidic
array, is also relevant to other physical systems that have a
single row of particles or atoms. These systems include a
line of colloidal microspheres confined by holographic optical
traps [15], a line of charged micron-sized particles levitated in
dusty plasmas [16,17], and a line of helium atoms adsorbed
on bundles of single-walled carbon nanotubes [18]. In these
examples, the particles require some mechanism to confine
them so that they form a 1-D array, and the collection of
particles can sustain wave-like motion due to a combination
of the confinement and the interaction between the particles.

II. SIMULATION

We simulate a 1-D array of water droplets with the same
configuration and parameters as in the experiment of Beatus
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FIG. 1. (Color online) Sketch of a 1-D array of water droplets
dragged slowly by a faster flow of oil in a microfluidic channel, as in
the experiment of Ref. [6], which had a height of 10 um. The droplets
are approximated as having a cylindrical disk shape, with a radius of
R =10 pum. In the experiment, there was probably a thin layer of
oil and surfactant that provides a lubricating effect between water
droplets and the surfaces of the floor and ceiling of the channel [2].

et al. [6]. As sketched in Fig. 1, the channel is aligned in
the x direction and the droplet’s radius is R = 10 um. The
simulation begins after water droplets have been injected, so
that they are initially spaced by a = 27 um. In calculating the
forces acting on the droplets, we assume an oil flow velocity
of ul; = 1730 um/s, while the droplets move more slowly, at
ug = 380 pum/s.

We numerically integrate the equations of motion of all
the simulated droplets. A droplet is treated individually as a
point object that responds to hydrodynamic forces, which are
calculated to take into account of the finite radius R of the
flattened droplet. The equation of motion for the nth droplet,
modeled for a potential flow, is [6]

L M)
dt — u orn),

oil

where ¢ is the flow potential. This equation of motion
expresses a balance of two forces: the friction on the channel
walls and the drag in the oil flow. Equation (1) includes
only hydrodynamic effects; other effects such as fluctuating
Brownian motion due to the discreteness of molecules in the
oil or water are neglected. The inertial term in Newton’s second
law is also neglected, so that unlike some equations of motion,
Eq. (1) is a first-order differential equation. For each droplet,
we integrate the equation of motion, so that the position r,, and
velocity dr,, /dt of all the droplets are advanced simultaneously
in a sequence of time steps.
As in Ref. [6], we model the potential ¢ as

Py = ux + Y pa(r —ry), )

m

where the first term on the right is a potential due to oil
flowing uniformly at u; and the second term (which is
sometime positive and sometime negative) is a superposition
of the potentials due to all other droplets m. An underlying
assumption in Eq. (2) is that the droplet phase can be modeled
by a pairwise interaction. As in Ref. [6], for the pairwise
interaction potential ¢;, we use

ba(r) = R2(uS3 — ud):‘—z, 3)
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which is the potential due to a dipole aligned with the flow in
the £ direction. Here, r = \/x2 + y2 is the distance from the
droplet located at x = 0, y = 0. Equation (3) assumes that the
droplet has been flattened by the channel to have the shape of
a thin disk, and that the surrounding flow has a Poiseuille-like
parabolic profile along the z axis and can be described in the xy
plane as a potential flow, as in a Hele-Shaw cell. Equation (3)
also assumes that the droplets are unconfined in the xy plane;
that is, we assume that the channel width is so great that its
effects can be neglected. Such finite width effects could be
accounted for by using a different potential [7,8].

The force, which varies as —V ¢ on the right-hand-side of
Eq. (1), is nonlinear with respect to displacements of a droplet
when using Egs. (2) and (3) to describe ¢. Most of our results
are for this nonlinear case. However, in Sec. III C3 we will
perform a test with a linearized form of —V ¢. This linearized
form is obtained by performing a Taylor expansion of Eq. (3)
for small displacements §x and §y from an equilibrium position
X0, Where x = xo + 6x and y = d8y. This expansion of Eq. (3)
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To turn off nonlinear effects in —V ¢, we can retain only the
first four terms in the brackets and neglect the higher-order
terms (h.o.t.); we will do this only in Sec. III C3. For all other
results, we will use the fully nonlinear force computed using
Eq. (3) instead.

