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Nonlinear longitudinal waves in a two-dimensional screened Coulomb crystal
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Nonlinear interactions of longitudinal waves were observed in a two-dimensional plasma crystal, i.e., a
lattice composed of highly charged microspheres immersed in a plasma. The waves were launched by radiation
pressure of a laser, and wave spectra inv-k space were analyzed at various amplitudes of waves. At a
sufficiently large amplitude of wave, the second and third wave harmonics satisfying a dispersion relation were
observed. As the second harmonic propagates from the excitation region, it was amplified for a small distance,
and then damped. The experimental results were compared to a nonlinear wave theory and to a molecular
dynamic simulation.
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I. INTRODUCTION

Generation of wave harmonics is one of the promin
features of nonlinear wave-wave interactions in vario
kinds of matters. To generate wave harmonics from nonlin
wave coupling, it is commonly known that two resonan
conditions must be met@1#: (v i50 and(k i50, wherev i
and k i are frequencies and wave numbers of the waves
volved in the interaction, respectively. For example, the s
ond ~2nd! harmonic is generated by a coupling of the tw
fundamental modes, and the third~3rd! harmonic is gener-
ated by a coupling of the fundamental and second harmon
or three wave coupling of the fundamental modes in
same manner.

Our system is a two-dimensional~2D! triangular lattice
made from a complex plasma, also known as dusty plas
It contains four components: electrons, ions, microsph
particles, and gas molecules. The particles typically acq
large negative charges by collecting electrons and ions, w
the electrons have a higher mobility. The interaction betw
particles is known to be a screened Coulomb potential@2#
because the charges on particles are shielded by surroun
electrons and ions. When these particles are trapped b
external confinement potential and cooled down eno
through interactions with the gas molecules, particles fo
an ordered structure, called a plasma crystal@3–5#. A plasma
crystal is an example of a strongly coupled Coulomb syst
it is distinguished from some other types of strongly coup
plasmas by the screened Coulomb interaction.

In a 2D plasma crystal, two eigenwave modes can pro
gate: a longitudinal and a transverse wave. The longitud
wave is a wave of compression propagating parallel to
particle motion. The transverse wave, sometimes called
shear wave, is a wave propagating perpendicular to the
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ticle motion. In the linear wave regime, i.e., regime whe
wave amplitude is much smaller than the mean interpart
spacing, both longitudinal and transverse modes have
ready been observed in several experiments@6–10# and the
measured dispersion relations agreed with theoretical pre
tions @11–13#.

Here, we summarize characteristics of wave dispers
relations of longitudinal and transverse modes in 2D plas
crystals, which have been verified in above mentioned
periments and theories.~i! Both modes have acoustic beha
ior, i.e., v}k at k'0. ~ii ! The sound speeds of these tw
modes are different. The longitudinal mode propagates fa
than the transverse mode.~iii ! Dispersion relations exhibi
anisotropy, which is more pronounced in large values ofk.

In addition to the longitudinal and transverse wave
which are elastic deformations of the lattice, there are sev
other modes of particle motion. If the lattice has a finite si
and is confined by an external potential, it will have eige
modes including the sloshing mode, which is a rigid-bo
oscillation of the entire lattice in the confining potential. A
indirect observation of the presence of the sloshing mod
the same time as a longitudinal wave was reported pr
ously @9#.

In addition, a lattice can be deformed with a plastic d
formation, i.e., with a breaking of interparticle bonds. Wh
bonds are broken, energy is consumed in an irreversible
cess, unlike an elastic deformation which involves no bre
ing of bonds and is reversible in the absence of any fricti
A shear in the particle velocity profile is particularly effe
tive in breaking bonds. After bonds have been broken i
plastic deformation process, it is possible for particles to
culate in a vortex, driven by any shear force that might
present. This vortex can be thought of as yet another kind
mode for particle motion. For all these modes, gas frict
can lead to a damping.

