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Structural analysis of a Coulomb lattice in a dusty plasma 
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Pair and bond-orientational correlation functions and structure factors, as- used in colloidal science, are 
applied as quantitative indicators of the phase of the newly discovered "plasma crystals." These Coulomb­
lattice structures are formed by charged microspheres levitated in glow discharge plasmas and are imaged 
photographically. Static structural analysis is demonstrated on the experimental data of Thomas et al. [Phys. 
Rev. Lett. 73, 652, {1994)) and interpreted in the context of a two-dimensional (2D) dislocation-unbinding 
melting theory and a 2D density-wave melting theory. 

PACS number(s): 82.70.Dd, 61.16.-d, 52.25.Vy 

A new cross-disciplinary area of study has emerged with 
the recent discovery of Coulomb lattice structures formed in 
dusty plasmas [1-6]. These macroscopic lattices, made of 
charged microspheres levitated in a glow discharge plasma, 
have been termed "plasma crystals." They serve as a physi­
cal model system to simulate atomic gases, liquids, and sol­
ids. Model systems are valuable because experimental iden­
tification of actual atomic structure involves several 
difficulties [7]. Among other physical model systems, ion 
crystals [8-10] have simple Coulomb interaction potentials, 
but rotate too rapidly for still images to be obtained, while 
colloidal crystals [7,11-15] are easily imaged, but have an 
equilibration time of months. The plasma crystal model sys­
tem is attractive because it is easy to image directly, it 
reaches equilibrium in a few seconds, and it allows direct 
observation of lattice structure and dynamics. 

The experimental identification of the phase of a plasma 
crystal has been based up to now mostly on a qualitative 
judgment of how much order an image appears to show, and 
on a comparison of histograms of the number of a particle's 
nearest-neighbor bonds to that of an isotropic gas [1,5,6]. 
Experimenters have also reported histograms of nearest­
neighbor distance, the area and number of sides of Voronoi 
cells [1,5,6] and pair correlation functions [3,5,6]. Here we 
present a method of identifying liquid and solid phases quan­
titatively, using criteria that are founded on established melt­
ing theories and that have been used successfully already to 
identify the phase of two-dimensional (2D) colloids. We do 
this by analyzing the pair correlation function and two more 
indicators, the bond-orientational correlation function and 
the structure factor. 

A plasma crystal is formed by charged micrometer-sized 
spheres levitated in a glow discharge plasma. The particles 
collect equal fluxes of electrons and ions, charging to a 
steady-state Q=4'1Ts0a<l> 5 , where a and <l>s are the particle 
radius and surface potential, respectively [16-18]. The indi­
vidual particles attract Debye clouds of opposite charge and 
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therefore interact via a screened Coulomb potential. When 
the particles' interaction potential energy exceeds their ther­
mal kinetic energy, lattice structures can form [19]. In most 
plasma crystal experiments, the particles are located in 1 to 
20 layers above a horizontal electrode, where gravity is bal­
anced by the sheath electric field. These layers act mainly as 
2D systems, with limited out-of-plane particle motion. 

The 2D nature of laboratory plasma crystals resembles 2D 
colloids in several ways. Both are formed by charged 
micrometer-sized spheres, although colloids are in an aque­
ous suspension. For 2D experiments, a colloid is confined to 
a single plane by an electrostatic force acting between two 
narrowly separated glass plates. This force, like the gravita­
tional and sheath forces in the plasma crystal, restricts par­
ticles to motion that is mainly planar. In both systems, digi­
tized images of particle locations · show that the lattice 
microstructure is primarily hexagonal [1-7,11-15]. These 
similarities suggest applying 2D colloidal science analysis 
tools to the plasma crystal. 

One such tool is the pair correlation function, g(r), also 
known as the radial (pair) density distribution. This function 
represents the probability of finding two particles separated 
by a distance r, and it measures the translational order in the 
structure. For the case of a crystal at zero temperature, 
g(r) is a series of 8 functions, whose positions and heights 
can be determined from the particle separations in a perfect 
hexagonal lattice. 

For this paper we calculated g( r) from experimentally 
measured particle locations by choosing one as a center point 
and counting the particles in concentric annular rings of ra­
dius r. This number is normalized by the annular ring's area 
and averaged using each particle as a center point. This gives 
g( r) in units of areal density. We normalize again by the 
average particle density so that the asymptotic value of 
g(r) is unity. 

Another tool is the bond-orientational correlation func­
tion, g 6(r), which is defined in terms of the nearest-neighbor 
bond angles of a lattice. It measures orientational order in the 

- structure, based on the principle that all bonds in a perfect 
hexagonal lattice should have the same angle, modulo 'lT/3, 

with respect to an arbitrary axis. The bond angles and loca-
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FIG. 1. Particle locations and nearest-neighbor bonds, from the 
experimental data reported in Fig. 2 of Thomas et al. [1]. 

tions are determined from the particle locations by Delaunay 
triangulation (see Fig. 1). For a perfect hexagonal crystal at 
zero temperature, 8 6 (r) is a constant equal to unity, while for 
other phases it decays with increasing r. A description of 
g 6 in terms of a bond-orientational order parameter is given 
in Ref. [15]. 