Our simulation includes N = 256 droplets, and we use a
periodic boundary condition [19,20] to mimic the behavior
of an infinite 1-D array. We apply the periodic boundary
condition only in the x direction. With this boundary condition,
for example, a droplet exiting the simulation box from the
left-hand side will reenter the box from the right-hand side.
The calculation of the potential ¢ in Eq. (2) is summed over
not only the 256-droplet cell, but also over “image cells” that
repeat on each side. The use of periodic boundary conditions
in molecular dynamics simulations typically requires either
cutting off the interaction potential at large distance or
using Ewald potentials [19]. The Ewald potential approach
is generally used for slowly decaying potentials, such as a
1/r Coulomb potential, to avoid systematic errors in the total
potential energy for the system [19]. Although our potential ¢,
as given by Eq. (3) decays as 1/r, we chose not to use Ewald
potentials, but instead use a large cutoff radius so that ¢, is
replaced by zero for r > ro, where we chose rqy = 64a. To
validate this choice, we performed a series of tests to determine
that the cutoff radius and system size were large enough not to
cause any noticeable deviation in the quantities that we report.
These tests included increasing the system size to as large as
N = 4096 and the cutoff radius as large as roy = 512a. We
found that the quantities reported in this paper (including mean
squared velocity of droplets, wave spectral power, and current
correlation function) are not noticeably affected by varying N
or ry in these tests, thereby giving us confidence in our use
of the cutoff radius.

Pa(x,y) =
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The simulation is performed by integrating the droplets’
equation of motion in the inertial frame of the droplets. To
imitate the confinement provided by the floor and ceiling of the
channel, the droplet is constrained to have no movement in the
vertical direction, so that the equation of motion is integrated
in only two coordinates, x and y. The simulation runs until
two droplets touch, which occurs after approximately 10 s.
Our approximations for the interaction may be less accurate
when two droplets are close enough to touch, so we stop
our simulation when this first occurs. To advance a droplet’s
position, we use a fourth-order Runge-Kutta integrator with a
fixed time step [21]. The time step was selected as 5.6 x 107> s
by performing a test requiring that unphysical changes in the
sum of the squared velocities of droplets are negligible over
the simulation’s duration.

Because the droplets in the 1-D array are allowed to
move in two directions, perpendicular and parallel to the
flow, the 1-D array can sustain two modes, longitudinal and
transverse, respectively. Due to the finite number of droplets,
small-amplitude motion can be decomposed into 256 discrete
sinusoidal modes for the longitudinal motion, and the same
for the transverse motion. Thus, the allowed values of ka
in our simulation are £m/128, +27/128, ..., £, where
a =27 pm is the equilibrium spacing (lattice constant), and
k = 2m /X is the wave number for a mode of wavelength X.

Our initial conditions at £ = 0 are chosen to mimic small
random displacements of the droplets from their unperturbed
crystal positions. We start a droplet m at a position x, =
(m — N/2+6,)a and y, = §,a. Here, §, and §, are random
numbers, with a mean of zero and a standard deviation [22]
of 0.01. The random numbers, which were different for each
droplet, were chosen so that there would initially be equal
spectral power in each of the 256 longitudinal and 256
transverse modes. (This was done by initially giving each mode
the same amplitude, but with a random phase.) We performed
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multiple runs with different sequences of random numbers for
the initial conditions.

After running the simulation and obtaining time series of
the positions and velocities of all droplets, we use time series
data for the longitudinal position x,, and the velocities vy,
and vy, for each droplet m to calculate

N
Jrlk,t) = Z vx,m(t)e*ikxm(t)

m=1

(5)
and

N
Jren) =" vy m(t)e O,

m=1

(6)

Equations (5) and (6) describe the fluctuating velocities of
droplets in the longitudinal (%) and transverse (¥) directions,
respectively, for a specified value of the wave number k.
In the literature for the physics of liquids, j; and jr are
sometimes called “microscopic currents” [23], which can
characterize the oscillatory wave-like motion of molecules
in a liquid. Here, instead of molecules, we track the motion
of droplets. We compute the currents for all 256 longitu-
dinal and 256 transverse modes that are allowed for our
simulation.