Nonlinear properties of a longitudinal pulse were recen
studied in 2D plasma crystals. Samsonovet al. @14# launched
a large pulse by applying an electrostatic disturbance to t
crystal, and observed what they identified as solitons
larger pulse amplitudes. Nosenkoet al. @15# also excited a
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NUNOMURA et al. PHYSICAL REVIEW E 68, 026407 ~2003!
nonlinear pulse, but using a laser manipulation method. T
observed that the propagation speed increased with the p
amplitude. Melzeret al. @16# applied a moving disturbanc
to a lattice, producing a wake composed of longitudin
waves that exhibited a spatial distribution~Mach cone
angle!. It varied with the intensity of the disturbance; th
experiments suggested that this observation might be
plained by nonlinear effects. On the theory side, Melan”
@17# investigated nonlinear wave properties in a 1D latti
and Zhdanovet al. @18# recently studied a soliton in 2D tri
angular lattice.

In this paper, we present experimental results for gen
tion of longitudinal wave harmonics in a 2D plasma cryst
The results are compared to a nonlinear wave theory and
molecular dynamics~MD! simulation. Then, nonlinear wave
wave interactions are discussed.

II. CRYSTAL FORMATION AND OBSERVATION

Our experiments were performed in a capacitive
coupled rf discharge. A sketch of the experimental appara
is shown in Fig. 1. It is the same experimental device pre
ously used for linear wave experiments@8,9#. By applying
13.56 MHz rf power to the lower electrode through a matc
ing network, an argon plasma was generated at a gas p
sure of 15 mtorr. The voltage applied to lower electrode w
88 V peak-to-peak with respect to the grounded vacu
chamber~not shown in Fig. 1!. The self-bias voltage ap
peared on the lower electrode was244.6 V, which helped to
suspend particles in the plasma sheath against gravity. In
bulk plasma, the electron temperature and density were m
sured with a Langmuir probe, and found to be'1 eV and
43108 cm23, respectively. The probe was located in t
main plasma, not in the sheath where the particles were l
tated.

After the particles were dispersed into the plasma, th
were trapped as a monolayer suspension levitated below
bulk plasma, in the plasma sheath above the lower electr
The particles were confined horizontally by an external
tential that was provided naturally by the bowl-shaped c
vature of the plasma sheath. The particles arranged th
selves in a triangular crystalline lattice, as shown in the in

FIG. 1. Sketch of experimental setup. A monolayer plasma c
tal was formed in a rf glow discharge. A compressional wave w
launched by radiation pressure of an argon laser. The inset is pa
the crystal, showing an ordered structure composed of triang
lattice. Thex andy coordinates are shown.
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of Fig. 1. The diameter of the particle suspension w
'7 cm, while the interparticle spacing was measured to
a50.9 mm. The particles were melamine-formaldehyde m
crospheres with 4.04mm radius and 1.51 g/cm3 mass den-
sity, corresponding to a particle massm54.17310213 kg.

To observe particle motions in the plasma crystal, we
luminated the particles with a He-Ne laser sheet and obta
a top view of the crystal with a conventional video came
Our viewing area was 24318 mm2 of the central region of a
crystal, in which approximately 600 particles were include
Using image-processing programs@19#, all particle positions
were identified and their orbits were traced for several s
onds, with a total of 128 frames at 15 frames per second

III. NATURALLY OCCURRING WAVES
AND CRYSTAL PARAMETERS

Like any kinds of solid matters with a finite temperatur
in our plasma crystal, particles always exhibited random m
tions around their equilibrium positions@10#. Particle veloci-
ties had a Maxwellian distribution with a width correspon
ing to the crystal temperature ofT50.031 eV, which is
slightly higher than the neutral gas temperature 0.025
This higher temperature indicates that particles in our plas
crystal were heated by a surrounding plasma. As a poss
candidate for this, we could consider stochastic charge
electric field fluctuations, which give energy to particles@20#.

We analyzed correlations among random particle moti
to extract self-ordered motions that occur naturally, i.e.,
detect naturally occurring waves~natural phonons!. Figure
2~a! shows an energy density spectrum of naturally occurr
longitudinal waves inv-k space. Wave energiesEv,k are
concentrated only in certain areas, not distributed all over
v-k space. Rather, they were concentrated in a curve re
senting the dispersion relation over the first Brillouin zon
The spectrum in Fig. 2~a! was calculated from a Fourie
transform of particle velocities in time and space.~See Ref.
@10# for details.! The data shown here are chosen only for t
propagation direction that is parallel to one of the primiti
lattice vectors,kia.

