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The experimentally measured waveform of nonlinear dust acoustic waves in a plasma is shown to

be accurately described by a cnoidal function. This function, which is predicted by nonlinear

theory, has broad minima and narrow peaks. Fitting the experimental waveforms to the cnoidal

function also provides a measure of the wave’s nonlinearity, namely, the elliptical parameter k. By

characterizing experimental results at various wave amplitudes, we confirm that the parameter k
increases and approaches a maximum value of unity, as the wave amplitude is increased. The

underlying theory that predicts the cnoidal waveform as an exact solution of a Korteweg-de Vries

model equation takes account of the streaming ions that are responsible for the spontaneous excita-

tion of the dust acoustic waves. Published by AIP Publishing. https://doi.org/10.1063/1.5046402

I. INTRODUCTION

Waves can easily grow to be nonlinear in dusty plas-

mas.1–14 A dusty plasma contains microparticles, i.e., dust

grains, which absorb electrons and ions, and thereby gains a

large negative charge. When a cloud of these microparticles

undergoes a compression or rarefaction, electric fields arise,

and this can lead to the propagation of a density wave, which

is called the dust acoustic wave (DAW).15–32 At low ampli-

tudes, the DAW obeys a linear dispersion relation that has

been widely studied; this dispersion relation can depend on

physical processes including not only dust particle charge

and gas friction but also other effects such as ion-neutral fric-

tion and ion kinetic effects.30 The amplitude of the DAW

can easily attain large values due to the large electric forces

experienced by the microparticles. Wave electric fields can

result in these large forces due to the large charges on each

microparticle so that the microparticle motion associated with

the waves can easily become nonlinear. In such nonlinear

waves, the dust number density can fluctuate with a large per-

centage, as can be seen easily in an experiment by video imag-

ing.24,25 A common mechanism of exciting the waves in an

experiment is the energy input from flowing ions.26 The DAWs

have been observed in numerous experiments, for example,

Ref. 16–25 and 33–37, including those under microgravity con-

ditions provided by parabolic flights.34–37

Here, we use experimental data to demonstrate that the

waveform of these nonlinear dust acoustic waves has the

shape of a cnoidal function. This cnoidal function, which

will be defined in Sec. II, has been predicted theoretically for

nonlinear waves in various physical systems.38–43 Theories

have also been developed specifically for dusty plasmas,44–50

under various assumptions, predicting cnoidal solutions for

nonlinear waves. For example, Yadav et al.44,45 derived a

theory predicting a cnoidal solution for dust acoustic waves

under an assumption that included Boltzmann electrons and

ions and cold dust with fluctuating charges. Saini and Sethi49

used a model consisting of two components of superthermal

electrons to study cnoidal solutions for nonlinear dust ion-

acoustic waves, while Tolba et al.50 studied cnoidal forms of

dust acoustic waves in positively charged dusty plasmas.

The connection between the cnoidal wave function and

the physical system is that the oscillations in the dusty

plasma can sometimes be modeled by the classical Korteweg

de Vries (KdV) equation, and it is this equation that allows a

cnoidal solution. One can derive the KdV equation from a

fluid description of the plasma, and the derivation can result

in essentially the same KdV equation even if one makes

varying assumptions; different assumptions made deriving

the equation show up as modifications in the coefficients of

the equation. In Sec. VI, we will show that the KdV equation

can be obtained for nonlinear DAWs not only with the origi-

nal assumptions of Yadav et al.44,45 but also if the assump-

tions are altered to make the ion flow less responsive to

changes in the local electric potential. This derivation leads

us to remark that the KdV description of nonlinear waves is

robust; in particular, it is robust in the sense that it is not

greatly sensitive to all the physical assumptions.

The experimental literature for cnoidal waveform is more

sparse than for the theory. We are aware of only one previous

plasma experiment that tested the cnoidal solution; that experi-

ment was for nonlinear drift waves40 in a non-dusty plasma.

