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Abstract.

Experimental methods are described for determining transport coefficients in a strongly

coupled dusty plasma. A dusty plasma is a mixture of electrons, ions, and highly

charged microspheres. Due to their large charges, the microspheres are a strongly

coupled plasma, and they arrange themselves like atoms in a crystal or liquid.

Using a video microscopy diagnostic, with laser illumination and a high speed video

camera, the microspheres are imaged. Moment-method image analysis then yields

the microspheres’ positions and velocities. In one approach, these data in the

particle paradigm are converted into the continuum paradigm by binning, yielding

hydrodynamic quantities like number density, flow velocity and temperature that

are recorded on a grid. To analyze continuum data for two-dimensional laboratory

experiments, they are fit to the hydrodynamic equations, yielding the transport

coefficients for shear viscosity and thermal conductivity. In another approach, the

original particle data can be used to obtain the diffusion and viscosity coefficients, as

is discussed in the context of future three-dimensional microgravity experiments.
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1. Introduction

Dusty plasma [1, 2, 3, 4, 5] is a low-temperature mixture of micron-size particles of

solid matter, neutral gas atoms, electrons and ions. The solid particles are typically

polymer microspheres, and they are referred to as “dust particles.” They each gain a

large negative charge Q of about −104 elementary charges, for a 7 micron sphere in a

typical gas-discharge plasma. Most of the volume is filled with electrons, ions and gas,

while the solid particles fill a volume fraction less than 10−3. The motion of the dust

particles is dominated by electric forces due to the local electric field E = Econf + Ed,

where Econf is due to the ambient plasma potential Vconf , which can levitate and confine

the dust particles. The field Ed is due to Coulomb collisions with other dust particles.

Due to their high charges, Coulomb collisions among dust particles have a dominant

effect. The interaction force QEd among them is so strong that the dust particles do

not move easily past one another, but instead self-organize and form a structure that

is like that of atoms in a solid or liquid [6, 7, 8, 9, 10, 11, 12, 13]. In other words, the

collection of dust particles is said to be a strongly coupled plasma [14]. The pressure p in

a strongly-coupled plasma is due mainly to Ed, while thermal motion, which dominates

for weakly coupled plasmas, contributes less [15].

This paper is based on a presentation at the EPS Satellite Conference on

Plasma Diagnostics 2013. Our emphasis is on the diagnostic methods for determining

transport coefficients in a strongly coupled dusty plasma. We start by reviewing

the spatially and temporally resolved imaging instrumentation that yields precise

measurements of the positions of individual particles [16] and velocities [17]. This

capability of making measurements in the particle paradigm is unique in the field

of plasma physics diagnostics. To illustrate several methods of transport coefficient

determination, we summarize how we determine viscosity and thermal conductivity as

in our previously reported two-dimensional (2D) laboratory experiment [18, 19] and we

discuss the measurement of viscosity and diffusion coefficients in future 3D microgravity

experiments.

2. 2D Experiment

To prepare a 2D experiment to determine transport coefficients, dust particles can be

levitated in a single layer by the electric field in the sheath above a horizontal lower

electrode in an argon capacitively coupled radio-frequency (rf) plasma, figure 1(a). The

13.56 MHz waveform on the lower electrode, as compared to the grounded vacuum

chamber, is 214 V peak-to-peak with a dc self-bias of −138 V. Accordingly, the plasma

has both rf and dc electric fields; the rf portion serves only to accelerate electrons and

sustain the plasma’s ionization, while the dc portion provides levitation of the dust

particles.

Melamine-formaldehyde (MF) microspheres of 8.09 µm diameter are introduced by

agitating a centimeter-size metal “shaker” box with a small opening so that the particles
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sediment through the plasma. They become levitated at a height where the downward

force of gravity is balanced by a large upward dc force. (Note that this large force is

eliminated in microgravity experiments, section 6.) The box is then retracted. Viewing

from the side with an analog video camera and laser illumination, we determine whether

there is an unwanted second layer of heavier particles, which can consist of two dust

particles stuck together. We remove these heavy particles by modulating the rf power

so that the plasma is extinguished in cycles, with plasma-off and plasma-on intervals

of about 700 and 10 µs, respectively. This modulation alters the dc electric fields so

that particles are levitated at a lower height, near the lower electrode, and the heaviest

particles actually touch the electrode and stick. This modulation is repeated in bursts

of ≈ 102 cycles while viewing video monitors until all the heavy particles are eliminated.

