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The propagation of transverse waves in a two-dimensional particle suspension in a plasma is studied
in the solid and liquid phase. The different states of the suspension are realized by raising the kinetic
temperature of the dust particles with a new laser method. An additional laser beam is used to excite
shear waves and the wave is observed by videomicroscopy in terms of the individual velocities of
the dust particles. For recovering the spatial wave patterns the method of singular value
decomposition is applied and compared with the method of spatial Fourier analysis of complex
wave numbers. In the solid phase, weakly damped waves are found which follow the expected
dispersion relation. In the liquid phase the existence of strongly damped waves is demonstrated. The
real part of the wave number is in overall agreement with the predictions of the Quasi Localized
Charge Approximation model for a two-dimensional system. The damping of the waves is
discussed. © 2006 American Institute of Physics. �DOI: 10.1063/1.2196327�
I. INTRODUCTION

Waves in dusty plasmas reveal many inherent features of
the interactions in strongly coupled Coulomb systems.1

There was a particular interest in the wave phenomena in
two-dimensional �single layer� suspensions of dust particles
in a plasma, which exhibit compressional and shear
modes,2–6 Mach cones7–9 or dipole radiation from localized
sources,10 which are now well understood. The situation for
the liquid phase is quite different. An ordinary liquid sup-
ports compressional �sound� waves but transverse shear
modes can only propagate in the limit of wavelengths as
short as a few molecular spacings. Strongly coupled dusty
plasmas in the liquid phase can support shear waves, as was
shown by Kaw and Sen11,12 in terms of a viscoelastic model,
which predicted propagating waves with acoustic dispersion
at high frequency and become purely damped at low fre-
quencies. Recent calculations with the quasilocalized charge
approximation �QLCA� �Ref. 13� show that the shear mode
is also acoustic at low frequencies. Shear waves in the liquid
phase were also studied in molecular dynamics �MD�
simulations,14 which show that the waves have a long-
wavelength cutoff that is also found in analytical models.15 A
critical comparison between the QLCA model and MD simu-
lations was recently made by Kalman et al.16

On the experimental side, wave phenomena in the liquid
states of the plasma suspension with particle motion in the
horizontal plane were studied by Nunomura et al.17 In these
experiments the thermally excited spectra of longitudinal and
transverse phonons were studied in the solid and liquid phase
of the plasma suspension. The temperature was varied by
increasing the number of perturbing particles in a lower
layer. The color graphs �in the online version of the article�
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show that in the solid phase the shear wave dispersion is
acoustic starting at k=0, �=0. In the liquid phase the high
frequency part is reduced in intensity. No long wavelength
cutoff was reported. Instead, the frequency spectrum of the
long-wavelength modes is extremely broadened. The trans-
verse wave that was observed in Ref. 17, and which we study
in the present article, are for particle motion in the horizontal
plane where all the particles are suspended. A different kind
of transverse wave in a liquid phase was reported by Pra-
manik et al.18 These waves incorporate a vertical motion of
the particles, where the restoring force is provided by gravity
and the electric field that levitates the particles.

The present article describes new shear wave experi-
ments for a single layer particle suspension in the solid
phase, at the melting point, and in the liquid phase. Different
from the study in Ref. 17, the waves are excited with a pe-
riodic laser force. For the recovery of the wave signals from
the particle velocities the method of singular value decom-
position �SVD� is used and compared with the spatial Fourier
analysis of complex wave numbers.

The outline of the paper is as follows: In Sec. II we
describe the experimental setup and laser heating method.
Section III summarizes the spatial Fourier analysis of com-
plex wave numbers. Section IV introduces the SVD method
in terms of test data. The dispersion of externally excited
shear waves is studied in Sec. V for the solid phase and in
Sec. VI for the liquid state. The damping of the waves is
discussed in Sec. VII. Section VIII gives a summary and
conclusions.

