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Nonlinear longitudinal waves in a two-dimensional screened Coulomb crystal
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Nonlinear interactions of longitudinal waves were observed in a two-dimensional plasma crystal, i.e., a
lattice composed of highly charged microspheres immersed in a plasma. The waves were launched by radiation
pressure of a laser, and wave spectrawitk space were analyzed at various amplitudes of waves. At a
sufficiently large amplitude of wave, the second and third wave harmonics satisfying a dispersion relation were
observed. As the second harmonic propagates from the excitation region, it was amplified for a small distance,
and then damped. The experimental results were compared to a nonlinear wave theory and to a molecular
dynamic simulation.
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[. INTRODUCTION ticle motion. In the linear wave regime, i.e., regime where
wave amplitude is much smaller than the mean interparticle
Generation of wave harmonics is one of the prominenspacing, both longitudinal and transverse modes have al-
features of nonlinear wave-wave interactions in variouseady been observed in several experim¢ftsl0 and the
kinds of matters. To generate wave harmonics from nonlineameasured dispersion relations agreed with theoretical predic-
wave coupling, it is commonly known that two resonancetions[11-13.
conditions must be métl]: Tw;=0 andXk;=0, wherew; Here, we summarize characteristics of wave dispersion
andk; are frequencies and wave numbers of the waves inrelations of longitudinal and transverse modes in 2D plasma
volved in the interaction, respectively. For example, the secerystals, which have been verified in above mentioned ex-
ond (2nd) harmonic is generated by a coupling of the two periments and theorie§) Both modes have acoustic behav-
fundamental modes, and the thi(8rd) harmonic is gener- ior, i.e., wxk at k=0. (ii) The sound speeds of these two
ated by a coupling of the fundamental and second harmonicsnodes are different. The longitudinal mode propagates faster
or three wave coupling of the fundamental modes in thehan the transverse modegii) Dispersion relations exhibit
same manner. anisotropy, which is more pronounced in large valueg.of
Our system is a two-dimension&D) triangular lattice In addition to the longitudinal and transverse waves,
made from a complex plasma, also known as dusty plasmavhich are elastic deformations of the lattice, there are several
It contains four components: electrons, ions, microspherether modes of particle motion. If the lattice has a finite size,
particles, and gas molecules. The particles typically acquirand is confined by an external potential, it will have eigen-
large negative charges by collecting electrons and ions, whilenodes including the sloshing mode, which is a rigid-body
the electrons have a higher mobility. The interaction betweemscillation of the entire lattice in the confining potential. An
particles is known to be a screened Coulomb potefiflal indirect observation of the presence of the sloshing mode at
because the charges on particles are shielded by surrounditige same time as a longitudinal wave was reported previ-
electrons and ions. When these particles are trapped by ausly[9].
external confinement potential and cooled down enough In addition, a lattice can be deformed with a plastic de-
through interactions with the gas molecules, particles fornformation, i.e., with a breaking of interparticle bonds. When
an ordered structure, called a plasma cryi8al5]. A plasma  bonds are broken, energy is consumed in an irreversible pro-
crystal is an example of a strongly coupled Coulomb systemg¢ess, unlike an elastic deformation which involves no break-
it is distinguished from some other types of strongly coupledng of bonds and is reversible in the absence of any friction.
plasmas by the screened Coulomb interaction. A shear in the particle velocity profile is particularly effec-
In a 2D plasma crystal, two eigenwave modes can propative in breaking bonds. After bonds have been broken in a
gate: a longitudinal and a transverse wave. The longitudingblastic deformation process, it is possible for particles to cir-
wave is a wave of compression propagating parallel to theulate in a vortex, driven by any shear force that might be
particle motion. The transverse wave, sometimes called thpresent. This vortex can be thought of as yet another kind of
shear wave, is a wave propagating perpendicular to the pamode for particle motion. For all these modes, gas friction
can lead to a damping.
Nonlinear properties of a longitudinal pulse were recently
*Electronic address: nunomura@mpe.mpg.de studied in 2D plasma crystals. Samsormdal.[14] launched
TPermanent Address: Moscow State Engineering and Physica large pulse by applying an electrostatic disturbance to their
Institute, Plasma Physics Department, Kashirskoe 31, 11540erystal, and observed what they identified as solitons at
Moscow, Russia. larger pulse amplitudes. Nosenleb al. [15] also excited a
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video camera D of Fig. 1. The diameter of the particle suspension was
(top view) RIS ~7 cm, while the interparticle spacing was measured to be
erosoh "o s a=0.9 mm. The particles were melamine-formaldehyde mi-
microspneres v '(’_Ty crospheres with 4.04m radius and 1.51 g/cthmass den-
HeNe laser @SM2 sity, corresponding to a particle mass=4.17x 10~ 13 kg.