Afterwards, the plasma is operated in steady conditions, and the same particles remain

confined in a single layer in the plasma during the entire experiment.

The dust particles move more easily within this single horizontal layer than in

the vertical direction, due to the strong vertical gradient of the dc electric field in

the electrode sheath. Thus, the particle motion is mainly two dimensional. The dust

particles repel one another with a shielded potential, due to the screening provided by

the ambient electrons and ions [20]. As the dust particles move, they also experience drag

with a force that can be modeled using the Epstein formula [21], which is characterized

by a gas damping rate νgas, which is the ratio of the drag force and the particle’s

momentum. For the 2D experiment described here, the argon pressure is 15.5 mTorr

and νgas = 2.7 s−1.

The diagnostic instrumentation consists of laser illumination and video imaging,

figure 1. Dust particles are illuminated by a sheet of laser light, which is made by

focussing a 488-nm argon laser beam with a pair of spherical lenses and then dispersing

the beam into a horizontal sheet. The dispersing is done with either a scanning mirror

or a cylindrical lens. Imaging of the dust particles is performed using a cooled 14-bit

digital camera (PCO 1600) fitted with a 105 mm Nikon lens and a bandpass filter that

admits light within a 10 nm bandpass centered on the laser’s wavelength. The camera is

operated at a frame rate of 55 frame/s, and the combination of lens and sensor provide

a resolution of 0.039 mm/pixel. The particle spacing in the plane has a lattice constant

b = 0.50 mm, corresponding to a 2D Wigner-Seitz radius [22] of a = 0.26 mm, areal

number density n0 = 4.7 mm−2, and mass density ρ = nmd = 1.97× 10−12 kg/mm2.

Laser manipulation [21, 23, 24, 25, 26, 27, 28, 29] is a widely used tool in dusty

plasma experiments. The radiation pressure force of a laser can be used to drive a

steady flow of dust particles, which is useful for determining transport coefficients. In

our transport-coefficient experiment, a pair of 2.28 W 532-nm laser beams is used to

drive counter-propagating flows with a shear region between them. They are incident

at a 6◦ downward angle to push particles in the ±x directions, as shown in figure 1.

To generate a wider flow than in previous 2D transport experiments [31, 25], the laser

beams are rastered to have a rectangular cross section. This rastering resulted in a

Lissajous pattern, with frequencies of fx = 123.607 Hz and fy = 200 Hz that are
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chosen high enough to avoid exciting longitudinal or transverse waves at the rastering

frequency. This laser manipulation scheme results in a counterpropagating flow pattern

aligned in the ±x directions in the center, where we analyze data. The flow pattern

closes outside the region of interest that is analyzed. Having a straight flow in a single

direction provides symmetries that greatly ease the analysis, when determining transport

coefficients.

3. Image analysis

Measuring particle positions and velocities in a dusty plasma experiment can be done

using particle tracking velocimetry (PTV). The measurement starts with a bit-map

image representing a single frame of the recorded video. As an example, in figure 2(a) is

a portion of single video frame from a 2D dusty plasma experiment different from the one

described in section 2. Each bright spot represents a microsphere. A single microsphere

fills multiple pixels, due to diffraction, as shown in figure 2(b). It is desirable to make it

fill even more pixels, as in figure 2(c), as can be accomplished by defocusing the camera

lens while increasing the illumination laser power.

Images have random noise in each pixel. This random noise can arise because of

fluctuations in the camera’s sensor and its electronics, and it has an average value that

we term the “background intensity,” Ibg.

After recording a bit-map image, we use the moment method algorithm [16] to

compute the particle position as

Xcalc =

∑
k

Xk(Ik − Ibase)∑
k

(Ik − Ibase)
, (1)

where the most important quantities are the position Xk and intensity Ik of a pixel k.

The result of equation (1) is a “center of mass” of the bright spot. When the particle

fills more than one pixel, this calculation can yield an estimate of the particle position

with sub-pixel accuracy. Because of its computational efficiency, the moment method

is suited for analyzing large quantities of data. In the 2D experiment described here,

millions of particle-position measurements were made from the video images using this

method. There are other variants of this method [30].