Here we calculate g 6(r) directly from the bonds, first by 
selecting a center point bond, having its midpoint at r 0 and a 
bond angle 80 with respect to an arbitrary axis. Next we 
perform a numerical average of cos[6(81-0o)J for all bonds 
i whose midpoints lie in an annular ring of radius 
r= lr1-r0 1 about the center point bond. This result is aver­
aged again using each bond as a center point, yielding 
K6(r). 

The 8 and 8 6 correlation functions can be interpreted 
within the context of a 2D melting theory developed by Ko­
sterlitz, Thouless, Halperin, Nelson, and Young, known as 
the KTHNY theory [20-24]. This theory predicts that 2D 
crystals undergo two continuous melting transitions, in con­
trast to the single first-order transition of 3D crystals. First, 
free dislocations (tightly bound pentagon-heptagon disclina­
tion pairs) develop within a 2D crystal, causing the crystal to 
melt into an intermediate phase, termed the hexatic, which 
has quasi-long-range orientational order, but short-range 
translational order. Second, the free dislocations unbind 
forming free disclinations so that the hexatic melts into an 
isotropic liquid phase, whose orientational and translational 
order are both short range. The predictions of KTHNY for 
translational order apply specifically to a translational corre­
lation function g0 defined in terms of reciprocal lattice vec­
tors [20-24]. However, 8 is used more commonly than 8G 
by colloidal experimenters for comparison with theory 
[7,11-14]. To use the KTHNY predictions, experimenters fit 
their 8(r) and86(r) data to exponential and power law func­
tions. 

A third tool is the static structure factor, S(k). This func­
tion is convenient when inverse methods such as Bragg 

scattering are used to study the structure of a solid or 
liquid. Plasma crystal experiments, however, yield a direct 
image of the structure of the particle positions, and this 
must be transformed into S(k). It is defined, using the ex­
perimental data for the particle positions r1, as S(k)==N- 1 

(~ 1.iexp[ik·(r1 -rj)]). Here the angle brackets denote an 
average over the direction of k, the sum is over all particle 
pairs i ,j including i = j, and N is the number of particles. 
This can be rewritten using the Bessel function as 
S(k)=N- 1~ 1 • ./o(klr1-rjl), which can be easily evaluated 
for any value of k. 

Here we list commonly accepted criteria for identifying 
the phase. Those involving g and 8 6 are as follows [7]. In the 
crystalline phase, g(r)a:r- 17(T) and g 6(r)=const, where 
17(T),;:;;. 1/3 is weakly temperature dependent. In the hexatic 
phase, g(r)a:exp(- r/g) and 8 6 (r)a:r- 17 with 0< 17,;:;;.1/4. In 
the liquid phase, g(r)a:exp( -r/f), g 6(r)oc exp( -r/~6) and 
~= ~6 • Here ~ and ~6 are scale lengths for translational and 
orientational order, respectively. In the liquid phase t is 
smaller than in the hexatic. These criteria are based on the 
KTHNY theory. A criterion based on a density-wave theory 
of first-order freezing in two dimensions predicts that the 
first peak of the structure factor has a height of 5.25 to 5.75 
at the phase transition [25]. In 3D systems [26], melting 
takes place at a height of about 2.85. In addition to these 
criteria, other empirical criteria have been used by colloidal 
researchers [13,26]. 

We have calculated 8, 8 6 , andS(k) for the plasma crystal 
image of Thomas et al. [1]. This image was obtained in an 
experiment by shining a thin sheet of laser light on a hori­
zontal lattice layer and recording the scattered light with a 
video camera. A single video frame was then digitized to 
identify the particle coordinates. 

We analyzed the Thomas et al. data to find the nearest­
neighbor bonds, as shown in Fig. 1. From the particle loca­
tions we calculated 8(r), shown in Fig. 2. A fit to 8(r), 
based on the o function peaks for an ideal hexagonal lattice, 
also appears in Fig. 2. In fitting g(r), we assumed that the 
8 functions become Gaussians of width u, attenuated by an 
overall envelope that decays as exp(- r/~). Using Eq. (4) of 
Ref. [ 15], we carried out a three-parameter nonlinear fit, 
which for our data had a reduced x2 of 3. These results were 
found: the mean interparticle spacing is a= 290 ,um, the 
translational scale length is t=2ll, and u=0.08ll. 