Other physical systems that have been studied experimentally,

for the cnoidal shape of their nonlinear waves, include surface

gravity waves in shallow water,38,39,43 and laser interference

fringes in the photorefractive bismuth titanate oxide (BTO)

crystal.42

In this paper, we find that the cnoidal wave solution

accurately describes the waveform of nonlinear dust acoustic

waves in a ground-based experiment. We will analyze the

data from a previous experiment,25 where the level of the
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wave’s nonlinearity was regulated by adjusting the damping

level due to gas drag. In the present analysis, we will fit the

experimental data to a cnoidal wave solution of an appropri-

ate KdV equation, derived in Sec. VI. This fit will also yield

a useful parameter k to quantify the nonlinearity of the

waves. As a measure of nonlinearity, we will also compare

the cnoidal parameter k to the total harmonic distortion

(THD), which was reported in the previous experiment in

Ref. 24.

II. THEORETICAL FORMULA

The cnoidal wave solution of the KdV equation can be

represented in the form

/ðx; tÞ ¼ b2 þ ðb3 � b2Þcn2 2KðkÞ x

k
þ ft

� �
; k

� �
; (1)

where b2 and b3 are the wave’s minimum and maximum

amplitudes, respectively; the function cn is one of the

Jacobi elliptic functions, with an elliptic parameter

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb3 � b2Þ=ðb3 � b1Þ

p
, where b1 is a constant; K(k) is

the complete elliptic integral of the first kind; and k and f are

the wavelength and wave frequency, respectively.

In this paper, we will test Eq. (1) with experimental

waveform data. This test will also generate a value for the

elliptic parameter k in Eq. (1). The parameter k characterizes

the shape of the cnoidal function. For k¼ 0, the cnoidal solu-

tion becomes a cosine function, while for values close to

unity, the cnoidal function gets sharpened peaks and flat-

tened bottoms.

III. EXPERIMENT

Here, we review a few key points about the experiment.

Further details are found in Ref. 24. In the experiment, a three-

dimensional dust cloud was trapped using a glass box in an

argon plasma. The plasma was sustained by a radio-frequency

(13.6 MHz) voltage applied between a horizontal lower elec-

trode and a grounded vacuum chamber. Ten runs were per-

formed, at gas pressures ranging from 372 to 420 mTorr. Gas

flow was negligible, especially in our region of interest (ROI)

within the glass box. Polymer microspheres of 4.8 lm diameter

were introduced into the plasma, and they were electrically

confined by natural electric fields, which were enhanced in the

horizontal direction by the glass box, which was open on the

top. The fields’ vertical component provided levitation of the

particles, and it also drove a downward ion flow that could

excite DAWs. Aside from these waves, there was no general

motion of the dust particles in the vertical direction.

The dust cloud was imaged with a digital video camera

viewing from the side. Here, we will analyze the image data

from the experiment, which were recorded at a speed of

500 frames/s. In Fig. 1, we show snapshots of the dust cloud,

which exhibits compressive wave fronts, which are horizon-

tal and propagate. As discussed in Ref. 24, the image inten-

sity is linearly related to the number density of dust particles

due to the design of the experiment.

The degree of the wave’s nonlinearity in the experiment

was regulated by adjusting the gas pressure. The gas pressure

was different in each of the ten experimental runs. The wave

was self-excited by ion flow, and this energy input to the

wave competed with gas frictional damping. As seen in the

snapshots of Fig. 1(f), for the gas pressure of p¼ 420 mTorr,

FIG. 1. Images of a cross section of a 3D dust cloud. Waves are seen in (a)–(e), as indicated by density compression and rarefaction (i.e., the spatial variation

in pixel brightness). The observed wave propagated from the top downward, and the wave grew in amplitude as it propagated downward through the cloud.

The series of images shown here, (a)–(f), are for six experiment runs, each for a different value of the damping rate, as controlled by the gas pressure. Each

panel is from one frame of a video.
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no wave was detectable. By reducing the pressure slightly to

416 mTorr [Fig. 1(e)], waves were excited; the wave ampli-

tude was significant and even attained a nonlinear amplitude.