III. RESULTS

A. Droplet positions and velocities

In Fig. 2 we present raw simulation data consisting of
positions recorded at three times. At t = 0 the simulation’s
initial conditions are shown, with droplets located almost at
equal spacing a along the centerline of the channel, with
small random displacements in both x and y, as described
in Sec. II. At t =5 s, the displacements of the droplets have
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FIG. 2. Droplet positions, at three times in the simulation, shown in the inertial frame of the array of droplets. Only a portion of a total of
256 droplets is shown here. (a) At the time ¢ = 0, the initial positions of the droplets are specified. We then integrate the fully nonlinear equation
of motion, Egs. (1)—(3), to advance the droplet position and velocity each time step. (b) Atz = 5 s, a droplet fluctuates about its equilibrium
position. (c) At ¢t = 9.6 s, the displacements of the droplets have grown as large as a, due to the instability.
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become large enough to be easily detected by our diagnostics,
although they are still too small to be identified in a visual
inspection of Fig. 2. At the end of the simulation, t = 9.6 s,
the displacements of the droplets have grown as large as a
due to the instability. At the position x /a ~ —94 in Fig. 2 (c),
we observe a fluctuation resembling the 1 4 3 arrangement of
droplets observed in the experiment [6,8] and in the simulation
of Beatus et al. [8]. Eventually, after about 5 to 12 s depending
on the simulation run, the droplets move past one another (i.e.,
change their sequence), and at that point in the development of
the instability, the 1-D lattice structure is essentially broken.
For run 1, which provides most of the data for this paper, this
breaking occurs at ¢ & 10 s. The three panels shown in Fig. 2
are representative of the entire simulation movie, which we
provide in the Supplemental Material [24].

We will use the raw data for droplet positions and velocities,
and the currents computed from them using Egs. (5) and (6),
as the inputs to several diagnostics to characterize the waves
and instability, as described next.

B. Waves
1. Wave spectra

In Fig. 3 we present the wave spectra, which characterize
wave-like motion in the 1-D array of water droplets. These
spectra were prepared by computing fast Fourier transforms
(FFT) of the currents j;(k,t) and jr(k,t) with respect to
time for each allowed k and then plotting the spectral power
(the square of the modulus of the FFT) as a function of k
and frequency w. In physical systems in which the inertia
term in the equation of motion is significant, the spectral
power is often considered as being related to kinetic energy;
in this system, however, the inertial term is neglected, so
that we do not explicitly relate the spectral power to kinetic
energy.

We find that our wave spectra in Fig. 3 agree with the
experimental spectra [6]. The most obvious difference is that

15
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our spectra do not include a feature due to fabrication defects in
the channel that deflected the droplet motion in the experiment.

a. Dispersion relation. For both the longitudinal wave in
Fig. 3(a) and the transverse wave in Fig. 3(b), the spectral
power is strongest along a curve in the w and k parameter
space. This variation of the resonance frequency with wave
number indicates the wave dispersion relation.

For comparison, we also show in Fig. 3 the theoretical dis-
persion relation derived in Ref. [6] from a linearized equation
of motion for small-amplitude motion with a dipole interaction

6C; sin(mka)
o)== L
6C; sin(mka) M
or) = e L

We calculated the dispersion relation curves for this linear
theory using the experimental values of the droplet spacing
a and sound velocity Cy = [272R*ug/(3a*uS)1(us — uq),
with no free parameters. We find that the dispersion relation
for the linear theory accurately matches our simulation results.

The two waves propagate in opposite directions. In the
inertial frame of the droplets, the transverse wave propagates
in the +x direction (i.e., in the same direction as the oil flow),
while the longitudinal wave propagates in the —x direction
(opposite to the oil flow). These directions of propagation can
be identified in Fig. 3 by noting that for small |ka|, the phase
velocities vy = w/k of transverse and longitudinal waves are
positive and negative, respectively. These wave directions are
the same as was observed in the experiment [6].