The naturally occurring modes satisfy dispersion relatio
@see Figs. 2~a! and 2~f!#. Our experiment was performed us
ing a finite-size lattice. For wavelengths smaller than
crystal size, i.e.,k.0.1 mm21, we can use the theoretica
dispersion relation shown in Fig. 2~f!. It was obtained by
solving a linearized equation of motion in a triangular latti
with Yukawa interaction potentials@13#. The Yukawa poten-
tial is defined byf i5( jQj exp(2rij /lD)/4pe0r i j , whereQj
is the charge on particlej, r i j is the distance between tw
particles, andlD is the shielding length.

From a best fit between the observed spectrum and
theoretical dispersion relation,Q and the shielding paramete
k[a/lD were estimated to be 16 000e and 1.2, respectively
Using the measuredQ, k, T, and a, we estimate that the
Coulomb coupling parameterG[Q2exp(2k)/4pe0akBT
andv0[(Q2/4pe0ma3)21/2 had values 4000 and 13.6 s21,
respectively. This large value ofG confirms that the particles
in our suspension were strongly coupled.

The spectrum width reflects damping of waves. For o
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NONLINEAR LONGITUDINAL WAVES IN A TWO- . . . PHYSICAL REVIEW E 68, 026407 ~2003!
Fourier analysis method, the frequency width is given
n/4p, wheren is the damping rate. The observed frequen
width of the natural phonon spectrum was roughly 0.25 H
It corresponds to the values estimated from Epstein drag
@21# so that in our system, particle motions were restricted
a gas friction.

IV. WAVE EXCITATION METHOD

To excite longitudinal waves in the lattice intentionall
we applied the radiation force of an argon laser, which w

FIG. 2. ~Color online! Wave spectra and a dispersion relation
longitudinal mode in a 2D plasma crystal. The wave propaga
direction is parallel to one of the primitive lattice vectors,kia.
Spectra are shown over the first Brillouin zone.~a!–~d! Experimen-
tal results for energy density maps inv-k space.~a! Without inten-
tional wave excitation,~b! with external wave excitation atP
50.05 W, ~c! 0.5 W, and~d! 1.1 W. The bright color indicates
high-energy concentration of waves.~e! Simulation result for an
energy density map.~f! Theoretical dispersion relation. Solid an
broken curves arekr and ki , respectively. Filled and open circle
arekr andki , experimentally obtained from the phase and amp
tude fitting in Fig. 4.
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incident on a local region of the lattice. As in other expe
ments@7,9,15,16,22#, the momentum of the photons is tran
ferred to the particle by applying a forward force to the p
ticle in the direction of the laser beam. This force
proportional to the laser intensity. By applying a tempo
modulation to the laser intensity, it is possible to excite sin
soidal waves. The waves were launched parallel to one of
primitive lattice vectors,kia.

In our experiment, the laser beam was shaped and mo
lated using two scanning mirrors, shown in Fig. 1. A wa
form applied to mirror SM1 caused this mirror to block
portion of the laser beam, which varied with time, so that
laser intensity was nearly sinusoidal with time, with a fr
quency of 1 Hz. We chose this low frequency because it f
well within the dispersionless, i.e., acousticlike portion of t
dispersion relation for longitudinal waves. The frequen
spectrum of this laser modulation, as measured using a p
todiode, is shown in Fig. 3.

To shape the laser beam, it was bounced from a sec
mirror SM2 which oscillated rapidly at 200 Hz, which i
much higher than any frequency for lattice motion. Then,
laser sheet was injected into a plasma crystal at an incid
angle of 10°, which pushes the particles mainly in the ho
zontal direction. The laser sheet was focused at the cente
the crystal with a telescope. The intensity profile of the la
sheet was a Gaussian function, i.e.,}exp(2x2/lexc

2 ), where
the wave excitation widthl exc was 2.0 mm. In our experi-
mental apparatus, thex coordinate was defined as parallel
the wave propagation direction, which is also the direction
the laser radiation. They coordinate was defined as perpe
dicular to thex axis, shown in Fig. 1. From the parameters
the wave form applied to mirror SM2, we calculated that t
width of the laser sheet in they direction was'25 mm,
which is larger than the 18 mm viewing width but small
than the lattice size.