Further small reductions in the gas pressure yielded even

higher wave amplitudes [Figs. 1(a)–1(d)]. The gas pressure

can be used to calculate a damping rate, in s�1, using the

formula6

�E ¼ 2333
dE

qrd
p

ffiffiffiffiffiffiffiffi
Zgas

Tgas

s
; (2)

where the Epstein constant dE is in the range 1.0–1.442. In

Eq. (2), q is the dust particle’s mass density in kg m�3, rd is

the particle radius in microns, p is the gas pressure in mTorr,

Tgas is the gas temperature in K, and Zgas is the atomic mass

of the gas molecule. Here, we use dE¼ 1.26, as in Ref. 6,

q¼ 1510 kg m3 for the particle’s mass density, Zgas¼ 39.948

for argon, and Tgas¼ 290 K because the experiment was per-

formed with a vacuum chamber at room temperature. Our

calculated values for �E are presented in Table I. The damp-

ing rate was in a range from 112 to 125 s�1. This level of the

damping rate significantly hinders the wave growth in the

experimental system. An instability with a growth rate

slightly greater than this damping rate, however, can over-

come the friction and result in a substantial wave, as

described in Ref. 24.

IV. ANALYSIS METHOD

A. Obtaining experimental waveforms

Our analysis mainly centers on the waveforms of dust

number density fluctuations, which we obtain from a

sequence of video images. We exploit the linear relationship

of image brightness and dust number density to calculate the

density, in arbitrary units.

For an image from one video frame, we choose a region

of interest (ROI), as identified in Fig. 2(a). Within the rectan-

gular boundary of the ROI, 1.65� 0.26 mm, we spatially aver-

age the image intensity, yielding one instantaneous measure

of the number density. We repeat this measurement for every

frame of the recorded video data. In this way, we obtain a raw

waveform with about 50 oscillations, as in Figs. 2(b) and 2(d).

In this experiment, the raw waveform had a frequency of

about 26 Hz (i.e., a period of about 38.5 ms), and the peak-to-

peak amplitude was typically 55% of the maximum value.

The frequency (inverse period) was the result of the instabil-

ity, which is responsible for the waves, having a growth rate

that is the greatest for a preferred wavelength, which can vary

depending on the plasma conditions. For the same run, the

frequency and amplitude were not constant; the period varied

from 34.5 to 41.7 ms, and the peak-to-peak amplitude varied

from 50% to 60% of the maximum value. These variations

can arise because the wave was self-excited; the experimental

TABLE I. Experimental parameters and results, for various gas pressures p and regions of interest (ROIs). The position of each ROI is marked in Fig. 2(a).

The peak-to-peak amplitude Dn is presented two ways, Dn/nav and H¼Dn/nmin, normalized by the mean nav and the minimum nmin, respectively. The damping

rate �E, normalized by the frequency f, is calculated using Eq. (2) for each gas pressure. As measures of the wave’s nonlinearity, both the total harmonic distor-

tion (THD) and the cnoidal fit parameter k are presented.