sheet

® To observe particle motions in the plasma crystal, we il-

1 luminated the particles with a He-Ne laser sheet and obtained
sm1 N - ; : :
a top view of the crystal with a conventional video camera.
X Our viewing area was 2418 mnt of the central region of a
& lower electrode Ar laser crystal, in which approximately 600 particles were included.
beam Using image-processing prograi®d], all particle positions

FIG. 1. Sketch of experimental setup. A monolayer plasma crys¥ere identified and their orbits were traced for several sec-

tal was formed in a rf glow discharge. A compressional wave wasnds, with a total of 128 frames at 15 frames per second.
launched by radiation pressure of an argon laser. The inset is part of

the. crystal, showing anlordered structure composed of triangular IIl. NATURALLY OCCURRING WAVES

lattice. Thex andy coordinates are shown. AND CRYSTAL PARAMETERS

nonlinear pulse, but using a laser manipulation method. They Like any kinds of solid matters with a finite temperature,
observed that the propagation speed increased with the pulggour plasma crystal, particles always exhibited random mo-
amplitude. Melzeret al. [16] applied a moving disturbance tions around their equilibrium positio40]. Particle veloci-
to a lattice, producing a wake composed of longitudinalties had a Maxwellian distribution with a width correspond-
waves that exhibited a spatial distributiofMach cone ing to the crystal temperature df=0.031 eV, which is
angle. It varied with the intensity of the disturbance; the slightly higher than the neutral gas temperature 0.025 eV.
experiments suggested that this observation might be exFhis higher temperature indicates that particles in our plasma
plained by nonlinear effects. On the theory side, Meldnds@rystal were heated by a surrounding plasma. As a possible
[17] investigated nonlinear wave properties in a 1D lattice,candidate for this, we could consider stochastic charge and
and Zhdano\et al. [18] recently studied a soliton in 2D tri- electric field fluctuations, which give energy to partidias].
angular lattice. We analyzed correlations among random particle motions
In this paper, we present experimental results for generdo extract self-ordered motions that occur naturally, i.e., to
tion of longitudinal wave harmonics in a 2D plasma crystal.detect naturally occurring wave@atural phonons Figure
The results are compared to a nonlinear wave theory and to2{2) shows an energy density spectrum of naturally occurring

molecular dynamicéMD) simulation. Then, nonlinear wave- longitudinal waves inw-k space. Wave energids,, , are
wave interactions are discussed. concentrated only in certain areas, not distributed all over the

w-k space. Rather, they were concentrated in a curve repre-
senting the dispersion relation over the first Brillouin zone.
The spectrum in Fig. &) was calculated from a Fourier
Our experiments were performed in a capacitivelytransform of particle velocities in time and spac8ee Ref.
coupled rf discharge. A sketch of the experimental apparatuslO] for details) The data shown here are chosen only for the
is shown in Fig. 1. It is the same experimental device previfropagation direction that is parallel to one of the primitive
ously used for linear wave experimeni&,9]. By applying lattice vectorsk|a.
13.56 MHz rf power to the lower electrode through a match-  The naturally occurring modes satisfy dispersion relations
ing network, an argon plasma was generated at a gas presee Figs. @) and 2f)]. Our experiment was performed us-
sure of 15 mtorr. The voltage applied to lower electrode wagdng a finite-size lattice. For wavelengths smaller than the
88 V peak-to-peak with respect to the grounded vacuunerystal size, i.e.k>0.1 mm*, we can use the theoretical
chamber(not shown in Fig. 1 The self-bias voltage ap- dispersion relation shown in Fig.(f2. It was obtained by
peared on the lower electrode wag4.6 V, which helped to  solving a linearized equation of motion in a triangular lattice
suspend particles in the plasma sheath against gravity. In theith Yukawa interaction potentialsl3]. The Yukawa poten-
bulk plasma, the electron temperature and density were meé#al is defined by ==;Q; exp(—r;; /\p)/4meori; , whereQ;
sured with a Langmuir probe, and found to kel eV and is the charge on particlg r;; is the distance between two
4x10° cm 3, respectively. The probe was located in theparticles, and\p is the shielding length.
main plasma, not in the sheath where the particles were levi- From a best fit between the observed spectrum and the
tated. theoretical dispersion relatio@ and the shielding parameter
After the particles were dispersed into the plasma, thew=a/\p were estimated to be 16 08@nd 1.2, respectively.
were trapped as a monolayer suspension levitated below thédsing the measure®®, «, T, anda, we estimate that the
bulk plasma, in the plasma sheath above the lower electrod€oulomb coupling parametel’ =Q?exp(— k)/4meqaks T
The particles were confined horizontally by an external po-and wo=(Q?/4mwe,ma’) Y2 had values 4000 and 13.6%
tential that was provided naturally by the bowl-shaped curtespectively. This large value ®f confirms that the particles
vature of the plasma sheath. The particles arranged thenm our suspension were strongly coupled.
selves in a triangular crystalline lattice, as shown in the inset The spectrum width reflects damping of waves. For our