Due to this finite size of the laser sheet in they direction,
the radiation pressure force had a profile that could induc
shear motion. Particles were pushed forward in thex direc-
tion, but with a magnitude that varied withy. This profile
was most uniform in the central region, which is where w
viewed with the camera. The shear region was outside
viewing area of the camera.

To search for nonlinear effects, we repeated o

n

-

FIG. 3. Frequency spectrum of the intensity-modulated la
beam, i.e., the driving force for wave excitation. The higher h
monic components are approximately two order of magnitu
smaller than the fundamental component.
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NUNOMURA et al. PHYSICAL REVIEW E 68, 026407 ~2003!
experiment at various laser powers. Our lowest power w
0.05 W, while highest was 1.9 W, as measured in the vacu
chamber. For comparison, for the experimental measurem
of the dispersion relation by Nunomuraet al. @9# using the
same apparatus, the laser power was 0.5 W.

V. EXPERIMENTAL RESULTS OF NONLINEAR WAVES

A. Classification of wave fields

Before considering our experimental results, it is usefu
distinguish the ‘‘near field’’ and ‘‘far field’’ regions for wave
excitation. The near field includes the excitation regi
where the laser intensity is nonzero. Particles oscillate in
near field in response to the temporal modulation of the la
beam. Some of this particle oscillation can couple into
propagating wave that exits the near field. Away from t
near field the laser intensity is zero, and there is no exte
disturbance; this region is termed the far field. This distin
tion between the near and far fields can be found also in
literature for the antenna-coupling problem in the excitat
of electromagnetic waves in a plasma@23#.

The chief subject of this paper is a demonstration of n
linear propagation of longitudinal waves in the far field. F
this purpose, it is not necessary to fully measure and mo
all the phenomena in the near field. It is sufficient to char
terize the longitudinal wave only in the far field region, b
ginning at the boundary with the near field. Here we defi
this boundary as approximatelyx5 l exc, which is the loca-
tion where the laser intensity is reduced by a factor 1/e as
compared to its peak.

At the boundary of the near and far fields, particle velo
ity in the x direction is primarily a superposition of a stron
sinusoidal disturbance at the fundamental of 1 Hz an
weaker sinusoidal disturbance at the second harmonic
Hz. The presence of the second harmonic at this loca
arises from possibly two mechanisms; the laser intensity
self has some second harmonic, as shown in Fig. 3, and t
may be harmonic generation in the near field region due
nonlinear particle oscillations. For our purposes in charac
izing the particle motion in the far field, it does not matt
exactly which mechanism in the near field produced
wave amplitudes at the boundary. It is sufficient to char
terize the wave amplitudes beginning at the boundary
propagating outward into the far field, as we explain nex

B. Nonlinear wave interactions in a far field region

Spectra of the wave energy for longitudinal particle m
tion, i.e., for particle motion in thex direction, are shown in
Fig. 2. At the lowest laser power of 0.05 W in Fig. 2~b!, only
the fundamental at 1 Hz can be identified, above the leve
the naturally occurring waves that are presented in Fig. 2~a!.
As the laser power is increased to 0.5 W in Fig. 2~c!, a
second harmonic appears, and at a higher power of 1.1 W
Fig. 2~d!, a third harmonic is present. These spectra w
prepared by averaging the wave energy over the entire
field region viewed by the camera, 2 mm,x,16 mm. To
more completely characterize the waves in the far field, i
necessary to report the spatial profiles of the wave am
tudes as a function ofx, which we shall do next.
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The amplitudes of each harmonic, i.e., the fundamen
second, and third harmonics,A1 , A2, andA3, respectively,
as the waves propagate away from the near field, are sh
in Fig. 4~b!, for our highest laser power of 1.9 W. The da
are shown in a semilogarithmic plot. The amplitude of t
fundamental exhibits an exponential decay with distancx
from the excitation region. The third harmonic similarly e
hibits an exponential decay.