We find that the power in our spectra is not equally
partitioned among the possible values of wave number k. In our
simulation, the power becomes concentrated in a range of wave
numbers, ka &~ £ /2, which is near the maximum frequency.
We will comment upon the significance of ka ~ /2 later.

b. Feature not predicted by linear theory. Although the
dispersion relations observed in our simulation agree with the

(b) transverse

25

0.25

FIG. 3. (Color online) Power spectra of longitudinal (a) and transverse (b) waves, with the logarithm of spectral power shown as a function
of frequency and wave number. Spectral power is mostly concentrated in narrow ranges, which are centered on the dispersion relations for a

linear theory [Eq. (7)], shown as dashed lines. The feature near ka ~ +0.8 and w =~ £10 s~

!, marked y in (b), is not predicted by the linear

theory and is interpreted here as an indication of nonlinear effects, possibly resonant wave interaction of the waves marked o and 8.
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linear theory, we also observe a weaker feature that is not
predicted by the linear theory of Eq. (7). This feature is seen
near ka ~ £0.8 and w ~ 410 s~!, where it is marked y in
Fig. 3(b). Because these modes are not expected from a linear
theory, there must be some nonlinear effects involved.

Beatus et al. [6] suggested that nonlinearity arose in their
experiment due to two factors: large-amplitude motion and
an interaction of the longitudinal and transverse waves. This
suggestion motivates us to consider what type of wave-wave
interaction it could be.

One possible type of nonlinear interaction is the generation
of a third wave due by nonlinear mixing of two other waves
obeying the criteria

W) + wy = w3, ®)
and
ki + ky = ks. 9

Such a process is called by various names: “resonant wave
interaction” in fluid mechanics [25], “parametric decay” in
plasma physics [26], and “three-wave mixing” in optics [27].
We will use the terminology “resonant wave interaction.” An
argument in favor of our resonant wave interaction hypothesis
is that the w and k of the longitudinal waves marked « in Fig. 3
and the transverse waves marked $ add up to match those of
the feature marked y, as in Egs. (8) and (9). However, feature y
does not lie on an allowed dispersion relation for linear waves,
unlike the best known cases of the resonant wave interaction
in fluid mechanics [25] and the three-wave mixing in plasma
physics [26]. Further work is needed to test this resonant wave
interaction hypothesis.

2. Wave correlation

Having found in Fig. 3 a possible indication of nonlinear
coupling of the longitudinal and transverse waves in the
spectra, we now seek another diagnostic to indicate any
interaction or synchronization of these two waves. Using the
longitudinal and transverse currents, ji(k.,t) and jr(kr,t),
respectively, we calculate a correlation function

(jrtkp,t)jrkr,t + 7))
Vet 0P jrGer )P

In Eq. (10), T is a time delay, and (---) is an average over
time ¢. The time interval for the averaging was selected to be
as large as possible, given the 10 s duration of our simulation.
The correlation function Cp7 is a complex number; we will
report its modulus

Crrlky kr,7) =

(10)

ICl = |Crr(kr,kr,0)], (1)

as a measure of the strength of the correlation between the two
waves. For steady conditions, a value |C| = 1 would indicate
perfect correlation (although we should note that the conditions
here are not steady, due to the growth of the instability).
Since we are investigating whether a longitudinal wave and a
transverse wave are correlated, we present |C| as a function of
the longitudinal wave number k; and transverse wave number
kr (Fig. 4).
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FIG. 4. (Color online) Correlation strength |C|, as defined in
Eq. (11), for longitudinal k; and transverse kr waves. We find a strong
correlation, for certain combinations of k; and ky. The contour scale
has a threshold of 0.2 to suppress noise.

The results in Fig. 4 indicate a significant correlation of the
longitudinal and transverse waves. This is evident from the
dark regions in Fig. 4, which indicate a high correlation |C]|.

To help interpret the correlation data in Fig. 4, we present
Fig. 5 to indicate the conditions of highest correlation. We find
that high correlations occur for waves that obey a matching
condition for wave number, which is either

kp = —kr (12)
or

kra = kra £ (r — €), (13)

where 0 < € < 0.5. As we will see later, € varies with wave
number.