Gas pressure

ROI

Analysis of the waveform
Gas damping Nonlinearity Cnoidal fit

p(mTorr) Dn/nav H f(Hz) �E/2pf THD (%) k

372 ROI-3 0.88 1.20 27.1 0.66 48.0 0.989

380 ROI-3 0.98 1.34 26.6 0.68 72.7 0.995

384 ROI-3 0.95 1.29 26.1 0.70 55.9 0.993

392 ROI-3 1.02 1.40 25.9 0.73 48.6 0.995

396 ROI-3 1.04 1.41 25.4 0.75 52.5 0.997

400 ROI-3 0.90 1.16 25.3 0.76 81.7 0.997

404 ROI-1 0.27 0.30 24.6 0.79 32.2 0.890

ROI-2 0.45 0.53 25.0 0.77 39.5 0.949

ROI-3 0.92 1.20 24.7 0.78 57.7 0.996

ROI-4 0.83 1.12 24.9 0.78 69.0 0.986

ROI-5 0.78 1.07 24.8 0.78 50.6 0.959

408 ROI-1 0.23 0.26 24.6 0.79 19.0 0.812

ROI-2 0.29 0.33 24.4 0.80 25.5 0.857

ROI-3 0.59 0.72 24.4 0.80 37.8 0.985

ROI-4 0.79 1.02 24.6 0.79 53.2 0.993

ROI-5 0.99 1.39 24.4 0.80 48.4 0.995

412 ROI-1 0.14 0.15 28.2 0.70 10.0 0.708

ROI-2 0.24 0.27 28.7 0.69 32.1 0.863

ROI-3 0.44 0.53 28.5 0.69 55.2 0.966

ROI-4 0.66 0.84 28.6 0.69 74.2 0.988

ROI-5 0.58 0.75 28.4 0.69 67.5 0.938

416 ROI-1 0.13 0.14 28.1 0.71 8.1 0.174

ROI-2 0.18 0.20 28.1 0.71 13.8 0.742

ROI-3 0.27 0.36 28.4 0.70 20.2 0.880

ROI-4 0.50 0.61 28.3 0.70 39.2 0.965

ROI-5 0.69 0.91 28.4 0.70 45.8 0.984
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setup did not include any measures to control the wave, such

as external modulation to provide synchronization.28

Due to these variations in the amplitude and period in

the raw waveform, we processed the raw waveforms by aver-

aging them to yield a smoothed waveform. This averaging

process involved choosing ten non-overlapping segments,

each starting at the same phase, which was a peak value. The

segment lengths were such that they included approximately

four wave periods. Averaging these ten segments yielded a

smoothed waveform, like the examples shown in Fig. 3. The

waveform is nearly sinusoidal only when the wave’s ampli-

tude is small [Fig. 3(e)]. At larger amplitude, the waveform

has distinctive sharpened peaks with a flattened bottom [Figs.

3(a)–3(d)], indicating strong nonlinearity.

B. Determining wave’s amplitude and frequency

We obtain the wave’s amplitude and frequency by an

inspection of the peaks in the smoothed waveform. The aver-

age of the peak values yields the maximum amplitude b3 as

defined in Eq. (1), while the average of the time interval

between the peaks yields the frequency f. The minimum ampli-

tude b2 is obtained by finding the minimum of the waveform.

We then calculate the peak-to-peak amplitude, H¼ (b3� b2)/

b2, which is normalized by the minimum amplitude b2.

V. EXPERIMENTAL RESULTS

A. Fitting

Our main result is a fit of the cnoidal function to the

smoothed experimental waveforms (Fig. 3). The data points

are the smoothed experimental waveforms, for various

damping levels. The continuous curve is

/1ðx; tÞ ¼ 1þ Hcn2 2KðkÞft; k½ �; (3)

which is Eq. (1) evaluated at a specific value of x. Using

only one free parameter, k, we fit our experimental data to

Eq. (3) by minimizing chi-squared.

The fitted curves match the experimental waveforms

well. This agreement was found not only for Fig. 3 (for ROI-3

and five gas pressures) but also for all the data we tested. This

agreement is seen for waves with small and large amplitudes

alike. At large amplitude (i.e., at low pressure), the features of

sharpened peaks and flattened bottoms are captured well by

the cnoidal wave solution [Eq. (3)]. We should mention one

small feature in the experimental waveform that is not cap-

tured by the cnoidal solution. There is a very small but detect-

able skewness in the wave trough in Figs. 3(a) and 3(b).

This agreement leads us to conclude that the cnoidal

wave solution can accurately describe the waveform of non-

linear dust acoustic waves in experimental data. Having thus

confirmed the usefulness of the cnoidal solution, we can now

turn our attention to its practical uses. In particular, we will

evaluate the parameter k in the cnoidal formula, as a useful

measure of wave’s nonlinearity.

B. Measures of nonlinearity

Beyond previous experimental measures of a wave’s

nonlinearity, such as the percentage of density fluctuation or

the total harmonic distortion (THD), we find here that the

FIG. 2. (a) Regions of interest ROI-1 to ROI-5. Each of these equally spaced rectangles (1.65� 0.26 mm) spans the image’s width. The same five locations are

used for the ROIs in all experimental runs. Within a ROI, for one video frame, we spatially average the pixel intensities, yielding a measure of the local number

density at a particular time, in arbitrary units. Repeating for a sequence of video frames yields a time series of the local number density for an experimental

run, as in (b) and (d), which are for ROI-3. The insets (c) and (e) are zoomed views of a portion of (b) and (d), respectively. Fourier transforming the time series

in (b) and (d) yields the spectra in (f) and (g), respectively.