Il. CRYSTAL FORMATION AND OBSERVATION
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FIG. 3. Frequency spectrum of the intensity-modulated laser

0 beam, i.e., the driving force for wave excitation. The higher har-
3 monic components are approximately two order of magnitude
2 & smaller than the fundamental component.

1% incident on a local region of the lattice. As in other experi-
0 ments[7,9,15,16,22 the momentum of the photons is trans-
3 ferred to the particle by applying a forward force to the par-

ticle in the direction of the laser beam. This force is

2 proportional to the laser intensity. By applying a temporal
1 modulation to the laser intensity, it is possible to excite sinu-

soidal waves. The waves were launched parallel to one of the
g primitive lattice vectorsk|a.

In our experiment, the laser beam was shaped and modu-

2 lated using two scanning mirrors, shown in Fig. 1. A wave
1 form applied to mirror SM1 caused this mirror to block a

portion of the laser beam, which varied with time, so that the
g laser intensity was nearly sinusoidal with time, with a fre-

quency of 1 Hz. We chose this low frequency because it falls
2 well within the dispersionless, i.e., acousticlike portion of the

dispersion relation for longitudinal waves. The frequency
spectrum of this laser modulation, as measured using a pho-
. . o W . . 0 todiode, is shown in Fig. 3.
ol <40 20 B0 20 S0 &N To shape the laser beam, it was bounced from a second
k (mm) mirror SM2 which oscillated rapidly at 200 Hz, which is
FIG. 2. (Color onling Wave spectra and a dispersion relation of much higher than any frequency for lattice motion. Then, the
longitudinal mode in a 2D plasma crystal. The wave propagatiorlaser sheet was injected into a plasma crystal at an incident
direction is parallel to one of the primitive lattice vectokd,a. angle of 10°, which pushes the particles mainly in the hori-
Spectra are shown over the first Brillouin zo@~(d) Experimen-  zontal direction. The laser sheet was focused at the center of
tal results for energy density mapsdnk space(a) Without inten-  the crystal with a telescope. The intensity profile of the laser
tional wave excitation,(b) with external wave excitati_on_ aP sheet was a Gaussian function, i.eexp(—leléx ), Where
=0.05W, (¢) 0.5 W, and(d) 1.1 W. The bright color indicates o \aye excitation widthe, was 2.0 mm. In our experi-
high-energy concentration of wave®) Simulation result for an o yia1 annaratus, thecoordinate was defined as parallel to
energy density map(f) Theoretical dispersion relation. Solid and the wave propaga,tion direction. which is also the direction of
broken curves ar&, andk;, respectively. Filled and open circles the laser radiation. The coordir;ate was defined as perpen-
are kr.a.nd k." e.Xperimema”y obtained from the phase and amlO"'dicular to thex axis. shown in Fig. 1. From the parameters of
tudle fitting in Fig. 4. the wave form applied to mirror SM2, we calculated that the