We also find that the waves with high correlation obey a
matching condition for frequency

Wy = wr. (14)

To demonstrate this matching condition, we combine the
dependence of our correlation on wave number and the
theoretical dispersion relations [Eq. (7)], which are graphed on
the edges of the main panel of Fig. 5. In examining Fig. 5, one
can start with the open circle on the longitudinal dispersion
relation, and then follow dashed line H1 to the left, where
it is seen to have high correlations with two wave numbers
for transverse waves, as indicated by vertical lines V1 and
V2. All three of these modes (indicated by open and solid
circles) have the same frequencies. This observation leads us
to the frequency matching condition, Eq. (14). As shown in
Appendix, we find that the wave number dependence of € in
Eq. (13) can be approximated as

e(kr) = [(2.3097)* — (kra + 2.058)*1"/* + kra — 1.0587,
(15)

for —m < kra < 0, and

e(kr) = [(2.3097)* — (kra — 2.058)*1"% — kya — 1.0587,
(16)

for0 < kra < 7.
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FIG. 5. (Color online) Interpretation of correlation data in Fig. 4.
Wave numbers that exhibit high correlations in Fig. 4 obey matching
conditions for wave numbers shown with a dot-dash curve with
kra = —kra and dashed curves with k;a = kra + (m — €) where
0 < e <0.5. We also find a matching condition for frequency by
comparing to the dispersion relations, Eq. (7), which are plotted along
the edges of the correlation graph. As an example of these matching
conditions, we consider a longitudinal wave k’ as marked with an open
circle. Following the horizontal line H'1 across the diagram, strong
correlation occurs for the transverse waves with wave numbers —k’
and k' +  — &, which have the same frequency as the longitudinal
wave.

While our correlation function indicates a significant corre-
lation, it does not explain the mechanism for this correlation.
This is, of course, a common limitation of using correlation
functions.
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3. Wave fronts

To visualize the spatiotemporal characteristics of the wave
fronts, we present in Fig. 6 a spacetime diagram, which is a
plot of droplet velocity as a function of position x and time
t. We prepared this spacetime diagram by combining the time
series for position x(¢) and one component of the velocity,
for example v,(¢), to generate contours of constant v, in the
parameter space x vs t. A darker shade in Fig. 6 indicates a
higher droplet speed. These spacetime diagrams are useful for
characterizing the spatiotemporal development of the droplet
motion over the course of the entire simulation.

Features that can be seen in the spacetime diagram include
wave fronts for the longitudinal and transverse waves. These
wave fronts appear as sloped stripes. For long wavelengths,
the longitudinal waves propagate in the —x direction, while the
transverse waves propagate in the 4x direction, so that these
two kinds of wave fronts are sloped oppositely in Fig. 6.

The observed phase velocity vs of the waves is found
by measuring the slope of the wave fronts in the spacetime
diagram. We find that vy = —100 um/s for the longitudinal
and vy = 100 um/s for the transverse waves. These observed
phase velocities correspond to |vg| = |w/k| evaluated near
ka ~ +m /2. As sketched in Fig. 7, the phase velocity
depends on wave number. The observed phase velocities are
significantly slower than the sound speed, C; = 250 um/s, for
the waves with smaller k. Our observation that the observed
phase velocity is dominated by waves at ka ~ £ /2 further
indicates that the motion of droplets is dominated by the wave
modes near the maximum frequencies, as we saw from the
concentration of the wave power near ka ~ =+ /2 in the wave
spectra of Fig. 3.

C. Instability

We now present our results for the instability. We will find
that the instability grows nonexponentially, with a distinctive
spatial localization. We will also confirm that the instability
requires: (1) nonlinearity in the forces and (2) a coupling
between longitudinal and transverse motions.

-60 ] ) v g T 1 i v orv
(@) v, SN 1 fb)yv A ] Xy
L, Sop ] y ]
i "% 0”%} RS /éov\\o‘;,z;;@“ ] 428
- = . | L4 \S 3
70 ; %, 6\on ¥ : 32.1
i ] ] 21.4
-80 1 F 4
L ] 10.7
Xt E 0
90 - 4 F o
- x| _
" 5 d\\% Q(—* 10.7
PPN E N ] 214
100: \\7\00/( - F ,\QQ// B
f pY :7)/& ] No 7 i -32.1
-110°¢ ] : i : Al -
0 2 4 8 10 0 2 4 6 8 10 428
time (s) time (s)