113701-4 Liu et al. Phys. Plasmas 25, 113701 (2018)



elliptic parameter k is also useful for quantifying the wave’s

nonlinearity. This parameter is obtained experimentally as

the free parameter in the fitting.

As expected, we find that k increases with increasing

nonlinearity, as can be seen in Fig. 3. For the largest wave

amplitudes, the nonlinear waveform has sharpened peaks

and a flattened bottom, and in that case, we find that k has a

large value of 0.997, which is close to the theoretical maxi-

mum of unity. On the other hand, for small wave amplitudes

in Fig. 3(e), the waveform is almost sinusoidal, and the

parameter k has a smaller value 0.88. In Fig. 4(a), the param-

eter k is shown as a function of wave amplitude.

For comparison, we also calculate the total harmonic

distortion (THD)

THD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2 þ A2
3

A2
1

s
: (4)

Here, A1, A2, and A3 are the amplitudes of the fundamental,

second, and third harmonics of the waves; they are obtained

from a Fourier transformation of raw waveforms. The

FIG. 3. Experimental waveform of dust number density n and cnoidal fit

(the normalized quantity plotted here is the dust number density, not the

peak-to-peak amplitude Dn as in Table I). The experimental data (circles)

shown here are smoothed waveforms, obtained by an averaging of the raw

waveform time series such as those in Figs. 2(b)–2(e). The dust number den-

sity data are normalized by the minimum nmin (left axis) and the mean nav

(right axis) of the waveform. Different panels (a)–(e) correspond to different

damping levels, as characterized by the damping rate �E, but for the same

ROI-3. The fit is shown as continuous curves, computed using Eq. (3). The

excellent agreement between the fitted and experimental data demonstrates

that the cnoidal wave solution can accurately describe the waveforms of

nonlinear dust acoustic waves. The values of k, f, and �E are presented in

Table I.

FIG. 4. Measures of the wave’s nonlinearity. The nonlinearity is quantified

by (a) the elliptic parameter k and (b) the total harmonic distortion (THD).

The peak-to-peak amplitude Dn is normalized by a time-average density nav,

not by the undisturbed dust density n0. Data shown here are taken from Table

I. Each data point corresponds to one pressure and one ROI (for each symbol,

there is more than one data point because we used various values of gas pres-

sure). Note that the parameter k in (a) reaches its theoretical maximum of

unity and no longer varies as wave amplitude Dn=nav � 0:4, while THD in

(b) exhibits a monotonic trend that persists even at a higher wave amplitude.
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parameter THD was previously used to characterize the non-

linearity of DAWs by Flanagan and Goree.24 We do the

same here, except that our formula Eq. (4) is a ratio of ampli-

tudes instead of powers. Our results for THD are presented

in Table I and Fig. 4(b).

We find that, as measures of nonlinearity, both k and

THD exhibit monotonic trends, varying upward with wave

amplitude, as the wave amplitude is increased from a low

level. However, the sensitivity of these parameters is not the

same. The parameter k exhibits most of its variation for rela-

tively low amplitudes Dn/nav< 0.4, as defined in Table I. For

larger amplitudes, k reaches its theoretical maximum of

unity. On the other hand, THD exhibits a monotonic trend

that does not rapidly saturate at high wave amplitude. This

comparison suggests that, as a quantitative indicator of

wave’s nonlinearity, the cnoidal elliptic parameter k has

great sensitivity to the nonlinearity at relatively small wave

amplitudes, while THD is more sensitive at larger ampli-

tudes. Another difference is that THD exhibits larger scatter

than for the parameter k.