Fourier analysis method, the frequency width is given byWidth of the laser sheet in thg direction was~25 mm,
vl4m, wherev is the damping rate. The observed frequencyWhich is larger than the 18 mm viewing width but smaller
width of the natural phonon spectrum was roughly 0.25 Hzthan the lattice size. . o

It corresponds to the values estimated from Epstein drag rate PU€ o this finite size of the laser sheet in theirection,

[21] so that in our system, particle motions were restricted byN€ radiation pressure force had a profile that could induce a
a gas friction. shear motion. Particles were pushed forward inxtdirec-

tion, but with a magnitude that varied with This profile

was most uniform in the central region, which is where we

viewed with the camera. The shear region was outside the
To excite longitudinal waves in the lattice intentionally, viewing area of the camera.

we applied the radiation force of an argon laser, which was To search for nonlinear effects, we repeated our

IV. WAVE EXCITATION METHOD
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experiment at various laser powers. Our lowest power was
0.05 W, while highest was 1.9 W, as measured in the vacuum
chamber. For comparison, for the experimental measurement
of the dispersion relation by Nunomued al. [9] using the
same apparatus, the laser power was 0.5 W.

phase (rad/m)

V. EXPERIMENTAL RESULTS OF NONLINEAR WAVES

A. Classification of wave fields

Before considering our experimental results, it is useful to
distinguish the “near field” and “far field” regions for wave
excitation. The near field includes the excitation region
where the laser intensity is nonzero. Particles oscillate in the
near field in response to the temporal modulation of the laser
beam. Some of this particle oscillation can couple into a
propagating wave that exits the near field. Away from the
near field the laser intensity is zero, and there is no external
disturbance; this region is termed the far field. This distinc-
tion between the near and far fields can be found also in the
literature for the antenna-coupling problem in the excitation
of electromagnetic waves in a plasfr&s].

The chief subject of this paper is a demonstration of non-
linear propagation of longitudinal waves in the far field. For
this purpose, it is not necessary to fully measure and model
all the phenomena in the near field. It is sufficient to charac-
terize the longitudinal wave only in the far field region, be-
ginning at the boundary with the near field. Here we define
this boundary as approximateks~|.,., which is the loca-
tion where the laser intensity is reduced by a factar d¢
compared to its peak.

At the boundary of the near and far fields, particle veloc-
ity in the x direction is primarily a superposition of a strong
sinusoidal disturbance at the fundamental of 1 Hz and a FIG. 4. (@) Phases anéb) amplitudes of the fundamental and
weaker sinusoidal disturbance at the second harmonic of §'€ wave harmonics &=1.8 W. As a wave propagates, its phase
Hz. The presence of the second harmonic at this locatioincreases linearly while its a_mplltude dec_reases exponentially, ex-
arises from possibly two mechanisms: the laser intensity itSPt for the second harmonic. The amplitude of the second har-
self has some second harmonic, as shown in Fig. 3, and thepéon_'c initially |nc_reased with dlstan_ce, the_n decreased, indicating
may be harmonic generation in the near field region due t&onlmear effects in the wave-wave interactions. The wave was ex-

. . s - cited atx=0. (c) A, vs x in a linear scale, showing amplitude
nonlinear particle oscillations. For our purposes in character-

- . L . . th (0 mm<x<4 .F ison, simple d t
izing the particle motion in the far field, it does not matter & > (0 mm=x=4 mm). For comparison, simple decay/f a

- . . . P=0.9 W is shown, which is plotted by the open squares.
exactly which mechanism in the near field produced the P y pen sq

wave amplitudes at the boundary. It is sufficient to charac-
terize the wave amplitudes beginning at the boundary ange
propagating outward into the far field, as we explain next.

A, A,and A, (um)
Aa (%)

A, (um)