FIG. 6. (Color online) Space-time diagrams for velocities (a) v, and (b) v,. To make the spacetime diagram easier to examine, we present
the data for only a portion of the array of droplets, 146 < m < 196. The sloped stripes in (a) and (b) indicate that longitudinal and transverse
wave packets propagate in opposite directions. Note that the wave growth is spatially localized and that the high-amplitude wave packets at

t > 8 s include only three or four droplets at the location marked .
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FIG. 7. Sketch of dispersion relation. The slope, which corre-
sponds to the phase speed w/ k, varies with k because of the curvature
of the dispersion relation. Two cases of interest are shown: for long
wavelength (small k), w/ k is the sound speed Cs = 250 um/s, while
for a shorter wavelength (larger k), w/k is slower. In Fig. 6 we
observe a phase speed of 100 um/s, corresponding to the lesser slope
indicated here.

1. Temporal growth

A feature that can be seen in the spacetime diagram of Fig. 6
is a growth trend for the amplitude of the waves. As time
progresses, the velocity amplitudes of both the longitudinal
and transverse waves grow, as indicated by the shading in
Fig. 6 appearing darker at larger times.

To reveal the scaling of the growth with time, we can also
examine a time series of the mean squared velocity averaged
over the entire length of the 1-D array, which we present in
Fig. 8. We find that the mean squared velocity grows with

100 T T T T T T T T T T
L [runs with nonlinear force
motion in x and y
o motion only in x

run with linear force
i motion in x and y

(v2 (um?s?)

1 N N N N 1 N N N N 1
0 5 10

time (s)

FIG. 8. Instability growth, as measured by the time series of the
mean squared velocity, averaged over the entire length of the 1-D
array. The simulation was run three ways for this test. The solid
curves are four simulation runs for the fully nonlinear case using
Eq. (3) when integrating the equation of motion, as in Figs. (1)—(6).
The dashed curve is for the linear case using Eq. (4). The open circles
are results for the fully nonlinear simulation with droplets constrained
to move only longitudinally (i.e., in the x direction). We find that for
the nonlinear case there is rapid nonexponential growth, but for the
other two cases there is no growth, indicating that the instability
requires nonlinearity and transverse motion. All the data in other
figures of this paper are from run 1.
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time, but unlike some hydrodynamic instabilities such as the
Rayleigh-Taylor instability, this one has a growth that is not
exponential with time. As a test, we verified by performing
additional simulation runs that this nonexponential growth
occurs regardless of the random initial positions that are chosen
to start the simulation.

2. Spatial localization

In addition to its temporal dependence, we can also
characterize the spatial dependence of the instability’s growth.
This can be examined in the spacetime diagram, Fig. 6. We find
that the instability does not grow uniformly along the entire
length of the 1-D array, but instead it develops in the form of
isolated fluctuations. An example of this spatial concentration
is seen prominently at ¢ > 8 s, as marked * in Fig. 6(b). This
large-amplitude disturbance is highly localized, with a width
of 3a to 4a (i.e., it includes only three or four droplets). This
width is consistent with the experimental observation of a
fluctuation of 1 + 3 droplets [6,8].

We note that the spatial width of ~4a of this disturbance
corresponds to a wave number of ka ~ m /2. In the wave
spectra, this same wave number of /2 was found to have
a concentration of spectral power. Thus, we can suggest that
the concentration of spectral power that is seen in the wave
spectra is due to the spatial localization of the wave’s growth.

3. Requirement of nonlinearity

We perform a test to assess the role of nonlinearities in the
instability’s growth. We do this by comparing results for the
simulation run with different expressions for the potential: for
the fully nonlinear run we use Eq. (3), while for the linear
run we use Eq. (4) and retain only the first four terms on the
right-hand side of Eq. (4).

Results in Fig. 8 show that there is no growth of the
mean squared velocity of the droplets when nonlinearities are
turned off. Thus, we can conclude that the instability requires
nonlinearities in the potential. This conclusion confirms the
suggestion of the experimenters [6,8] that the instability is
essentially the result of a nonlinearity. This result is not
surprising because a dispersion relation derived by linearizing
the forces is purely real, with Im[w(k)] = O for all k [6].