VI. THEORETICAL DISCUSSION

A. The role of ions in the cnoidal theory

Next, we will present a theoretical derivation to demon-

strate that the cnoidal solution for nonlinear dust acoustic

waves is robust. Since the basic nonlinear model equation,

the KdV equation, always has a cnoidal solution, our key

point here is that the KdV equation itself can be obtained for

various assumptions about the ions. In the previous deriva-

tion44,45 for DAWs, Yadav et al. assumed a Boltzmann ion

response. Here, we assume cold ions responding ballistically

to the wave electric potential. Despite this change in the

assumption, we still obtain a KdV equation, which admits a

cnoidal wave solution.

We next briefly outline a derivation of the model KdV

equation including the cold-ion response. We use a simple

description of the dusty plasma system as being composed of

three fluid components representing the dust, the ions, and

the electrons.15 The dust dynamics is then given by

@n

@t
þ @ðnuÞ

@x
¼ 0; (5)

@u

@t
þ u

@u

@x
� Zde

Md

@/
@x
¼ 0; (6)

@2/
@x2
¼ �4peðni � ne � ZdnÞ: (7)

Here, Eq. (5) is the dust continuity equation with n and u
denoting the dust density and velocity, respectively.

Equation (6) is the dust momentum equation with / repre-

senting the electrostatic potential and Zd and Md being the

dust charge and mass, respectively. Equation (7) is the

Poisson equation, with ni denoting the ion density and ne the

electron density. The dust pressure is neglected (cold dust

fluid). Since the electron mass is negligible compared to that

of the massive dust particles, it is appropriate to assume the

electrons obey a Boltzmann distribution

ne ¼ ne0 exp
e/
Te

� �
: (8)

A similar assumption of a Boltzmann response for ions was

of Yadav et al.,44 but this assumption will likely lead to an

exaggerated variation in ion density. This is so in part

because of the low ion temperature Ti in a gas discharge

plasma. In general, Ti in such a plasma is smaller than

0.1 eV. There is evidence, from nonlinear DAW experiments

similar to ours,51 that the wave’s potential can vary with an

amplitude of 0.1 V or more. Such a small ion temperature

combined with a large excursion of wave potential would

cause a large change in ion density. In fact, besides the ion

thermal energy, there is also the energy associated with ion

flow, and the latter is generally much greater in the sheath

region of a gas discharge plasma. The ion flow velocity must

be large, comparable to the ion acoustic speed, as described

by the Bohm sheath criterion. The cooling effect of neutral

gas acting on the ions, however, can cause a temperature

ratio Ti/Te� 1 so that the ion thermal velocity is low. For

these gas discharge conditions, a more reasonable approxi-

mation for modeling the change in ion density due to a varia-

tion in the electric potential can be made by a ballistic

approximation.

A different approximation for the ions, which results in

a much smaller variation in the ion density, is the cold-ion

“ballistic response model.” This description neglects ion

kinetic effects and describes the ions with just two hydrody-

namic parameters that can vary in response to the wave: a

local ion density ni and a local ion fluid velocity vi. The fluid

equations for ions are

nivi ¼ ni0vi0; (9)

miv2
i

2
þ e/ ¼ miv2

i0

2
; (10)

where mi is the ion mass and vi0 is the equilibrium ion

streaming velocity.

Quasi-neutrality at equilibrium gives

ni0 ¼ ne0 þ Zdn0: (11)

A linear dispersion relation can be obtained by a linear

perturbation analysis of Eqs. (5)–(11), with perturbations

exp ½iðqx� xtÞ�, yielding

x2 ¼ b2C2
s q2 1þ q2k2

D

1� gd

" #�1

� b2C2
s q2 ðfor q2k2

D � 1Þ; (12)

where b2¼Zdðd�1Þ=ð1�gdÞ; Cs¼ðTe=MdÞ1=2; d¼ni0=ne0;
g¼Te=ðmiv2

i0Þ and kD¼ðTe=4pn0e2Þ1=2
.