II. EXPERIMENTAL SETUP AND PROCEDURE

The experiments were performed in the modified GEC
reference cell at The University of Iowa.8 A single-layer sus-

pension consisting of spherical melamine-formaldehyde
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�MF� particles with �8.09±0.18� �m diameter is formed in
the sheath of a radio frequency plasma. The discharge is
operated at 13.56 MHz in room-temperature argon at
5 mTorr. Figure 1�a� shows a side view of the particle sus-
pension, which is levitated above the rf powered electrode,
together with two laser beams �B1 and B2� used for heating
the plasma crystal. The symmetrical laser beam arrangement
ensures that the heating laser exerts no net force on the sus-
pension. The footprint of the laser beams are deflected in the
x and y directions using a pair of galvanometer mirrors to
form an elongated Lissajous figure with deflection frequen-
cies fx=9.0 Hz and fy =14.5623 Hz. More details of this
heating technique are described in a companion paper.19 The
heating beams at 532 nm wavelength have equal power and
the heated stripe in the suspension is represented by the
shaded part in the camera’s field of view �Fig. 1�b��.

The shear waves are excited by a third laser beam �B3�
of an argon ion laser, which illuminates a narrow excitation
region that is aligned with the y direction and exerts a peri-
odic force in the y direction, as shown in Fig. 1�b�. The
power of beam B3 is sinusoidally modulated by means of a
galvanometer mirror, which gradually blocks part of the
beam. This resulted in shear waves that propagated in ±x
directions, traveling away from the excitation region. The
quality of the sine wave was ensured by monitoring the har-
monics of the laser power, which together were −25 dB be-
low the fundamental. The modulation degree is 100%. The

FIG. 1. �a� Side view of the single-layer particle suspension. Two laser
beams �B1, B2� are used for heating by exerting a quasirandom force. The
waves are observed with a CCD camera. �b� Top view. The waves are
excited with a sinusoidally modulated Ar+ laser beam �B3�. The shear waves
propagate in the ±x directions. The camera field of view and the heated
stripe are marked. The excitation region for shear waves is shown as the
thick black line along the y axis.
excitation laser power �measured inside the plasma chamber�
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is chosen as 0.23 W for the solid phase to minimize bond
breaking, and 0.46 W for the liquid phase for increased wave
amplitude in order to improve the signal to noise ratio of the
wave.

Because our particle suspension has a finite diameter, the
shear waves excited by this excitation laser do not have in-
finite wavefronts, so that they require a return oscillatory
circulatory flow at large distances. This circulatory shear
flow would ideally take place outside the field of the camera
so that we could model the waves as having the properties of
infinite wavefronts in an unbounded suspension. During the
course of the experiment, it appeared that this was achieved,
although there was actually a finite shear flow in the field of
view which we detected in subsequent analysis of the veloc-
ity data. This shear flow must be taken into account when
considering some of our data, as we explain later.

The camera field of view is 22.7 mm wide �x� by
17.0 mm high �y� at a resolution of 640�480 pixel. The
camera is operated at a frame rate of 30 fps. Each experi-
ment is comprised of 2400 frames. The particle positions are
measured with subpixel resolution. The velocity of each par-
ticle is obtained from the particle displacement in subsequent
frames.

The experiments presented here consist of two series.
The first series concerns wave excitation in the solid phase of
the particle suspension. The shear waves are studied for ex-
citation frequencies of 1 Hz, 2 Hz, . . ., 6 Hz. The suspen-
sion of particles rotated clockwise at an angular velocity of
�rot�1 min−1, which corresponds to a much lower frequency
than any of the waves that we observe. In our data analysis,
we will filter out this rotational motion, as discussed later.

From the mean-square velocities of the particle motion
in the x and y direction the temperatures Tx and Ty are com-
puted as a function of the y position. Figure 2�a� shows that
the temperature profile is fairly homogeneous in the central
part 3.6 mm�y�12.0 mm. Therefore the region between
the dashed lines is used for evaluating the shear waves. On
the other hand, we find that Tx�Ty. This anisotropy can be
attributed to the application of the laser forces in the x direc-
tion and the subsequent collisional scattering of the particle
momentum into the perpendicular y direction. The particle
motion is continuously cooled by dust-neutral friction, which
results in the lower value of Ty.

The dust temperature increases with the applied heating
laser power �Fig. 2�b��. This graph is used to interpolate the
dust temperature at the heating laser power of 1.9 W. From
the dust temperatures the coupling coefficients �x,y

= �Zde�2 / �4��0akTx,y� are calculated. The coupling coeffi-
cient is the ratio of the potential energy of a dust particle to
its typical kinetic energy. Matter is said to be strongly
coupled when ��1. For the unit length a we use the
Wigner-Seitz radius defined as in Ref. 16. We computed its
value from the lattice constant b=615 �m of the crystal,
which we measured for zero laser heating power as the ra-
dius of the first peak of the pair correlation function. This
was done using the relationship a=31/4�2��−1/2b for a perfect
triangular 2D lattice. We use the Wigner-Seitz radius in de-
fining the coupling coefficient �x,y, the shielding factor 	