Our data also provide the phase of the waves, as show
Fig. 4~a!. The phase increases linearly with distance, as
pected for the propagation of a sinusoidal wave, for all th
modes. The fundamental mode has a wavelength of 2p/kr
545 mm, as measured from the slope of the wave’s ph
The second and third harmonics have a shorter wavelen
The corresponding real wave numberkr , as computed from
the slopes in Fig. 4~a!, is plotted as the solid data point in th
linear dispersion relation of Fig. 2~f!. The open datapoints in
Fig. 2~f! are for the imaginary part of the wave numberki ,

FIG. 4. ~a! Phases and~b! amplitudes of the fundamental an
the wave harmonics atP51.8 W. As a wave propagates, its pha
increases linearly while its amplitude decreases exponentially,
cept for the second harmonic. The amplitude of the second
monic initially increased with distance, then decreased, indica
nonlinear effects in the wave-wave interactions. The wave was
cited at x50. ~c! A2 vs x in a linear scale, showing amplitud
growth (0 mm,x,4 mm). For comparison, simple decay ofA2 at
P50.9 W is shown, which is plotted by the open squares.
7-4
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FIG. 5. Sketch showing the qualitative trends for wave amplitudes in far field, plotted vs distance from the excitation reg~a!
Nonlinear effect only, without damping: Due to nonlinear wave-wave interactions, the amplitude of the fundamental decreases, and tr
its energy into the second wave harmonic, so that the second harmonic is amplified as it propagates. The amplification of second
continues until the amplitude of fundamental becomes too small to couple any more energy to the second harmonic.~b! Linear effect with
damping: A wave at a higher frequency is expected to damp more rapidly than at a low frequency, due to a gas friction, as predicte
theoretical dispersion relation for linear waves.~c! Nonlinear effect with damping: For small distances~region 1!, the amplitude of the
fundamental is sufficient to provide nonlinear coupling into the second harmonic, so that the latter grows with distance, until it re
distance where the fundamental has been diminished considerably by damping. For larger distances~region 2!, both waves are damped, a
for linear waves.
in

o
a

r

e
tio
F
n

ea

te
e
v

nt

y,
r
ta
in
a

of
ic

th
e
e
te

di

pli-
he
or-
tal.

the
ly a
nce.

ina-
der
Fig.
its
r of
nic
tes,
n-

ing.
the

tal
the
har-
g.
ith

our
that
y is
the
rgy
ar-
.

into
use
also
as computed by fitting the experimental data in Fig. 4~b! to
an exponential decay. The theoretical dispersion relation
Fig. 2~f! includes the imaginary part, shown as a dashed l
computed using an Epstein raten53.0 s21, corresponding
to our experimental gas pressure and particle size.

Our chief experimental result is that the spatial profile
the second harmonic exhibits an amplification of the wave
this frequency, as it propagates away from the excitation
gion. This amplification can be seen in Fig. 4~b! for distances
roughly in the range 0 mm,x,4 mm. Note that the wave
amplitude does not decrease exponentially with distanc
this range as would be expected from the dispersion rela
for linear waves; instead it increases approximately 20%.
comparison, a dashed line is drawn with a slope correspo
ing to the damping rate of the dispersion relation for a lin
wave in an infinite lattice.

The amplification of the second harmonic as it propaga
is observed only at a wave excitation with a high las
power. For an excitation with a lower laser power, the wa
harmonics simply decay, shown by open squares in Fig. 4~c!.
Here,A2 is plotted with a linear scale to show two differe
types of spatial profiles more clearly.

C. Discussion for amplification of harmonics

The augmentation of the second harmonic wave energ
comparison to the damping that would be expected fo
purely linear wave propagation, is our primary experimen
indication of nonlinear wave-wave interaction. To expla
why this is due to nonlinear effects, we begin by making
analogy to the theory of nonlinear optics.

A simple model, without damping, yields a description
how the amplitudes of the fundamental and the harmon
vary with distance, as in Eq.~4.20! of Ref. @24#. Beginning
with a wave at the fundamental and a weaker wave at
second harmonic, as both waves propagate in the sam
rection, energy is transferred between the waves by nonlin
interactions in the medium through which they propaga
The amplitude of the second harmonic increases with
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tance by taking energy from the fundamental, and the am
tude of the fundamental correspondingly diminishes. T
rate of the amplification of the second harmonic is prop
tional to the square of the amplitude of the fundamen
These qualitative trends are sketched in Fig. 5~a!.

Another case to consider is that of linear waves in
presence of damping. In this case, waves undergo on
decrease in amplitude with respect to propagation dista
This is sketched qualitatively in Fig. 5~b!.