The KdV equation can be obtained by employing the

stretched variables

n ¼ �ðx� uphtÞ; s ¼ �3t:

[If this were done at the lowest order of the perturbation,

the analysis would yield the linear dispersion relation of
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Eq. (12)]. To include nonlinear terms, one retains terms of

the next significant order, giving the following nonlinear

evolution equation for the perturbed potential (or density or

velocity):

1

uph

@/1

@s
þ 1

2

dg2 � 1

1� gd
� 3

Zd

b2

" #
/1

@/1

@n

þ k2
D

2Zd

d� 1

1� gd
@3/1

@n3
¼ 0; (13)

where uph¼bCs is the linear phase velocity. Equation (13)

has the form of the KdV equation, a fully integrable nonlin-

ear partial differential equation (PDE), which has many

exact analytic solutions including the well-known soliton

solutions. There is a difference, on comparing Eq. (13) to

Eq. (12) of Yadav et al.,44 in the details of the coefficients.

An exact periodic solution of the KdV equation [Eq. (13)] is

a chain of solitons, of the form given by Eq. (1).

B. Wave amplitude

Two chief approximations are made in the derivation of

the KdV equation [Eq. (13)]: weak dispersion and weak non-

linearity. The weak dispersion approximation is justified for

dust acoustic waves since they have long wavelengths

(qkD� 1). The weak nonlinearity condition, which needs a

more detailed examination, requires the normalized per-

turbed quantities to be small because the derivation of the

KdV equation involves an expansion of quantities such as

wave potential and dust density in terms of an expansion

parameter �. In contrast to the linear dispersion relation,

which retains only terms of order �, the derivation of the

KdV equation retains higher order terms. For example, terms

of order �¼ 3/2, 5/2, and 2 are retained in the dust continuity

equation, dust momentum equation, and Poisson’s equation,

respectively.

For the normalized wave potential, e//Te, the weak non-

linearity condition is probably well satisfied. We estimate

that e//Te is of order 0.1 for this experiment. This estimate

is based on experimental determination of values, in a sepa-

rate but similar experiment,51 of / in the range 0.12–0.26 V

and an electron temperature measured as51 Te¼ 3 eV or even

higher values.24

For dust density, perturbations can be larger than for

other physical parameters. The highly charged dust has a

strong response to an electric field, even if singly charged

electrons and ions do not. For this reason, the weak nonline-

arity condition is not always satisfied for the dust, in our

experiments. In particular, during portions of the waveforms

in the runs at low gas pressure, the dust density fluctuation

briefly attains fairly high levels, as indicated in Table I.

Our experimental result in Fig. 3 that there is good

agreement with the cnoidal waveform is particularly interest-

ing. The cnoidal waveform is found to be reasonably accu-

rate even beyond its intended application, under a weak

nonlinearity condition assumed by the KdV equation.

A further theoretical step can improve upon the KdV

model by including higher orders in the perturbation

expansion. The result of this generalization is an extended

KdV equation;52,53 although this equation is not fully inte-

grable, it still has an exact cnoidal wave solution53 of the

form Eq. (3) used in our present analysis. This point suggests

that the cnoidal waveform is accurate beyond the applicabil-

ity of the KdV equation and may help explain the excellent

theoretical fit to the experimental data, even at high

amplitude.

VII. CONCLUSION

We find that the cnoidal wave solution of Eq. (1) accu-

rately describes the waveform of nonlinear dust acoustic

waves in a ground-based experiment. This finding is based

on our analysis of experimental waveforms of dust particles’

number density, which are found to be fitted well by the

cnoidal solution over a wide range of amplitudes. This agree-

ment is found even at fairly large amplitudes for the dust

density perturbations, suggesting that the cnoidal solution is

reasonably accurate even beyond the weak-nonlinearity con-

ditions that are assumed by the KdV equation.

The fit yields a useful measure for the wave’s nonlinear-

ity, the so-called elliptic parameter k. We find that the

parameter k is useful for waves at smaller amplitude. For

larger amplitude, the total harmonic distortion (THD) is

found to be a more useful indicator.

We believe that it will be interesting to further test the

cnoidal wave solution, using the data in other dusty plasma

experiments, including the PK-4 instrument on the

International Space Station.54 Such experiments, under

microgravity conditions, do not require a large vertical elec-

tric field and thus have a lesser ion flow.

SUPPLEMENTARY MATERIAL

See supplementary material for the data used in Figs.

2(b)–2(e) and Figs. 3(c) and 3(e).
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