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Cutoff Wave Number for Shear Waves in a Two-Dimensional Yukawa System (Dusty Plasma)
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The cutoff wave number for shear waves in a liquid-state strongly coupled plasma was measured
experimentally. The phonon spectra of random particle motion were measured at various temperatures in a
monolayer dusty plasma, where microspheres interact with a Yukawa potential. In the liquid state of this
particle suspension, shear waves were detected only for wavelengths smaller than 20 to 40 Wigner-Seitz
radii, depending on the Coulomb coupling parameter. The temperature of the suspension was controlled

using a laser-heating method.
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The waves in molecular solids or liquids can rarely be
studied experimentally at an atomistic level. The reasons
include small distances between the atoms or molecules in
regular matter, high characteristic frequencies, and lack of
experimental techniques of visualizing the motion of indi-
vidual atoms or molecules. A suitable model system to
experimentally study waves at an atomistic level is a dusty
plasma. A dusty plasma is a suspension of highly charged
micron-size particles in a plasma. When these particles are
confined, their mutual repulsion causes them to self-
organize in a structure that can have a crystalline or liquid
order. In a dusty plasma the interparticle distance can be of
the order of 1 mm, characteristic frequency of the order of
10 s~!, and the speed of sound of the order of 10 mm/s.
This ordered structure is vastly softer than molecular ma-
terials and even colloidal crystals, so that it can be ma-
nipulated easily using even the very weak force of radiation
pressure applied by a laser beam. These unique character-
istics, plus a very helpful possibility of direct imaging,
make it possible to study complex phenomena like wave
propagation, phase transitions, and transport phenomena,
all at an atomistic level.

Waves in dusty plasmas have recently attracted much
attention. The theory of different modes has been devel-
oped for two-dimensional (2D) [1-4] and three-
dimensional (3D) [3,5-8] dusty plasmas in solid and liquid
states. For strongly coupled dusty plasmas in the solid
state, the linear modes for compressional and shear motion
[9,10] have been extensively studied experimentally. For
dusty plasmas in a liquid state, however, only a few ex-
perimental studies of wave modes have been reported so
far [11-13]. For 2D dusty plasmas, one reason for this
scarcity is that 2D dusty plasmas tend to crystallize under
normal experimental conditions.

Liquids generally support compressional (longitudinal)
waves. However, shear (transverse) waves can only propa-
gate if their wavelength is as short as a few molecular
spacings. Thus, the dispersion relation of the shear waves
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in a liquid has a cutoff wave number. This cutoff is well-
known for molecular liquids [14,15], and it has been
predicted theoretically for strongly coupled plasmas as
well [4,7]. To the best of our knowledge, however, the
cutoff wave number has never been observed experimen-
tally in strongly coupled plasmas. Unlike the scattering
methods used to detect phonons in molecular liquids, here
we will use direct observation of random particle motion at
an atomistic level, and by analyzing this random motion we
will measure a phonon spectrum that reveals the wave
number cutoff.

Using strongly coupled dusty plasmas, experiments to
observe shear waves in a liquid state have only recently
begun. In Ref. [12], a liquid state of a 2D dusty plasma was
achieved by placing a varying amount of perturbing parti-
cles in a lower incomplete layer. Compressional and shear
waves polarized in the plane of the particle suspension
were studied in the solid and liquid states. The dispersion
relation of the shear mode did not resolve a cutoff. In
Ref. [11], the shear waves with a vertical polarization
were observed in a 3D liquid-state dusty plasma. Their
dispersion relation was measured and found to agree with a
viscoelastic theory. Because of the lack of experimental
data points near @ = 0, no conclusion can be made on the
existence of the cutoff wave number.

In this Letter, we use our laser-heating method [16] to
melt a 2D dusty plasma crystal and to control the tempera-
ture of the resulting liquid. This allows us to study waves in
a 2D dusty plasma in solid and liquid states, at various
temperatures. The waves correspond to random particle
motion at a given temperature. Unlike our experiment in
Ref. [17], where we launched sinusoidal waves, here we
did not use any additional external means to excite these
waves.