The amplitudes of each harmonic, i.e., the fundamental,
cond, and third harmonic8,, A,, andAs, respectively,
as the waves propagate away from the near field, are shown
) ] ) ] ] ) in Fig. 4(b), for our highest laser power of 1.9 W. The data
B. Nonlinear wave interactions in a far field region are shown in a semilogarithmic plot. The amplitude of the
Spectra of the wave energy for longitudinal particle mo-fundamental exhibits an exponential decay with distaxce
tion, i.e., for particle motion in the direction, are shown in from the excitation region. The third harmonic similarly ex-
Fig. 2. At the lowest laser power of 0.05 W in Figh®, only  hibits an exponential decay.
the fundamental at 1 Hz can be identified, above the level of Our data also provide the phase of the waves, as shown in
the naturally occurring waves that are presented in Rig. 2 Fig. 4@). The phase increases linearly with distance, as ex-
As the laser power is increased to 0.5 W in Figc)2a  pected for the propagation of a sinusoidal wave, for all three
second harmonic appears, and at a higher power of 1.1 W imodes. The fundamental mode has a wavelength7ofk?
Fig. 2(d), a third harmonic is present. These spectra were=45 mm, as measured from the slope of the wave’s phase.
prepared by averaging the wave energy over the entire farhe second and third harmonics have a shorter wavelength.
field region viewed by the camera, 2 mm<16 mm. To The corresponding real wave number, as computed from
more completely characterize the waves in the far field, it ighe slopes in Fig. @), is plotted as the solid data point in the
necessary to report the spatial profiles of the wave ampliinear dispersion relation of Fig.(8. The open datapoints in
tudes as a function of, which we shall do next. Fig. 2f) are for the imaginary part of the wave numlier
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FIG. 5. Sketch showing the qualitative trends for wave amplitudes in far field, plotted vs distance from the excitation(aggion.
Nonlinear effect only, without dampinBue to nonlinear wave-wave interactions, the amplitude of the fundamental decreases, and transfers
its energy into the second wave harmonic, so that the second harmonic is amplified as it propagates. The amplification of second harmonic
continues until the amplitude of fundamental becomes too small to couple any more energy to the second Hajnomear effect with
damping A wave at a higher frequency is expected to damp more rapidly than at a low frequency, due to a gas friction, as predicted by the
theoretical dispersion relation for linear wavés) Nonlinear effect with damping-or small distances¢region 1), the amplitude of the
fundamental is sufficient to provide nonlinear coupling into the second harmonic, so that the latter grows with distance, until it reaches a
distance where the fundamental has been diminished considerably by damping. For larger distgime®), both waves are damped, as
for linear waves.

as computed by fitting the experimental data in Figh)4o  tance by taking energy from the fundamental, and the ampli-
an exponential decay. The theoretical dispersion relation itude of the fundamental correspondingly diminishes. The
Fig. 2(f) includes the imaginary part, shown as a dashed linerate of the amplification of the second harmonic is propor-
computed using an Epstein rate=3.0 s 1, corresponding tional to the square of the amplitude of the fundamental.
to our experimental gas pressure and particle size. These qualitative trends are sketched in Fi@).5

Our chief experimental result is that the spatial profile of Another case to consider is that of linear waves in the
the second harmonic exhibits an amplification of the wave apresence of damping. In this case, waves undergo only a
this frequency, as it propagates away from the excitation redecrease in amplitude with respect to propagation distance.
gion. This amplification can be seen in Figb}for distances This is sketched qualitatively in Fig(15.
roughly in the range 0 mrmix<4 mm. Note that the wave Our experimental results can be explained as a combina-
amplitude does not decrease exponentially with distance ition of the two effects described above. First, we consider
this range as would be expected from the dispersion relatiopropagation at small distances, as sketched in part 1 of Fig.
for linear waves; instead it increases approximately 20%. FoB(c). The amplitude of the fundamental is large, so that its
comparison, a dashed line is drawn with a slope correspondgquare is particularly large and there is significant transfer of
ing to the damping rate of the dispersion relation for a lineawave energy from the fundamental to the second harmonic
wave in an infinite lattice. via nonlinear effects. As the fundamental wave propagates,

The amplification of the second harmonic as it propagate#ts amplitude diminishes, not only due to the transfer of en-
is observed only at a wave excitation with a high laserergy to the second harmonic but also due to the damping.
power. For an excitation with a lower laser power, the waveNext, we consider propagation at larger distances from the
harmonics simply decay, shown by open squares in F@. 4 excitation region, as sketched in part 2 of Figc)5At a
Here,A, is plotted with a linear scale to show two different sufficiently large distance, the amplitude of the fundamental

types of spatial profiles more clearly. becomes so small that the rate of transfer of energy to the
second harmonic is less than the damping of the second har-
C. Discussion for amplification of harmonics monic. Beyond this point, marked with an asterisk * in Fig.
. . .5(c), the amplitude of the second harmonic diminishes with
The augmentation of the second harmonic wave energy, iBistance