�2D�
=a /
D, and the 2D dust plasma frequency �pd , where the
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latter is defined as in Ref. 16. We note that some authors
define the coupling coefficient differently, using the mean
interparticle distance as the unit length.11,12 Using values of
the dust charge number Zd=−12 800 and the screening
length 
, both computed from measurements of the propaga-
tion velocity of compressional and shear wave pulses,9 we
find 	=0.43, �pd

�2D�=72.6 s−1, and the values of the coupling
constant reported in Fig. 2.

III. SPATIAL FOURIER ANALYSIS OF COMPLEX WAVE
NUMBERS

The method used earlier5 for recovering amplitude and
phase of an externally excited sinusoidal wave from the ve-
locity fluctuations vy�x , t� begins with projecting the time
series on a sine and cosine function at the well defined ex-
citer frequency �ex. For a shear wave that propagates in the x
direction this is done by estimating the discrete Fourier trans-
form as vy�x���k=1

N vy�x , t��cos��extk�+ i sin��extk��, N being
the number of samples.20 In this way the amplitude �vy�x��
and phase ��x�=arctan�Im�vy�x�� /Re�vy�x��	 of the wave are
recovered as a function of position. The spatial evolution of
the phase gives the real part kr=d��x� /dx of the wave num-
ber and the logarithmic decay of the amplitude gives the
imaginary part ki=d ln��vy�x� � � /dx. An example for this
technique is given below in Fig. 6. In the following, we will

FIG. 2. �a� Dust temperature profiles Tx�y� and Ty�y� across the laser heated
stripe at 1.9 W heating power. The central part between 3.6 mm and 12 mm
is homogeneous within ±10%. �b� Increase of the dust temperatures with
laser power. The dust temperature Tx is larger than Ty. The graph also in-
cludes the resulting values of �x,y. Note that at 1.9 W the system is close to
melting ���200�.
refer to this method as spatial Fourier analysis of complex
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wave numbers �SFACW�. We will use both the SFACW and
the SVD analysis described in the next section to measure kr

and ki; by repeating these measurements as a function of the
exciter frequency we will produce the dispersion relation.

IV. SVD ANALYSIS

Singular value decomposition �SVD� �also known as
biorthogonal decomposition� is a suitable tool to extract
wave phenomena in plasmas from spatiotemporal data.21,22

The method was mostly used by the plasma fusion commu-
nity �see examples in Ref. 22 and more recently Refs. 23 and
24�. It was also used to detect irregularities in the solar
cycle.25 Very recently, it was applied in dusty plasmas to
detect the driving modes in the melting process of a plasma
crystal.26

The method uses a set of spatiotemporal data of any
fluctuating quantity, for example density, temperature, light
emission or particle velocities, y�xj , ti� at positions xj , j
=1, . . . , M, sampled at times ti , i=1, . . . , N. This data set
is arranged into an N�M matrix Y, in which the columns are
the time series Yij =y�xj , ti�. It is assumed that N�M. The
singular value decomposition transforms the matrix Y into
the product

Y = CWTT, �1�

in which C is an N�M column-orthogonal matrix, W is an
M �M diagonal matrix, and T is an M �M orthogonal ma-
trix. The column vectors of C are called chronos and the
column vectors of T are called topos. The diagonal of the
matrix W contains positive weight factors in decreasing or-
der. In this way the original spatiotemporal data set can be
written as

y�xj,ti� = �
k=1

M

wkTk�xj�Ck�ti� . �2�

The physical meaning of this decomposition is that the lead-
ing members of this sum give an approximative representa-
tion of the original spatiotemporal data. The square of the
weight factor wk

2 is called signal energy of the mode k. Dif-
ferent from a Fourier analysis, the SVD eigenfunctions are in
general no Fourier modes but pertinent features of the mea-
sured signals. When the spatiotemporal signal contains trav-
elling waves the weight spectrum contains pairs of equal
weight factors.21,27 In the special case of a harmonic wave
y�x , t�=y0 cos�kx−�t�, the pair of chronos and topos associ-
ated with this mode become Fourier modes.