The experimental setup was as in Refs. [16,17], using
similar experimental parameters. Argon plasma was pro-
duced using a capacitively-coupled rf discharge. The dis-
charge was sustained by 35 W of rf power at 13.56 MHz. To
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reduce the gas friction, Ar was used at a relatively low
pressure of 5 mTorr. In this case, the neutral-gas damping
rate v is accurately modeled [18] by the Epstein expression
with a leading coefficient of 1.26. In our experiment, v =
0.87 s, so that particle motion on the time scales studied
here was not overdamped.

A monolayer of microspheres was suspended in the
plasma. The particles were highly charged as they ab-
sorbed more electrons than ions and they were levitated
against gravity in the sheath above the lower 1f electrode.
The particles had a diameter of 8.09 = 0.18 um [18] and a
mass m = 4.2 X 10713 kg. The suspension included =~
6700 particles, had a diameter of 50—60 mm, and rotated
slowly in the horizontal plane.

The interparticle potential for particles arranged in a
single plane, like ours, was experimentally shown [19] to
be nearly Yukawa: U(r) = Q(dmeyr) ' exp(—r/Ap),
where Q is the particle charge and Ap is the screening
length. The particle suspension is characterized by screen-
ing parameter xk = a/Ap and coupling parameter I' =
Q?/4meyakT, where T is the particle kinetic temperature.
Because of the laser-beam configuration, the temperature
was anisotropic with T, = (1.2-1.5)T, [16]; here we com-
pute temperatures as T = T, = m{(v, — ©,)*)/kp, where
v, is the y component of the particle velocity (transverse to
the direction of the laser beam). We chose T = T, because
in the shear waves that we study here the particle displace-
ment was in the y direction. For liquids, the characteristic
length is the 2D Wigner-Seitz radius a = (7rn)~!/2, where
n is the areal number density [4]; it is related to the lattice
constant b for a perfect triangular lattice by a =
(\/3/27)'/2b. In our experiment, a = 0.325 mm. We
used the pulse technique of Ref. [20], making use of a
theoretical wave dispersion relation [3], to measure k =
0.43 £ 0.06 and Q = —12800 = 1200e.

The particles were imaged through the top window by a
video camera. We digitized movies of 2048 frames at 29.97
frames per second. The 22.7 X 17.0 mm? field of view
included = 1100 particles. The particle coordinates x, y
and velocities vy, v, were then calculated with subpixel
resolution [21] for each particle in each frame.
Additionally, using a side-view camera we verified that
no out-of-plane buckling occurred; we can therefore state
that all experimental results reported here are for a single
horizontal layer of particles.

At our experimental conditions, the particle suspension
self-organized in a highly ordered triangular lattice. We
used our laser-heating method that we explained in detail
in Ref. [16] to melt the lattice and to control the tempera-
ture of the resulting liquid dusty plasma.

Two laser beams with a wavelength of 532 nm were
pointed toward the suspension from opposite sides at a
grazing angle. Particles were pushed by the radiation pres-
sure force. The laser beams were moved about using scan-
ning mirrors, so that the beam footprints drew Lissajous

figures on the suspension. The two Lissajous frequencies
were f, =9 Hz and f, = 14.5623 Hz. The region cov-
ered by the Lissajous figures was an elongated rectangle
covering the entire suspension in the x direction and its
12.4 mm wide central part in the y direction. This scheme
provided brief intense random kicks to the particles in the
heated stripe. As a result of these kicks and subsequent
collisions, the particle kinetic energy increased, and the
suspension had properties of a system in thermal equilib-
rium, as we discussed in detail in Ref. [16].

By varying the output power of our manipulation laser,
we were able to control the kinetic temperature of the
particles. As the particle temperature increased to a certain
point the suspension melted and became liquid. By increas-
ing the laser power still further, we heated the resulting
liquid. Below we will discuss in detail the shear mode of
in-plane particle motion in the solid and liquid states of our
particle suspension.