comparison to the damping that would be expected for a
purely linear wave propagation, is our primary experimental
indication of nonlinear wave-wave interaction. To explain
why this is due to nonlinear effects, we begin by making an  While the results in the far field, presented above, are our
analogy to the theory of nonlinear optics. primary results, we also discuss some of the phenomena that
A simple model, without damping, yields a description of take place in the near field region, where the laser intensity is
how the amplitudes of the fundamental and the harmonicsignificant. The incident laser power pushes particles in the
vary with distance, as in Eq4.20 of Ref.[24]. Beginning near field. There are several channels into which this energy
with a wave at the fundamental and a weaker wave at thean flow. First, energy can be dissipated by damping of par-
second harmonic, as both waves propagate in the same diele motion, within the excitation region, by gas friction.
rection, energy is transferred between the waves by nonline&econd, some of the wave energy is transferred directly into
interactions in the medium through which they propagatethe longitudinal wave at the same frequency. Third, because
The amplitude of the second harmonic increases with disthe laser beam profile has a shear, some of the wave is also

D. Discussion for nonlinear phenomena in a near field region
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transferred to the transverse wave, as in R&f. which we = —Q?r;, respectively. Herel) is the eigenfrequency of the
did not attempt to measure here. Fourth, some of the wavsloshing moder;=r’+u, r; is the equilibrium position of
energy is transferred into the sloshing mode, as was demomparticles, andi is the particle displacement from their equi-
strated previously in Refl9]. Finally, at large amplitudes, librium.

some of the incident wave energy can flow into one of the |f u/a<1 (as typical in experimentsA,/a is typically
several nonlinear mechanisms. several perceitEq. (1) can be expanded with respectutas

There are at least two nonlinear mechanisms in the neafollows:
field region: nonlinear oscillations and plastic deformation.

Nonlinear oscillations in the near-field region generate, for U+ vU=Du+ C20,((A/2)(3u) 2+ (A 4/3) (d4u)3)
example, additional energy in the second harmonic from the

pump at the fundamental; this kind of harmonic generation + (faxct Feon)/M. 2
does not necessarily require any wave propagation if it oc-

curs inside the near-field region where the laser radiation On the right-hand sidéRHS), Du represents the linear
force is significant. Plastic deformation, i.e., breaking ofresponse of Yukawa interactions with respeatitoe.,D is a
bonds, can occur due to shear in the particle velocity. If therelynamical matrix(in Ref.[11]). The second and third terms
is plastic deformation, then the lattice has some liquid-likerepresent the second and the third order nonlinear terms, re-
properties in some local region of the particle suspensionspectively. HereCq is the sound speed ant, 4 are nonlin-
The particle suspension may therefore be able to sustain earity coefficients defined in Refl18]. These coefficients
vortex motion, which is an additional outlet for the energydepend on the wave propagation direction andIn our
from the laser. experimental conditionA, and A, are —3.37 and 0.49, re-

We believe that at our highest laser powers, there waspectively, fork~1. When we consider only the first term
some plastic deformation outside the viewing area of ouDu in the RHS of Eq.(2), the solution for sinusoidal oscil-
camera, because we observed a constant drift of particles lation gives the dispersion relation, which is the same as
the +x direction (the particle drift velocity is~0.1 mm/s), plotted in Fig. Zf) for our experimental conditions.
which can only be explained if there is a circulation of par- In order to solve Eq(2), we assume that all forces are
ticles out of the observed region. This circulation must besmall. Using the expansion parame¢eand writing the order
closed by a vortex on either side of the viewing region, soof f ase, u can be represented as follows:
that particles ultimately flow back into the viewing region.

Within our viewing region there were very few defects, so u=Ug(x)+ U (X)expliowt+c.c)+U,(X)exp2i wt+c.c)
that the lattice was crystalline, but our observation of circu-

lation indicates that elsewhere there must have been some * " ©)
bond breaking or plastic deformation. 5 .