There are two sources of error in the particle position Xcalc. One is the random

noise, which is a fluctuation in each value of Ik regardless of what is imaged. The other

is called “pixel locking,” and it is due to the finite size of a pixel on the sensor and

the way that the light intensity pattern from the lens is averaged within a pixel. Pixel

locking causes computed particle positions to be located at favored positions such as

the center or corner of a pixel. We devised and tested an optimized method of using

equation (1) to measure particle positions while reducing pixel locking and controlling

the effects of random errors, reported in [16], which we summarize next.

With this algorithm, it is necessary to limit which pixels are included in the analysis;

this is done by choosing contiguous pixels that are brighter than a threshold value Ith,
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which we select using an optimized procedure presented in section 6 of [16]. We also

record an image without dust, which we call a dark-field image. We denote its intensity

in pixel k as Idark k. In equation (1) we subtract a baseline intensity Ibase k, calculated

separately for each pixel as Ibase k = Idark k + (Ith − Ibg), where Ibg is the average of

Idark k for pixels in the image. The threshold Ith is chosen by varying it downward until

artifacts of pixel-locking are minimized in a sub-pixel map. Most steps in this analysis

can be done with the ImageJ [32] code, and errors of 0.1 pixel or smaller can be attained.

After calculating particle positions using equation (1), we calculate particle

velocities by subtracting the positions Xcalc of the same particle in two different frames

and dividing by the time interval between frames. This requires “threading” or tracking

a particle between two consecutive frames. Threading is typically done by searching the

second image within a specified radius around the particle’s position in the first frame; if

this search yields one particle, we assume it is the same one. If it yields no particles, or

more than one particle, then the particle is not successfully threaded to the next frame.

Threading for just two frames usually poses little problem if the frame rate is high

enough. Threading for many more frames, however, is needed for diffusion coefficient

measurements, and this cannot be done indefinitely because particles eventually move

out of the region of interest, or in the case of 3D experiments they move sideways out

of the illuminating laser sheet.

4. From particles to continua

Using experimental measurements of their positions and velocities, the dust particles

can be described in a particle paradigm. Dusty plasmas are unique in the field of

plasma physics for allowing one to work with experimental data in the particle paradigm.

However, one often needs to work in a continuum paradigm, with fluid quantities such

as number density, flow velocity and temperature that are recorded as a function of

position. It is possible to convert data from the particle paradigm to the continuum

paradigm (but not vice versa); this conversion is done by averaging the particle data on

a spatial grid.

Starting with the positions and velocities of individual particles as determined by

PTV, we convert to continuum data by averaging particle data within spatial regions of

finite area, which we call bins. A similar binning process is used for the same purpose

in particle-in-cell simulations [33]; here we use it with experimental data. For the

experiment described here there are 89 bins, which are narrow rectangles aligned in the

y direction, as shown in figure 1(b). In all our calculations of the continua quantities,

we weight the particle data using a simple cloud-in-cell algorithm [33]. If a particle

is located at distances La and Lb from the two nearest bins a and b, the weighting

factors for these bins are Lb/(La + Lb) and La/(La + Lb), respectively. This weighting

scheme reduces noise when a particle crosses from one bin to another. The experimental

conditions described here were steady, so we also average data over time. The bin width

was chosen to be a, the Wigner-Seitz radius.
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Spatially resolved data for the number density, flow velocity, and kinetic

temperature are required to determine the transport coefficients. We obtain the number

density profile simply by counting the weighted particles in each bin and dividing by

the area of the bin. Multiplying by the particle mass or charge then yields the profile of

the mass density ρ or charge density ρc of the dust continuum. The flow velocity profile

vx and kinetic temperature Tkin are obtained similarly. For the temperature, we use

the squared velocity fluctuation. Results for the profiles in our 2D transport-coefficient

experiment are shown in figure 3. These profiles will be used in the continuity equations,

described below, to obtain the transport coefficients.

We can obtain additional dust particle parameters from the velocity data by

calculating autocorrelation functions and then Fourier transforming them. This

procedure yields spectra of longitudinal and transverse waves in a lattice [34]. We

do this without laser manipulation to obtain a good crystal, which allows fitting a

dispersion relation (from a theory for a triangular lattice with a Yukawa potential) to

the experimental spectra. For our transport-coefficient experiment, we find the charge

Q/e = −9700, a 2D dust plasma frequency ωp = 75 s−1, and the particle spacing

a/λD = 0.5 (which is written as a multiple of the screening length).