As an example for the recovery of wave signals by the
SVD technique and to introduce the typical representation of
the SVD analysis we have analyzed the following surrogate
signal:

y�x,t� = y1 cos�k1x − �1t� + y2 cos�k2x − �2t�

+ y3 cos�k3x − �3t� + y4 gauss�t� , �3�

which consists of three waves with different amplitudes y1

=1, y2=0.1, y3=0.01 that span two decades and with incom-
mensurate frequencies �1=5, �2=7, �3=13. The wave num-

bers of these three waves are chosen as k1=5/3, k2=7/3,
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k3=13/3 to mimic acoustic dispersion with a constant phase
velocity. The waves are embedded in Gaussian noise with a
standard deviation y4=2y3, which exceeds the amplitude of
the weakest wave.

In Fig. 3 the decomposition into chronos and topos and
the distribution of weights are compiled. The three waves of
the original signal are now represented by the first six SVD
modes �c1t1−c6t6�. These modes form pairs of sine and
cosine-like functions. A pair of such functions is necessary to
describe the proper amplitude and phase of the original
wave. The wave with amplitude y1 is now represented by the
pair c1t1 and c2t2. The SVD modes c7t7 and c8t8 and higher
modes appear as noise. Note that the weakest wave mode,
represented by c5t5 and c6t6, can be clearly recovered al-
though its amplitude is weaker than the standard deviation of
the Gaussian noise. In this sense SVD can be used to sepa-
rate coherent and stochastic aspects of a signal.

In Table I the weight factors of the first ten modes and

FIG. 3. SVD analysis of surrogate data representing three independent
waves embedded in noise. The pairs of weights �bottom panel� are an indi-
cator for propagating waves. The relative amplitudes of the three waves are
quantitatively recovered. Chronos and topos 1, 3, 5, 7 are displayed as full
lines, modes 2, 4, 6, 8 as dashed lines.
their percent fraction of total signal energy are compiled. The
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first two modes represent already 99.1% of the signal energy.
The successful recovery of the weakest wave mode from the
noise background becomes evident from comparing the
weights of modes 5/6 with any of the individual higher
modes �7-256�. The power fraction of noise in the original
signal was 0.04%. Hence these higher modes, which com-
prise 0.078% of the total signal energy, contain both noise
and residues from the orthogonalization of the low order
modes.

We have performed additional tests to simulate the ex-
perimental situation with damped shear waves excited by a
line source. For negligible damping we find a pair of SVD
modes with equal weights, when a pair of waves emanates
symmetrically but with opposing phase velocity from the
central source region. The situation changes slightly, when
the waves are damped. Then the leading two SVD modes
show different weights and the ratio of the weights, w2 /w1,
decreases monotonically from 1 to 0.49 when the imaginary
part of the wave number ki is increased from 0% to 80% of
the real wave number. The tests show further that this asym-
metry has practically no influence on the recovery of the
wave number and damping, which were found within �3%
of their exact values.

V. SHEAR WAVES IN THE SOLID PHASE

The excitation laser exerts a periodic shear force to the
crystal in the y direction that is localized to a narrow stripe in
the center of the field of view. While the particle motion in
the wave is in the y direction, the shear waves propagate in
the ±x directions. Because our method of exciting waves is
steady in time, the frequency � is real, whereas the wave
number k is complex corresponding to the damping of a
wave that propagates away from the spatial region where it is
excited.

For recovering the shear wave, the velocities of all par-
ticles are determined for 2048 subsequent video frames.
Since we are interested in the velocity field vy�x , t� in each
frame, the x axis is divided into 256 bins and the particle
velocities are assigned to the bins using linear interpolation

28

TABLE I. Weight factors and signal energies of the SVD modes in Fig. 3.

Mode number
Weight
factor Signal energy

1 264.4 53.3%

2 245.3 45.8%

3 22.58 0.38%

4 23.90 0.43%

5 2.710 0.0055%

6 2.614 0.0052%

7 0.938

8 0.935

9 0.928

10 0.919

11–256 0.078%
according to the cloud-in-cell technique. In this way the
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original movies at excitation frequency � are converted to
matrices Y��� with 2048 rows and 256 columns.