To study the dispersion relation of the shear mode, we
calculated the transverse current fluctuation spectrum
T (k, f) [4,15,22], i.e., the transverse phonon spectrum.
We first performed a discrete Fourier transform of
v,(x, 1) to yield v,(k ), and then performed a fast-
Fourier-transform algorithm to yield v,(k, f). To calculate
T (k, f), we averaged v,(k, f) over time, as a proxy for
computing an ensemble average. This was done using
experimental sequences of 2048 frames (68.3 s duration)
that were divided into subsequences of 128 frames (4.3 s
duration). The subsequences overlapped, beginning at in-
tervals of 36 frames (1.2 s). The delay time of 1.2 s was
bigger than the neutral-gas damping time v~ ! = 1.1 s.
Finally, the square of v,(k, f) that was computed for
each of these subsequences was averaged over all subse-
quences, yielding T (k, f). We did not apply subsequent
smoothing or any other data-modification technique to
T (k, f). As our particle suspension is two-dimensional,
there are particles at many x values for any given range
Ax = a; this allows us to calculate the values of wave
numbers even at large values k > 7/a. Because of unequal
x spacing of the experimental v, (x, f) data, there is no k
aliasing in the calculated fluctuation spectra.

The observed spectra of the shear waves are shown in
Fig. 1. For the solid state, several Brillouin zones are
clearly seen in Fig. 1(a). Here, the waves observed are a
superposition of the waves in all possible directions with
respect to the orientation of the lattice, due to its polycrys-
talline structure and a slow rotation in the experiment. In
the liquid state, only a broadened long-wavelength part of
the spectrum remained, Fig. 1(b). These spectra are similar
to those observed in Ref. [12] using a different method of
heating a 2D suspension of particles.

The cutoff of shear waves is revealed in the long-
wavelength (ka < 1) portion of the spectra. To compute
the dispersion relation from the spectra, we began with
cross sections of T (k, f) as a function of k for a given f, as
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FIG. 1 (color online). Transverse current fluctuation spectra
T (k, f) for two different states of a 2D dusty plasma: the solid
state, where I' = 8300 (a), (c) and for the liquid state, where
I' = 73 (b), (d). The panels (c) and (d) show the long-wavelength
part of T (k, f); here, the color scale extends to 1.9 X 1073, so
that the color scale in (d) does not saturate as in panel (b). Shear
waves exist in a liquid dusty plasma only if their wave number is
bigger than the cutoff wave number k.a = 0.27, as shown in (d).
The open circles in (c) and (d) indicate the shear wave’s
dispersion relation. The concentration of energy near w = 0
and k.a =0 in (d) indicates the presence of the sloshing
mode, i.e., the motion of the particle suspension as a whole.
The wave number resolution Aka is determined by the size Ax of
the camera’s field of view: Aka = 27a/Ax = 0.091.

in Fig. 2. We measured the k for the peak in each cross
section by computing its first moment. Repeating for each
frequency yields the dispersion relation f(k), shown as
open circles in Fig. 1. For the solid state, the dispersion
relation in Fig. 1(c) passes through the origin at f = 0 and
k.a = 0, as expected. However, for the liquid state in
Fig. 1(d), it does not. Instead, the dispersion relation
reaches f = 0 at a finite cutoff wave number k.a = 0.27.

The shear waves, therefore, can propagate in the liquid
state of our particle suspension only if their wavelength is
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FIG. 2. Transverse current fluctuation spectrum T (k, f) from
Fig. 1(d), evaluated at different frequencies f. The first moments
of the peaks in curves like these were used to calculate the
dispersion relations shown by open circles in Figs. 1(c) and 1(d).

shorter than a critical value 277/k,. This is well-known for
simple liquids [14,15]. For strongly coupled plasmas, the
cutoff wave number has been predicted in several simula-
tions of liquids, both 3D [7,23] and 2D [4], but it appar-
ently has never been observed experimentally.

The sloshing mode, i.e., motion of the particle suspen-
sion as a whole, appears in Fig. 1(d) as a concentration of
energy at f = 0 and k = 0. This mode is unrelated to the
shear wave, and it does not interfere with calculating the
cutoff wave number k.. Note that in this Letter the sloshing
mode is less prominent than in our previous experiment of
Ref. [17], where we externally excited compressional
waves and observed the sloshing mode in the direction of
excitation.