We now list the continuity equations. For mass and momentum they are

∂ρ

∂t
+∇ · (ρv) = 0 (2)

and

∂v

∂t
+ v · ∇v =

ρcEconf

ρ
− ∇p

ρ
+

η

ρ
∇2v

+

[
ζ

ρ
+

η

3ρ

]
∇(∇ · v) + fext, (3)

respectively. The transport coefficients η and ζ are the shear viscosity and bulk viscosity,

respectively, and η/ρ is called the kinematic viscosity. Equation (3) describes the

force per unit mass, i.e., acceleration, acting on the dust continuum. The last term

in equation (3) is due to forces such as gas friction, laser manipulation, ion drag, and

any other forces that are external to the layer of dust particles. The third and fourth

terms on the right-hand-side of equation (3) correspond to viscous dissipation, which

arises from Coulomb collisions amongst the charged dust particles.

The continuity equation for the internal energy is

T

(
∂s

∂t
+ v · ∇s

)
= Φ+

κ

ρ
∇2T + Pext. (4)

Here, T is the thermodynamic temperature of the dust continuum and s is its entropy

per unit mass. The second term on the right-hand-side of equation (4) is due to thermal

conduction. The transport coefficient κ is the thermal conducitivity. It arises from

a temperature gradient. The first term on the right-hand-side of equation (4) is due

to viscous heating, and it arises from a velocity shear. The viscous heating term Φ

depends on the square of the shear, i.e., the square of the gradient of flow velocity,
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and its expression has many terms, although it can be simplified for our transport-

coefficient experiment by taking advantage of symmetries. The last term is due to the

energy contribution from the same external forces fext as in equation (3).

External forces that contribute momentum and energy include gas friction, laser

manipulation, and the electric confining force. The latter is balanced by the pressure

inside the body of charged dust, ρcEconf = ∇p, so that only two forces need to be

considered: gas friction and laser manipulation. The gas friction force can be calculated

using measured particle velocities and a known drag coefficient. The laser manipulation

force could also be computed if the laser intensity were known, but this is not necessary

if we analyze data only in the spatial regions outside the laser beams, as we do here.

We can simplify the continuity equations by exploiting the steady conditions

∂/∂t = 0, the one-dimensional symmetry of the flow configuration ∂/∂x = 0 and vy = 0,

and incompressibility ∇ · v = 0 for subsonic flows. Within the spatial region where the

laser intensity is zero, the equations become

∇ρ = 0 (5)

∂2vx
∂y2

− ρνgas
η

vx = 0 (6)

Φ +
κ

ρ

∂2

∂y2
T − 2νgasKE/md = 0 (7)

where

Φ =
η

ρ

(
∂vx
∂y

)2

(8)

is the viscous heating term, simplified for the symmetry of the experiment. The term

with KE, which is the local average particle kinetic energy (including both random and

flow motion), represents the energy loss due to gas friction. We will use these equations

to fit the experimental profiles. In doing so, we will assume that η and κ are independent

of temperature [25, 35].

5. Obtaining the 2D transport coefficients

The momentum and energy equations are written so that their right-hand sides are zero.

When we use these equations with an input of experimental data, however, the terms

will not sum exactly to zero, but will instead sum to a nonzero residual. In order to

calculate the transport coefficients η and κ, we treat them as free parameters and we

minimize the squared residuals summed over the bins in the central flow region. Using

this fitting method, we obtain both transport coefficients simultaneously.

For our experiment, this method yields the kinematic viscosity ν = η/ρ =

0.69 mm2/s and thermal diffusivity κ/(cρ) = 8 mm2/s. These values are the culmination

of the experimental methods described above, starting with video imaging and ending

with continuum flow profiles that are fit to the continuity equations. They were
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obtained simultaneously, from the same experiment, by analyzing the same central

region, corresponding to the middle 19 bins, corresponding to the 19 data points in

in the middle of Fig. 3. Each bin has a width a.

We note that viscosity can depend on parameters such as shear rate ∂vx/∂vy and

temperature [36] [37]. In our experiment these quantities are not uniform within the

analyzed 19-bin central region, which leads us to repeat our analysis of viscosity for

smaller portions of the flow. There are limits to the spatial resolution that one can

hope to achieve in a nonuniformly sheared flow because viscosity is a hydrodynamic

quantity that requires local equilibrium. Thus, differences in viscosity are not physically

meaningful if they occur on a scale length as small as a. We divide the central

region into three portions, each with seven bins that overlap by one bin. We find

the kinematic viscosity is 1.30 mm2/s in the innermost 7-bin portion where the shear

rate and temperature are lowest, and 0.70 and 0.67 mm2/s in the two bordering 7-bin

portions where the temperature and shear rate are higher. Thus, there is a systematic

decrease of about 50% that is attributable to an increasing shear rate and temperature.