Our experimental results can be explained as a comb
tion of the two effects described above. First, we consi
propagation at small distances, as sketched in part 1 of
5~c!. The amplitude of the fundamental is large, so that
square is particularly large and there is significant transfe
wave energy from the fundamental to the second harmo
via nonlinear effects. As the fundamental wave propaga
its amplitude diminishes, not only due to the transfer of e
ergy to the second harmonic but also due to the damp
Next, we consider propagation at larger distances from
excitation region, as sketched in part 2 of Fig. 5~c!. At a
sufficiently large distance, the amplitude of the fundamen
becomes so small that the rate of transfer of energy to
second harmonic is less than the damping of the second
monic. Beyond this point, marked with an asterisk * in Fi
5~c!, the amplitude of the second harmonic diminishes w
distance.

D. Discussion for nonlinear phenomena in a near field region

While the results in the far field, presented above, are
primary results, we also discuss some of the phenomena
take place in the near field region, where the laser intensit
significant. The incident laser power pushes particles in
near field. There are several channels into which this ene
can flow. First, energy can be dissipated by damping of p
ticle motion, within the excitation region, by gas friction
Second, some of the wave energy is transferred directly
the longitudinal wave at the same frequency. Third, beca
the laser beam profile has a shear, some of the wave is
7-5
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NUNOMURA et al. PHYSICAL REVIEW E 68, 026407 ~2003!
transferred to the transverse wave, as in Ref.@8#, which we
did not attempt to measure here. Fourth, some of the w
energy is transferred into the sloshing mode, as was dem
strated previously in Ref.@9#. Finally, at large amplitudes
some of the incident wave energy can flow into one of
several nonlinear mechanisms.

There are at least two nonlinear mechanisms in the n
field region: nonlinear oscillations and plastic deformatio
Nonlinear oscillations in the near-field region generate,
example, additional energy in the second harmonic from
pump at the fundamental; this kind of harmonic generat
does not necessarily require any wave propagation if it
curs inside the near-field region where the laser radia
force is significant. Plastic deformation, i.e., breaking
bonds, can occur due to shear in the particle velocity. If th
is plastic deformation, then the lattice has some liquid-l
properties in some local region of the particle suspens
The particle suspension may therefore be able to susta
vortex motion, which is an additional outlet for the ener
from the laser.

We believe that at our highest laser powers, there w
some plastic deformation outside the viewing area of
camera, because we observed a constant drift of particle
the 1x direction ~the particle drift velocity is'0.1 mm/s),
which can only be explained if there is a circulation of pa
ticles out of the observed region. This circulation must
closed by a vortex on either side of the viewing region,
that particles ultimately flow back into the viewing regio
Within our viewing region there were very few defects,
that the lattice was crystalline, but our observation of circ
lation indicates that elsewhere there must have been s
bond breaking or plastic deformation.

We are not able to quantitatitatively model all of the
effects in the near field for our experiment. For the purpo
of observing the wave propagation in the far field, they
tually do not matter much. Regardless of the mechanis
that determine the exact amplitude of the waves at each
quency as they exit the near field, we can measure t
amplitudes as they propagate through the far field to ar
out at our main results, presented earlier.

VI. NONLINEAR WAVE THEORY

Here, we introduce a nonlinear wave theory to disc
more about the harmonic generation mechanism in a far-fi
region. Our model system is a 2D triangular Yukawa crys
confined by an externally provided force. When we supp
that a wave is excited by a localized external perturbat
and gradually damped due to a gas friction, the equation
particle motion can be written as

r̈ i1n ṙ i5~ fYukawa1fexc1fconf!/m, ~1!

wherer i is the position of thei th particle and the overdot
denote time derivatives. The particle interactions, i.e, rep
sive Yukawa forces, are given byfYukawa52Qi“f i . To
model the experimental configuration, the forces for
wave excitation and the particle confinement are assume
be fexc5fexc0exp(2(x/lexc)

2)(12cosvt) and fconf/m
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52V2r i , respectively. Here,V is the eigenfrequency of the
sloshing mode,r i5r i

01u, r i is the equilibrium position of
particles, andu is the particle displacement from their equ
librium.

If u/a!1 ~as typical in experiments,A1 /a is typically
several percent!, Eq.~1! can be expanded with respect tou as
follows:

ü1nu̇5Du1Cs
2]x„~L2/2!~]xu!21~L4/3!~]xu!3

…

1~ f exc1 f conf!/m. ~2!