A plot of 8 6(r), computed from the Delaunay bonds, is 
presented in Fig. 3. To exclude incorrectly identified bonds 
near the image edge (see Fig. 1) from the calculation of 
g 6(r), we only count bonds more than three mean bond 
spacings from the edge. Fitting 8 6(r) to an exponential de­
cay yielded the scale length, g6 =(1.4±0.1)ll, while fitting 
to a power law decay yielded a coefficient 7J=l.05±0.05, as 
displayed in Fig. 3. 

From these results, we find two indications of the phase 
that are in agreement. Both g=g6 and TJ>l/4 indicate that 
the structure is a fluid. The possibility of a random gas was 
already ruled out by Thomas et al. by comparing a histogram 
of their coordination data to that of a random lattice [1]. 

A third indication comes from the structure factor S(k), 
shown in Fig. 4. The first peak has a height of 3.2. Based on 
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FIG. 2. Pair correlation function versus normalized distance. 
Here g(r) is normalized by the average areal density of particles, 
which is 1200 em - 2 • Experimental and best-fit pair correlation 
functions are shown. The 8 functions for a perfect crystal are shown 
as peaks with correct positions and relative heights. The fit yielded 
the mean interparticle spacing A= 290 ,urn and a correlation length 
g=2A. 

the 2D density-wave theory [25], this value lies well on the 
liquid side of the single first-order phase transition. · 

An interesting issue is how the structure can be so disor­
dered as to be a liquid when the charge on a grain is so large. 
Thomas et al. estimated the charge was between - 9800 and 
-27 300, the Coulomb coupling parameter was r > 20 700, 
and the ratio of the particle spacing to the linearized Debye 
length was in the range 0.6:;;:; K:;;;4.8. Thus, the shielded cou­
pling parameter WaS rexp(- K)> 170, which is SO large as 
to predict a crystalline state, according to one-component 
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FIG. 3. Bond angle correlation function g 6 versus normalized 
distance. The vertical axis is log-scale. Exponential and power law 
fits are shown, yielding g6 and 7], respectively. 
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FIG. 4. Structure factor S(k), computed from the measured par­
ticle locations. 

plasma (OCP) models. The limitations of using OCP theory 
for plasma crystal experiments will be discussed in another 
paper [27]. 

Unlike the structure factor, the correlation functions are 
used by fitting them to a curve, and this introduces several 
kinds of errors into the results for g, g6 , and 7J· These errors 
are small enough for the results and conclusions presented 
above, but in future applications such as analyzing a struc~ 
ture near its phase transition they may deserve close scrutiny, 
so we list them here. Particle and bond locations in the ex­
perimental images are assigned to radial bins that accumulate 
a finite number of counts, so that the g(r) and g 6(r) data 
have error bars from counting statistics. These error bars are 
too small for the fitted curve to pass through, so for the 
purpose of calculating the uncertainties in the fit parameters 
g6 and 1J as reported above, we scaled the bins' error bars up 
by a constant factor so that the fit had a reduced x2 of unity. 
This method of assigning an uncertainty to our results, how­
ever, does not reflect other uncertainties from the fitting. The 
results for g, g6 , and 7J depend on which range of radii is 
included, and this range is chosen somewhat arbitrarily. They 
can also depend on the weighting that is used in the fitting; if 
we had not weighted data inversely by the square of the 
individual error bars, we -would have found g6 = 2.0 instead 
of 1.4 and TJ= 1.0 instead of 1.05. In fitting data to curves, 
the curves model the data imperfectly; for example, we have 
found in various plasma crystal experiments that the first 
peak of g( r) is usually much higher in the experimental data 
than in the smooth curve. Finally, as for colloidal experi­
ments and simulations [7], a single image contains a finite 
number of defects that fluctuates statistically, so that a defini­
tive phase identification near a phase transition might require 
averaging over as many as 103 uncorrelated images. The 
single image used here seems to be sufficient to identify the 
phase, as all three indicators are in agreement and not very 
near the values where a phase transition is predicted. 

As in the case of 2D colloidal suspensions, plasma crystal 
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experiments do not fully satisfy the assumptions of the melt­
ing theories that we have used to identify the phase. The 
KTHNY and 2D density-wave theories assume identical par­
ticles, but in the experiment of Thomas et al., [1] there was a 
3% dispersion in particle size, corresponding to a 3% varia­
tion in particle charge. Colloid experiments have comparable 
size dispersions. While the theories are 2D, the experiments 
have some 3D effects. An empirical measure of this is the 
average time Tplane that particles remain in the illuminated 
plane. For the Thomas et al. data, Tpiane=4 ·min, while in 
more recent experiments [27] out-of-plane motions have 
been reduced so that Tprane:;;> 100 min. (Phases have been 
identified in these other experiments that are more ordered 
and more disordered than the fluid phase reported here.) The 
causes of 3D effects are believed to be slight curvature in the 
electric sheath that levitates the particles and local perturba­
tions induced by particles in other planes, including aggre­
gates of two spheres in the lowest lattice planes. Another 
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