4. Requirement of transverse motion

We perform another test to confirm that motion in the
longitudinal direction cannot grow due to an instability in
the absence of transverse motion. We expect that transverse
motion is required, according to Beatus et al. [8], who showed
that the instability can arise from the coupling between a
transverse zigzag and a longitudinal pairing mode. In our test,
we constrain the droplets to move only along the x axis by
loading the simulation with nonzero initial displacements only
in the x direction. Otherwise, the simulation in this test was
the same as for our other fully nonlinear ones.

Results, shown with the open circles in Fig. 8, indicate no
growth when the droplets are constrained to move only along
the x axis. This finding confirms that the instability requires
transverse motion.

Considering that all low-amplitude fluctuations can be
decomposed as a spectrum of longitudinal waves for motion
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FIG. 9. (Color online) Contours of A as defined in Eq. (Al),
assuming the dispersion relations in Eq. (7). Darker colors indicate
smaller values of A. We find that the minima of these contours (the
darkest colors) coincide with the dark features in Fig. 4, demonstrating
that the matching criterion is modeled accurately by Eq. (14). A
portion of a circle is shown, with a center at (2.0587,—2.0587) and
a radius of 2.3097, as determined by a manual fit. The agreement
of this circle with the locus of the minima motivates the forms of
Egs. (15) and (16).

along the x axis and transverse waves for motion in the y
direction, it is reasonable to conclude that the instability in-
volves a coupling between longitudinal and transverse waves.
Moreover, combining this conclusion with the previous one for
nonlinearity, we have confirmed the suggestion of Beatus et al.
that the instability involves an interaction of the longitudinal
and transverse waves. While we have not determined the exact
nature of this interaction, one possibility is the resonant wave
interaction mechanism described in Sec. III B1.

IV. SUMMARY

We performed a numerical simulation to study waves and
an instability in a 1-D array of water droplets in a microfluidic
channel. The droplets were modeled as point objects that
interact with each other via a hydrodynamic potential. The
oscillatory motion of the droplets, as characterized in the in-
ertial frame of the droplets, exhibits two waves: a longitudinal
wave that is backward with respect to the direction of oil flow,
and a transverse wave that is forward. The simulation spectra
for these waves agree well with the previous experiment that
we simulate [6]. The droplet motion increases with time; this
instability varies nonexponentially with time, and its growth is
spatially localized. We performed two tests that confirm that
the instability requires (1) nonlinearities in the hydrodynamic
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potential and (2) an interaction between longitudinal and
transverse waves. A possible candidate for this interaction is a
nonlinear resonant wave interaction, which is suggested by a
feature seen in our wave spectrum.
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APPENDIX: DERIVATION OF MATCHING CONDITIONS
FOR WAVE NUMBERS

We explain how we obtained the approximate expressions
of Egs. (15) and (16) for the matching conditions for wave
numbers.

Our calculation involved three steps. First, we numerically
found the wave numbers that satisfy the frequency matching
condition Eq. (14). This was done by minimizing the difference

A = |wp(kp) — or(kr)] (AD)

over various combinations of k; and ky, where w; and
or are calculated using the dispersion relations in Eq. (7).
We present the resulting contours of A in Fig. 9, which
we examined to identify the curve representing the min-
ima of A(kr,kr). Comparing Fig. 9 to Fig. 4, we found
a coincidence of the regimes for the minima with those
for the dark regions of high correlation in Fig. 4, which
motivated the wave-number matching condition Eqs. (12)
and (13). This coincidence indicates that the wave-number
matching condition, as obtained from the correlation functions
for waves, can be obtained from the frequency matching
condition.

Second, we empirically obtained a formula that can describe
the shapes of the regime of k;, and kr where A has a minimum.
In Fig. 9, we found that the equation of a circle accurately
matches the shape of the minima of A. By varying the radius
and center of the circle to obtain a visual fit, we found

kpa = —\/(2.30971)2 — (kra +2.058)% + 2.0587 (A2)
for —m < kra <0, and
kra = \/(2.30971)2 — (kra — 2.058)2 — 2.0587 (A3)

forO < kya < .

Finally, we calculated e(kr) = —kpa + kra + m using
Eq. (A2) for —7 < kra < 0,and e(kr) = kpa — kra + m us-
ing Eq. (A3) for 0 < kra < . This calculation yielded the ap-
proximate expressions for €, as presented in Eqgs. (15) and (16).
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