To prepare for the SVD analysis, we first perform a
bandpass filtering on the time series. This serves two pur-
poses: it eliminates the effect of crystal rotation, which is not
interesting for the purposes of studying the wave, and it sup-
presses broadband noise associated with the thermal motion
of the particles. This filter has 0.058 Hz total width and the
central component is chosen closest to �. The filtered matri-
ces are then analyzed by the SVD algorithm.20

The leading pairs of topos resulting from the SVD analy-
sis are compiled in Fig. 4 for the frequencies f =1–6 Hz.
Since only the sign of the product of a topo and its associated

FIG. 4. The leading pair of topos 1 and 2 from the SVD analysis of shear
waves in the solid phase excited at frequencies f =1–6 Hz �symbols�. The fit
functions according to Eq. �4� are shown as lines. The horizontal axis gives
the position in the bins �1 bin=0.086 mm�. The topos are normalized to
unity.
chrono is defined, all topos are conveniently displayed with a
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positive value in the center of the excitation region. Because
the bandpass filtering uses three FFT components, the SVD
analysis yields exactly six nonzero modes. The weights of
the SVD modes are compiled in Table II. Nearly the same
weight factors in the first pair of modes indicate a propagat-
ing wave. The small difference of the weights can be attrib-
uted to the damping of the wave, as described above. The
amplitude of the leading pair of modes decreases with exci-
tation frequency. The signal energy of the leading pair of
modes is 93.5% at 1 Hz and decreases to 81.5% at 6 Hz.
This high fraction of signal energy justifies using only the
leading pair of SVD modes for the further analysis. Because
of the bandpass filtering the chronos of the leading pair of
modes are practically sinusoidal and therefore are not dis-
played here.

The topos 1 and 2 in Fig. 4 are approximated by a model
function that describes spatially damped sinusoidal waves of
the type

f�x� = A sin�kr�x − x0� + ��exp�− ki�x − x0�� . �4�

The center point x0 of the wave excitation region is pre-
scribed and a four-parameter least-squares fit is used to de-
termine the amplitude A, the real part of the wave number kr,
the phase shift �, and the damping rate ki. Plotting the fit
parameter kr versus the independent parameter � for the la-
ser excitation frequency yields a dispersion relation.

The measured wave dispersion is shown in Fig. 5. The
circles and crosses represent the results from topos 1 and 2.
For comparison we have applied the SFACW method de-
scribed above to the unfiltered data. The result of this method
is shown as squares. There is close agreement with the wave
numbers determined by the SVD technique described above.
This shows that the SVD analysis automatically finds the
proper frequency of the wave within the bandwidth of the
bandpass filter. On the contrary, for the SFACW method, the
frequency must be prescribed.

At last, the dispersion of the shear wave �Fig. 5� is found
to agree with theory for a triangular lattice of particles inter-
acting with a Yukawa potential.29 There are two theoretical
curves describing wave propagation along the two principal
axes of a triangular lattice �0° and 90°�. The experimental
data are a mixture of both principal modes because of the
angular averaging due to the slow crystal rotation and bear-
ing in mind that the plasma crystal consists of domains with

TABLE II. Weight factors in the solid phase �no laser heating� and fraction
of signal energy of the first two modes.

Mode 1 Hz 2 Hz 3 Hz 4 Hz 5 Hz 6 Hz

1 144.8 104.9 95.4 67.7 57.5 62.7

2 127.2 82.9 87.2 47.0 39.0 55.7

3 31.7 28.7 30.9 23.7 15.8 27.1

4 26.4 24.2 25.5 22.5 13.5 24.4

5 23.1 15.4 13.5 18.1 12.2 12.7

6 19.1 12.6 12.3 11.4 10.0 10.2

Fraction 93.5% 90.8% 89.7% 81.8% 87.6% 81.5%
different orientations.
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VI. SHEAR WAVES IN THE LIQUID STATE

For studying shear waves at reduced values of the cou-
pling parameter the suspension is heated by the two heating
beams. At 2.3 W a liquid state with ��x=128, �y =158� is
obtained. In performing the experiments, care is taken that
the laser forces are exactly balanced and that the areas cov-
ered by the two Lissajous figures match exactly. Any small
imbalance would have introduced an unwanted net flow of
particles in the x direction. In order to use only the region of
homogeneous dust kinetic temperature, only particle posi-
tions 102
y
338 pixels are used. Since the shear waves
become now strongly damped, only the central section of the
image frame 200
x
440 pixels is evaluated. For improv-
ing the statistics this x interval is subdivided into 64 bins and
the length of the time series is 2048 frames. Again, the as-
signment of the particle velocities to the bins vy�xj , ti� is
performed by interpolation with the cloud-in-cell formula.