The experimental observation of the cutoff wave number
k. for the shear waves in a 2D liquid dusty plasma is a chief
result of this Letter. Next, we discuss the dependence of &,
on the coupling parameter I', Fig. 3. We calculated k. by
beginning with the first four data points in the low-
frequency portion of the dispersion relation [open circles
in Fig. 1(d)] and fitting them to a straight line.
Extrapolating this line to zero frequency yields our value
of k.. The error bars indicate the width of T (k, 0.234 Hz)
at the level of 75% of its peak value, as in Ref. [7]. The
normalized cutoff values lie in the range of k.a =
0.16-0.31 with perhaps a trend to increase for lower values
of I'. Our data generally agree with the molecular dynam-
ics simulation of Ref. [4], where a cutoff wave number of
k.a = 0.186 was observed for the shear waves in a 2D
Yukawa liquid, for k = 1 and I' = 160.

The damping mechanism that precludes the existence
of the shear waves in a liquid below k. is identified as

115001-3



PRL 97, 115001 (2006)

PHYSICAL REVIEW LETTERS

week ending
15 SEPTEMBER 2006

0_6 [ ‘ T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T T ]
E ® experiment E
05 | V' MD simulation [4] k=0 ]
®, L A MD simulation [4] k=1 ]
= 04l ' ---- OCP estimate [24]
8 C - ]
£ C . ]
c 03+ o N . -
° L ]
z L -~ ]
2 5 [ - ]
S 02 - v“- . .
5 C ® BRRR TN ]
[$] L -
0.1 .
O C l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 i

60 80 100 120 140 160

coupling parameter T’

FIG. 3. Cutoff wave number k.a for shear waves as a function
of coupling parameter I'. We calculated k. as the intercept with
the k axis of the dispersion relation’s low-frequency part, fitting
f(k) by a straight line for f < 0.94 Hz. The error bars indicate
the width of T (k, 0.234 Hz) at the level of 75% of its peak value.
Also shown is the cutoff wave number found in the simulation of
Ref. [4] and an estimate k.a = 104! for a 2D one-compo-
nent-plasma approximation (OCP) («x = 0) [24].

diffusional and other damping in Ref. [4] and viscous
damping in Ref. [7]. Following Ref. [4], we calculated
the diffusional-migrational time 7y = 1/k.Cr = 0.18 s,
where Cy = 5.3 mm/s is the shear wave’s sound speed,
for the conditions of Fig. 1(b) and 1(d). Note that 7py;
is significantly smaller than the neutral-gas damping time
v~! = 1.1 s; neutral-gas damping therefore did not ob-
scure our observation of the cutoff wave number. In
terms of the 2D nominal plasma frequency wpq =
[0*/2meyma’]V?, Tpy ~ 13/w,q, in agreement with
Ref. [4].

Above k., shear waves exist, but they experience strong
damping [7]. A combination of viscous and neutral-gas
damping broadens the peak in the shear-wave spectrum, so
that it has the width indicated by the error bars in Fig. 3. A
similar increase in damping of shear waves in the liquid
state was found in our experiments with sinusoidal wave
excitation [13].

The partitioning of shear-wave energy into small wave
numbers (though higher than the cutoff wave number k),
as shown in Figs. 1(b) and 1(d), is expected for our particle
suspension in the liquid state. Indeed, for any liquid shear
waves disappear at large values of k, because the particles
behave as if they were free, as in a perfect gas [15].

To summarize, we observed the shear waves in the solid
and liquid states of a 2D Yukawa system (dusty plasma).
For shear waves in a liquid, we verified the existence of the
cutoff wave number. Its value was k.a = 0.16-0.31 de-

pending on the coupling strength. In other words, shear
waves were only able to propagate in the liquid dusty
plasma when their wavelength was smaller than
(20-40)a. This result illustrates why it is difficult to ob-
serve shear waves in molecular liquids: their wavelength
must be very short, perhaps shorter than a few tens of
intermolecular spacings.
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