This effect is significant compared to random errors of order 0.03 mm2/s. The same

approach of using smaller portions of an inhomogeneous flow could be used for the

thermal diffusivity, not shown here.

In addition to our method based on fitting to hydrodynamic equations,

another method [37, 38] of obtaining the viscosity from particle-domain experimental

measurements was introduced by Hartmann et al. [37]. The Hartmann method does

not require fitting. The local viscosity is calculated as the ratio of the local value of

the shear stress Pxy and the local value of the shear rate ∂vx/∂vy. The shear stress

is obtained from experimental measurements as the sum of a kinetic term
∑

imivxivyi
and a potential term, and this sum is binned to convert to the continuum paradigm.

This method yields a spatially resolved profile for the viscosity, which is well suited for

experiments where the shear rate is nonuniform. It has been used to quantify shear

thinning to describe how viscosity diminishes with shear rate [37].

6. 3D microgravity experiments

We carried out a Langevin molecular-dynamics simulation of a 3D dusty plasma to assess

the feasibility of determining transport coefficients in the PK-4 device [39, 40, 41, 42].

This European Space Agency (ESA) facility, which is expected to be launched to the

International Space Station, is shown schematically in figure 4. It produces a dc plasma

in a glass tube, and it is equipped with laser illumination and video imaging. Flows can

be driven by laser manipulation or ion drag.

Our simulation parameters were modeled on quantities reported by other

experimenters. We assume the gas is neon at 50 Pa pressure, while the MF microspheres

have a radius of rp = 3.43 µm [41], and a massmp = 2.55×10−13 kg calculated for a mass

density of 1.51 g cm−3. We assume a number density of dust particles nd = 3×104 cm−3,

which corresponds to a three-dimensional Wigner-Seitz radius a = (3/4πnd)
1/3 = 0.020
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cm. For a 50 Pa gas pressure, the gas friction constant is νg = 51 s−1. We assume a

particle charge Q = 8520 e, which we estimated [43] by adjusting the charge of 1490 e

as obtained from the figure 7(a) in [42] for a smaller rp = 0.6 µm particle. We assume

a plasma density ne = 2.4 × 108 cm−3 and electron temperature Te = 7.3 eV, which

we estimated for 50 Pa neon, using a fitting formula for PK-4 data [42]. As in [42], we

assume that the ion temperature is close to the gas temperature, Ti ≈ Tgas ≈ 0.03 eV.

We assume λD = (λ−2
De + λ−2

Di)
−1/2

= 8.3× 10−3 cm, where λDe and λDi are the electron

and ion Debye lengths calculated using Te and Ti, respectively.

We assess the feasibility of determining the shear viscosity and the diffusion

coefficient in an experimental scheme that has no flows of the dust particles. For

the shear viscosity, instead of using the hydrodynamic equations as we did above for

the 2D experiment, here we consider an alternate approach of using the Green-Kubo

relation, which requires as its inputs the positions ri, velocities ṙi of each particle i,

and the potential ϕij between all particle pairs [44]. The conditions must provide

random thermal motion with an absence of macroscopic flow, which is different from the

conditions we used above for the 2D experiment. When using experimental data, which

do not provide a direct measure of potentials, the potentials must be calculated from

the positions by assuming a model such as the Yukawa potential for the interparticle

forces [44]. For the diffusion coefficient, we compute a time series of the mean-square

displacement, which requires threads for the particle positions, and these threads must

be sufficiently long in their time duration. The diffusion measurement is challenged by

the problem that in the experiment the threads (i.e., the time series of data for a given

particle) have a finite lifetime due to particles drifting out of the plane of illumination.

In our simulation we integrate a Langevin equation of motion for each particle i,

mpr̈i = −νgmpṙi + ζi(t)−∇
∑
j

ϕij −∇Vconf . (9)

We use N = 12800 dust particles that interact with a Yukawa potential

ϕ(rij) =
Q2

4πε0

exp−rij/λD

rij
, (10)

while experiencing drag on the gas as well as random forces ζi from the gas atoms. The

confining potential Vconf is flat in the analyzed region. Since a higher kinetic temperature

is more challenging for the diagnostic, and the dust kinetic temperature Tkin exceeds

the gas temperature in an experiment, we elevated Tkin by applying a multiplier of to

the random force ζ in the Langevin equation. We found that a multiplier of 16.7 yields

Tkin = 8.3 eV.