The situation for recovering the waves in the presence of
the enhanced random motion of the liquid state can be quan-
titatively described in terms of the power spectrum of the
velocity fluctuations P�f�, which consists of a broad con-
tinuum on which the excited wave is superimposed with a
sharp frequency peak as shown in Fig. 6�a� for the case of
fex=3 Hz exciter frequency. The total kinetic energy of the
wave motion, as represented by the three FFT components
marked by circles, is only 2.3% of the total kinetic energy.
This corresponds to a signal to noise ratio of −16.5 dB. On
the other hand, the intensity of the sharp peak in the spec-
trum is about 10 dB above the neighboring continuum.

In a first step we have recovered the wave by the
SFACW method, which uses the frequency of the highest
peak in the power spectrum. The resulting spatial distribution
of the Fourier amplitudes �vy�x�� are shown in Fig. 6�b� to-

FIG. 5. Dispersion relation of shear waves in the solid phase. The measured
wave numbers from topo 1 �circles� and topo 2 �crosses� are compared with
the results of the SFACW method �filled squares�. For comparison the dis-
persion curves for shear waves in a triangular lattice at propation angles 0°
and 90° are shown.
gether with fit functions according to Eq. �4�. This example
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shows that a damped wave emanates from the excited region
to both sides. The wave number kr and damping rate ki are
determined from the linear fits to the phase evolution and to
the logarithmic decrement as shown in Figs. 6�c� and 6�d�.

The SVD analysis follows the approach used in the case
of the solid phase. Obviously, the low signal to noise ratio
requires bandpass filtering of the velocity data. For this pur-
pose, only the three components of the FFT in Fig. 6�a� that
exceed the background of random fluctuations are used to
provide a good signal to noise ratio. For comparison with the
solid phase the first pair of topos of the SVD analysis is
shown in Fig. 7 for excitation frequencies f =1–6 Hz. The
measured wave signals are fitted by the function in Eq. �4�.
Now the shape of the topos is slightly different with respect
to the oscillatory structures, which are more pronounced in
topos 2 while the topos 1 show less modulation. For 1 Hz
and 2 Hz, a single hump is seen in topo 2, which can be

FIG. 6. �a� Power spectral density P�f� of the velocity fluctuations in the
observed region of wave propagation at 2.3 W heating power and 3 Hz
exciter frequency. The excited shear wave has three FFT components
�circles� that exceed the broadband noise. �b� Real and imaginary part of the
wave functions recovered by the SFACW method and fit by Eq. �4�. �c� The
phase evolution of the signal propagating to the right. The slope of the fitted
straight line gives kr. �d� The logarithmic decrease of the amplitude. The
slope of the fitted straight line gives ki. The horizontal axis in �b-d� gives the
position in bins �1 bin=0.13 mm�.
identified as representing half a wavelength of a strongly
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damped wave. For f =3–6 Hz the wavelength becomes
shorter and further maxima and minima appear. The shapes
of the topos 2 have a close similarity with the signals recov-
ered by the SFACW method as shown in Fig. 6�b�.

The distribution of the weight factors of the 6 SVD
modes and the fraction of signal energy of the first two
modes are compiled in Table III. First, we see that the wave
amplitude has practically doubled according to the power
increase of the excitation laser from 0.23 W to 0.46 W. Sec-
ond, we find again that the signal amplitude decreases with
excitation frequency. Different from the solid phase, the first
two modes for excitation frequencies f =1–6 Hz now have

FIG. 7. The first pair of topos from the SVD analysis of shear waves in the
liquid phase �2.3 W heating laser power� excited at frequencies f =1–6 Hz
�symbols�. The horizontal axis gives the position in bins �1 bin=0.13 mm�.
The topos are normalized to unity.
unequal weights that differ by a typical factor of 2. This
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observation can be explained by the damping of the wave, as
described in Sec. IV.

We have also tried to study the shear waves in the solid
phase at conditions close to the expected melting point. For
this purpose the heating laser power was set to 1.9 W, which
resulted in a state with �x=194, �y =266 when the excitation
laser was turned off. The SFACW shows that the signals
have very similar shapes as those in the liquid case. The
damping rate is found much stronger than in the solid when
no heating is applied. The SVD analysis also shows close
similarities with the shape of the topos in Fig. 7 concerning
the different degree of modulation in topos 1 and 2. Again
the ratio of the weights in the leading mode pair are asym-
metric by the same factor as in the liquid case.