On the right-hand side~RHS!, Du represents the linea
response of Yukawa interactions with respect tou, i.e.,D is a
dynamical matrix~in Ref. @11#!. The second and third term
represent the second and the third order nonlinear terms
spectively. Here,Cs is the sound speed andL2,4 are nonlin-
earity coefficients defined in Ref.@18#. These coefficients
depend on the wave propagation direction andk. In our
experimental condition,L2 andL4 are23.37 and 0.49, re-
spectively, fork'1. When we consider only the first term
Du in the RHS of Eq.~2!, the solution for sinusoidal oscil
lation gives the dispersion relation, which is the same
plotted in Fig. 2~f! for our experimental conditions.

In order to solve Eq.~2!, we assume that all forces ar
small. Using the expansion parametere and writing the order
of f ase, u can be represented as follows:

u5U0~x!1U1~x!exp~ ivt1c.c.!1U2~x!exp~2ivt1c.c.!

1•••. ~3!

Here,U0;e, U1;e, andU2;e2 are the spatial distribu-
tions for the zero, fundamental, and second harmon
Equating terms with the same harmonic number and
expanding further with respect toe, one can finally find the
following solutions for the Fourier amplitudes of wave ha
monics:

U0k5G0,kFk
(0)/m, ~4a!

U1k521/2Gv,kFk
(0)/m, ~4b!

U2k51/2iCs
2L2G2v,kE dk8kk8~k82k!U1k8U1,(k2k8) ,

~4c!

U3k5Cs
2G3v,kS 1/2iL2E dk8kk8~k82k!U1k8U2,(k2k8)

11/3L4E dk8dk9kk8k9~k2k82k9!

3U1k8U1k9U1,(k2k82k9) D . ~4d!

Here, the functionGv,k is given by

Gv,k5@vk
21V22v~v2 in!#21. ~5!
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Looking at Eqs.~4c! and ~4d!, one notices that the gen
eration of higher harmonics comes from products of
wave amplitudes, i.e., nonlinear terms. For example, the
ond harmonics is generated by two-wave coupling of
fundamental mode. The third harmonic is generated by ei
two-wave coupling between the fundamental and the sec
harmonic~first term!, or three-wave coupling among the fun
damental harmonics~second term!. To summarize, the am
plitude of thenth harmonic is proportional to thenth power
of the amplitude of the fundamental mode.

VII. MD SIMULATION

We also performed a MD simulation to reproduce the g
eration of wave harmonics as observed in the experime
By numerically solving the equations of motion, Eq.~1!,
using the experimentally determined values ofQ, m, a, n, all
particle orbits were computed for several seconds.

Our simulation procedure is as follows. First, 721 p
ticles were dispersed randomly in a 2D simulation ar
Their equilibrium positions were computed, taking into a
count the external confining force, choosingV52.3 s21 in
Eq. ~1! to achieve the samek as in the experiment. For thi
particular confinement strength and the particle number
troduced in the system, crystal size was'3 cm in diameter.
Then, to imitate the random particle motion, the rand
force that has a spectrum of uniform amplitude in the f
quency space was applied to each particle. We adjusted
random force amplitude to have approximately the sameT as
in the experiment. After these processes, we excited a w
in

r-

A

.

je

an
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by applying a localized force as in Eq.~1!, where l exc was
chosen to be 2.0 mm to match the experiment.

An example of a wave spectrum from the MD simulatio
is shown in Fig. 2~e!, which is qualitatively similar to the
experimental spectra. As expected, the second and w
third harmonics were detected at a large amplitude of
fundamental wave excitation. In addition, the naturally o
curring modes, associated with the random particle motio
were also reproduced and satisfied the dispersion relatio

VIII. SUMMARY

We observed the generation of longitudinal wave harm
ics in a 2D plasma crystal. The wave harmonics were ge
ated only when the fundamental mode had a sufficien
large amplitude. The second harmonic was amplified fo
short distance as it propagates, then it was damped by a
friction. A MD simulation for a nonlinear wave was pe
formed, and its wave spectrum agreed qualitatively with
perimental results. The nonlinear wave theory was prese
and nonlinear wave-wave interactions were discussed.
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