We are not able to quantitatitatively model all of these =~ Heré,Uo~e, U;~¢, andU,~ €” are the spatial distribu-
effects in the near field for our experiment. For the purposdions for the zero, fundamental, and second harmonics.
of observing the wave propagation in the far field, they acEguating terms with the same harmonic number and re-
tually do not matter much. Regardless of the mechanismgXPanding further with respect g one can finally find the
that determine the exact amplitude of the waves at each frdollowing solutions for the Fourier amplitudes of wave har-
quency as they exit the near field, we can measure thelRONICS:
amplitudes as they propagate through the far field to arrive )
out at our main results, presented earlier. Uok=GoxFi/m, (43

VI. NONLINEAR WAVE THEORY U= —1/2G,, (FO/m, (4b)

Here, we introduce a nonlinear wave theory to discuss
more about the harmonic generation mechanism in a far-field U, = 1/Z'C§A262w'kf dk'kK' (K" =K)U 10 Uq (k- kry
region. Our model system is a 2D triangular Yukawa crystal (40
confined by an externally provided force. When we suppose
that a wave is excited by a localized external perturbation
and gradually damped due to a gas friction, the equation of a y, =C2G,,, k( 1/2i Azf dk'KKk' (K" =K)U 10U gy
particle motion can be written as ' ’

Fi + V':i = (qukawa+ fexc+ fconf)/ma (1) * 1/3A4f dk’dk’kk’ k”(k_ k' = k”)
wherer; is the position of theath particle and the overdots XU U k) |- (4d)
denote time derivatives. The particle interactions, i.e, repul- '
sive Yukawa forces, are given bl awa= —QiV . To ) o
model the experimental configuration, the forces for the Here, the functiorG,,  is given by
wave excitation and the particle confinement are assumed to 2 o o
be  fer=fexcoXP(— (Xexd?) (1—coswt) and  feon/m G, k=[oit Q" ~w(o—iv)] ®
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Looking at Egs.(4¢) and (4d), one notices that the gen- by applying a localized force as in E¢fl), wherel s, was
eration of higher harmonics comes from products of thechosen to be 2.0 mm to match the experiment.
wave amplitudes, i.e., nonlinear terms. For example, the sec- An example of a wave spectrum from the MD simulation
ond harmonics is generated by two-wave coupling of thes shown in Fig. 2e), which is qualitatively similar to the
fundamental mode. The third harmonic is generated by Eith%)(perimentm spectra. As expected, the second and weak
two-wave coupling between the fundamental and the seconghird harmonics were detected at a large amplitude of the
harmonic(first term), or three-wave coupling among the fun- fundamental wave excitation. In addition, the naturally oc-
damental harmonicésecond term To summarize, the am- curring modes, associated with the random particle motions,

plitude of thenth harmonic is proportional to theth power  were also reproduced and satisfied the dispersion relation.
of the amplitude of the fundamental mode.

VII. MD SIMULATION VIII. SUMMARY

We also performed a MD simulation to reproduce the gen- We observed the generation of Iongitudinal_wave harmon-
eration of wave harmonics as observed in the experimentiCS in @ 2D plasma crystal. The wave harmonics were gener-
By numerically solving the equations of motion, E), ated only yvhen the fundamental mo_de had a ;qﬁmently
using the experimentally determined value<on, a, », all large a_mplltude. T_he second harmon.|c was amplified for a
particle orbits were computed for several seconds. short distance as it propagates, then it was damped by a gas

Our simulation procedure is as follows. First, 721 par-ffiction. A MD simulation for a nonlinear wave was per-
ticles were dispersed randomly in a 2D simulation areal0'Med, and its wave spectrum agreed qualitatively with ex-

Their equilibrium positions were computed, taking into ac_perimentgl results. The nor)linear wave theory.was presented
count the external confining force, choosifig=2.3 s * in and nonlinear wave-wave interactions were discussed.

Eq. (1) to achieve the same as in the experiment. For this
particular confinement strength and the particle number in-
troduced in the system, crystal size wa8 cm in diameter.
Then, to imitate the random particle motion, the random We thank K. Avinash, R. Quinn, D. Samsonov, A. Ivley,
force that has a spectrum of uniform amplitude in the fre-and S. Matsukiyo for useful discussions. S.N. acknowledges
guency space was applied to each particle. We adjusted ttibe Japan Society of the Promotion of Science. Experiments
random force amplitude to have approximately the sarae  were performed at The University of lowa, funded by NASA
in the experiment. After these processes, we excited a wavand the U.S. Department of Energy.
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