All these findings at 1.9 W heating laser power give a
hint that the system was already in a liquid state. An analysis
of the time averaged velocities v̄y�x� shows that at 1.9 W
heating laser power the maximum flow velocity in the exci-
tation region is practically the same as in the liquid state at
2.3 W. Hence, the similarity with the liquid case can be at-
tributed to shear induced melting by the excitation laser.

Comparison with theory

The observed wave numbers in the melting and liquid
state are similar to the case of the solid phase. This is an
additional hint that the observed waves are the shear waves
we were searching for. In the following we compare the mea-
sured dispersion with the 2D QLCA model.16

The experimental points in Fig. 8�a� represent the evalu-
ation by SFACW. For comparison the results for 1.9 W �plus
with circle� and 2.3 W �crosses� are shown. The 2D QLCA
model is plotted for 	=0 and 	=1, which represent a lower
and an upper bound for the experimental situation with 	
=0.43. Because the comparison is made in absolute quanti-
ties, the overall agreement between experiment and the 2D
QLCA model is quite satisfying. Closer inspection shows
that the two different values of dust temperature do not allow
conclusions about a trend for the dependence on �.

The results from the SVD analysis are compiled in Fig.
8�b�. The heating laser powers of 1.9 W �circles� and 2.3 W
�squares� are compared. Open and filled symbols represent
the evaluation of topos 1 and 2. The results from the SVD
analysis are very similar to the SFACW method although the

TABLE III. Weight factors at 2.3 W heating laser power and fraction of
signal energy of the first two modes.

Mode 1 Hz 2 Hz 3 Hz 4 Hz 5 Hz 6 Hz

1 267.8 156.7 166.4 104.4 88.9 69.8

2 138.3 75.9 60.4 50.3 41.3 34.5

3 36.4 38.1 28.1 27.9 23.1 20.6

4 32.0 33.0 25.0 23.3 22.3 16.6

5 26.7 31.4 21.9 19.4 17.7 16.1

6 23.4 29.1 20.4 17.6 14.6 13.0

Fraction 96.2% 87.4% 88.2% 87.0% 86.0% 84.3%
scatter of the data points is larger. There is a general agree-
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ment with the QLCA model but the same tendency of devia-
tion towards smaller wave numbers is found for the highest
frequencies as observed above in the SFACW method.

The error bar for the wave number was estimated as
follows. For the SFACW method, the error bar comprises the
uncertainty of the slope of the best fit by a straight line in
Fig. 6�c� as well as the influence of the choice of frequency
used for the projection on Fourier modes. The latter was
varied within a range of ±1% about the most probable value.
The two sources of error have the same magnitude.

For the nonlinear fits by Eq. �4�, first the optimum fit
was determined, which yielded the most probable value for
kr,opt. In a second step, the fit was repeated for given values
of kr in the range 0.5kr,opt�kr�2kr,opt. The other parameters
�A , � , ki� were left as free fit parameters. For each of these
fits the correlation coefficient was calculated. The error bar

FIG. 8. �a� Comparison of the results from the SFACW method with the 2D
QLCA model �Ref. 16� for two different values of 	. �b� Comparison of the
SVD results with the 2D QLCA model. The symbols are defined in the
insets.
was estimated from the point where the correlation has
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dropped to 90% of its maximum value. This was the same
degree of decorrelation as found when the slope m of the
straight line in the SFACW method was set to m±�m.

VII. DAMPING OF THE WAVES

In this section we compare the observed damping rates
of the shear waves with theoretical expectations �Fig. 9�. In
the solid phase the damping is caused by dust neutral colli-
sions, which were incorporated in the dispersion relation for
the elastic response of a triangular lattice with a binary
Yukawa potential.29 The observed damping for propagation
in the 0° direction �crosses�, however, is stronger than the
theoretical prediction �full line�. This feature was checked by
comparing the SVD result with the SFACW method, which
gave identical damping constants. Hence, the disagreement
with the theoretical damping is not a flaw of the SVD analy-
sis. Higher damping rates are found in theory for the 90°
direction �dotted line�, which strongly increases when the
group velocity becomes small for frequencies of about
3.5 Hz �see Fig. 5�. Part of the difference between experi-
ment and theory might be explained by the fact that the
crystal rotation leads to a time average over different orien-
tation angles. However, the fact that the wave numbers in
Fig. 5 coincide with the 0° dispersion does not suggest an
influence from the enhanced damping of the 90° direction.