For the feasibility of measuring the diffusion coefficient D, we calculated the

probability distribution function (PDF) as a histogram of particle displacements during

a specified time interval, figure 5. The mean-square displacement (MSD) is calculated as

a moment of the PDF for various time intervals, and presented as a time series, figure 6.

An MSD curve typically has two portions: at small times the motion is ballistic with

MSD ∝ t2 while at long times it is diffusive with MSD ∝ t. The diffusion coefficient
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is determined from the long-time portion, so that it is necessary to record data for

sufficiently long times. From the simulation data we determined D = 0.051 mm2/s. To

assess the experimental feasibility, we also must know the transition between the two

regimes, which we determined to be tωp = 5 corresponding to t = 32 ms for the PK-4

parameters we assumed. To determine the diffusion coefficient, the MSD curve should

be at least three times as long as the transition time (and preferably longer), meaning at

least 100 ms for the predicted experimental conditions. To attain threads of this length,

the minimum thickness of the laser sheet, for tracking a particle that starts in the laser

sheet’s center, would be 142 µm, for the simulated conditions. This is comparable

to the typical laser sheet thickness in an experiment, meaning that this measurement

appears to be marginally feasible, for the parameters evaluated here. Another feasibility

consideration is the camera’s resolution, i.e., the size that is imaged by one pixel. To

measure D will require sufficient spatial resolution so that errors in the particle position

do not spoil the MSD curve. For D = 0.051 mm2/s, an observation time of 100 ms would

require that the errors in the measured displacement should be significantly smaller than√
0.0051 mm2 = 71 µm. For an imaging resolution of ≈ 14 µm, an algorithm providing

sub-pixel accuracy as in [16] would be required to attain sufficiently small errors.

To assess the feasibility of measuring the viscosity η in the experiment, we calculate

the Green-Kubo integrals, equations (1-3) of [44], which require data for particle

positions in all three dimensions. Three dimensional imaging schemes for PTV have been

demonstrated using digital holography and multi-camera stereoscopic imaging [30]. Such

a scheme could be used in future space-based experiments beyond PK-4. In our test,

we use simulation data sampled at finite time intervals corresponding to an adjustable

camera frame rate. Performing this test, we found that a camera frame rate of at least

30 s−1 would be required for the parameters above, so that the error introduced in the

calculation of viscosity, due to the finite frame rate, is smaller than 2%.

This work was supported by NSF and NASA.
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Figure 1. Sketch of the experimental configuration for determining transport

coefficients in a 2D dusty plasma. (a) A single layer of dust is levitated, and it is

illuminated by a 488 nm laser sheet and manipulated by 532 nm rastered laser beams.

(b) The manipulation laser drives counter-propagating flows, which are straight within

the central region of interest that is analyzed. Reprinted from [19].
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Figure 2. Bit map images [16]. (a) A 1/12 portion of a bit-map image from an

actual experiment, showing the overall crystalline structure in the absence of laser

manipulation. (b) and (c) The bright spot for a single particle, from synthetic data.

For accurate measurement of position, it is desirable for the random noise seen in

each pixel to be minimized, and for the spot to fill many pixels as in (c), with a

laser sufficiently powerful to exploit the full dynamic range of the camera’s sensor (but

without saturating many pixels).
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Figure 3. Profiles of the flow velocity (a) and kinetic temperature (b) from the 2D

experiment. Fitting these profiles to equations (6-8) yields the transport coefficients

for viscosity and thermal conductivity. Note the temperature peaks in the regions

of high shear; these peaks are due to viscous heating. Unlike other substances, in

a dusty plasma thermal conduction does not overwhelm viscous heating, so that it is

possible to detect these viscous heating peaks. Data points correspond to bins of width

a = 0.26 mm.
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Figure 4. Sketch of the PK-4 instrument.
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Figure 5. Probability distribution function (PDF) computed from particle

displacements after various times, from our 3D simulation. Time is normalized by

the dust plasma frequency ωp, and displacement is normalized by the Wigner-Seitz

radius a.
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Figure 6. Mean square displacement (MSD) curves computed from PDF data from

our 3D simulation. In an experimental measurement of the diffusion coefficient, it

would be necessary to track (thread) particles at least three times as long as the

transition time.
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