For the liquid state and close to the melting point, the
damping is significantly increased above its value in the solid
phase. The results of the Fourier method and the SVD analy-
sis give very similar results for the damping. Again, there is
no clear trend that distinguishes the results at 1.9 W and

FIG. 9. Damping rate of the shear wave in the solid phase �0 W� and in the
liquid phase. The results from the SFACW method and topo 2 of the SVD
are compared. The expected damping of the shear wave in the solid phase by
dust-neutral collisions �Ref. 29� is shown as a solid line �0°� and a dotted
line �90°�. An estimate of the damping rate expected for the fluid phase, as
explained in the text, is shown as a dashed line. The symbols are defined in
the inset.
2.3 W.
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We can make a rough estimate of the damping rate that
is expected for the fluid phase as follows. For the case of
weak damping, ki� Im��� /vph, where vph is the phase veloc-
ity for the real part of the dispersion relation. We conjecture
that for a 2D liquid Im����1/ �2�R� as was reported previ-
ously for a 3D liquid,11,14 where �r is a relaxation time asso-
ciated with the viscoelastic response of the liquid. We further
conjecture that �R for a 2D liquid can be estimated using the
3D theoretical result �R= �0.13�pd

�3D��−1 �Refs. 11 and 14� by
simply replacing �pd

�3D� with the 2D plasma frequency �pd
�2D�

for our suspension. In this way, we obtain an estimate
kia /�=0.13 for our experiment, which is shown as a dashed
line in Fig. 9. A more reliable theoretical estimate could be
made based on a generalized hydrodynamic �GH� model for
a two-dimensional Yukawa liquid, but such a theory is lack-
ing in the literature.

VIII. SUMMARY AND CONCLUSIONS

We have demonstrated that shear waves in the liquid
state of a two-dimensional particle suspension in a plasma
can be excited with laser forcing. The dispersion and damp-
ing of these waves are compared with the solid phase, where
the shear wave is weakly damped and can be observed with
a high signal to noise ratio. In the liquid phase, the signal to
noise ratio is much lower because of the higher random mo-
tion of the particles. We find a spatially oscillatory wave
pattern for exciter frequencies f =3–6 Hz. These waves are
moderately damped with ki
kr. For smaller frequencies �f
=1 Hz and f =2 Hz�, corresponding to longer wavelengths,
the wave is found to be strongly damped �ki�kr�.

The SVD analysis of particle velocities turns out to be a
reliable tool for extracting wave phenomena in the solid
phase of the particle suspension. Propagating waves in the
solid phase can be identified as a pair of topos with similar
weights, which make up 81.5%–93.5% of the signal energy
and can thus be considered as representative for the wave.
The dispersion derived from SVD analysis is in close agree-
ment with the SFACW technique. The difference of the two
methods is the prescribed wave frequency in the SFACW
technique whereas the SVD automatically selects the most
probable wave frequency within the width of the bandpass
filter.

The performance of the SVD method for the strongly
damped waves in the liquid phase was compared with the
SFACW method. We find that SVD that uses all three FFT
components that exceed the neighboring continuum limit
gives similar results for the wave number and damping rate
as the SFACW method, but results in a larger scatter of the
data.

The behavior of the shear wave close to the melting
point and in the liquid phase is quite similar in dispersion
and in the response amplitudes. This unexpected result can
be explained by the observation that at 1.9 W heating laser
power the excitation laser is sufficiently strong to break
bonds and to establish a mean flow. Unfortunately, this effect
was not visible on the video monitor during the experiments

but only turned out in the data analysis. Hence, the waves
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observed at 1.9 W heating power also propagate in a local
liquid state, which arises from shear-induced melting.

The comparison with the 2D QLCA model16 is made
with absolute wave numbers and gives an overall agreement
with the predicted dispersion. This confirms that the excited
waves are really the expected shear modes in a liquid. The
estimated error bar at 3 Hz includes the 	=0 curve. The
error bars, however, increase with frequency because of the
reduced signal to noise ratio.

The observed damping of the shear wave in the liquid
phase is much larger than the damping of shear waves in the
solid phase. An estimate based on the relaxation time for the
viscoelastic response of the liquid supports this observed
trend.

In summary, we have presented a first comprehensive
comparison of theory and experiment for laser-excited shear
waves in the solid and liquid phase of single-layer particle
suspensions.
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