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Analytic Expression For the Electric Potential in the 
Plasma Sheath 

TERRENCE E. SHERIDAN, JR. AND JOHN A GOREE 

Abstract-An expression for the spatial dependence of the electric 
potential in a collisionless and source-free planar plasma sheath is pre­
sented. This expression is derived in analogy with Child's law and ap­
proaches Child's law asymptotically as the potential drop ¢,..across the 
sheath becomes large, le¢,../kT,I > 104

. Here k is Boltzmann's con­
stant, T, is the electron temperature, and e is the electronic charge. 
Comparison with numerical solutions of the model equations indicate 
that the sheath thickness and potential variation predicted by this im­
proved Child's Jaw are accurate for I e¢ .. j u:. I > 10. In contrast, we 
find that Child's law is accurate only when I e¢ .. / kT" I > 104

• 

I. INTRODUCTION 

THE plasma sheath is the localized electric field that 
separates a plasma from a material boundary. The 

plasma sheath serves to confine the more mobile species 
in the plasma and to accelerate the less mobile species out 
of the plasma. For the typical case where the electrons are 
more mobile than the positively charged ions, the electric 
field in the sheath points toward the boundary. The sheath 
thickness is parameterized by the De bye length A. 0 . 

In order for the potential in the sheath to decrease 
monotonically as we move from the plasma towards the 
boundary, ions must enter the sheath with a velocity at 
least as large as the ion acoustic velocity c5 [I]. As a con­
sequence of this Bohm sheath criterion, a presheath is 
formed in the plasma with a potential drop on the order 
of I kTe/ e I, which accelerates the ions into the sheath. 
Here k is Boltzmann's constant, Te is the electron tem­
perature, and e is the electronic charge. The scale length 
of the presheath is set by either the mean free path for 
ions, or the scale length of the plasma, whichever is 
shorter [2]. 

When the potential drop across the sheath 1> is large 
compared to I kTe / e I, we can reasonably ignore the small 
potential drop across the presheath . The potential varia­
tion in the sheath is then approximated by Child's law [3]. 
However, severe approximations must be made to obtain 
Child's law, and the agreement between exact numerical 
solutions of Poisson's equation is within 1 percent only 
whenlecJ>/kTel > 104

. 

In this paper we present an analytic expression for the 
potential variation in the plasma sheath. It is only slightly 
more complicated than Child's law, but is in much better 
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agreement with exact numerical solutions. The model we 
use is appropriate for cathodic sheaths which are planar, 
collisionless, source-free, and in steady-state. We further 
assume that the boundary is perfectly absorbing and that 
the motion of electrons and ions to the boundary is not 
impeded by magnetic fields. 

In the next section we outline the model of the plasma 
sheath under consideration, and in Section III we discuss 
approximate solutions to this model. The improved 
expression we derive provides useful information about 
the applicability of Child' s law and the scaling of the 
sheath thickness with the potential drop across the sheath. 

II. SHEATH MODEL 

We consider a widely used time-independent model for 
the potential in a planar plasma sheath cJ> as a function of 
position x [ 4]. One end of the plasma is terminated by a 
perfectly absorbing wall held at a negative potential c/>,. .. 
(Here, and throughout this paper, the subscript w will re­
fer to the wall.) We choose the position of the wall to be 
x = 0 (see Fig. 1). Far from the wall there is a field-free 
and neutral plasma where cJ> = 0. The density of electrons 
ne and ions n; are both equal to n0 in the plasma. At some 
point x = D, where D is the sheath thickness, there is a 
transition from the nonneutral sheath to the neutral 
plasma. We assume that the sheath region is collisionless 
and source free. Ions enter the sheath as a monoenergetic 
beam with a velocity u0. In this model u0 must be greater 
than the ion acoustic velocity cs in order that 1> increases 
monotonically as we move away from the wall. 

Since the sheath is source free, the ion density obeys 
an equation of continuity, n; v = n0 u0 , where vis the ve­
locity of the ion beam in the sheath region. further, since 
the sheath is collisionless, energy is conserved Mv 2 /2 = 
Mu~/2 + e c/> . Here M is the ion mass. Combining these 
two relations, we find that the ion density in the sheath is 
given by 

( 
2ec/>)-l /2 

n; =no I - Mu~ ( 1 ) 

The electrons are assumed to be in thermal equilibrium; 
therefore, the electron density will follow the Boltzmann 
relation, 

(2) 
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Fig . I . Model system for the pla~nld sheath . The potentia l</> tn the pla~ma 
sheath is ploued qualitative ly as a function of the dtstance from the wall. 
Io ns enter the sheath as a mono energetic beam with a velocity u0 . Di­
mensionless quantities arc shown to the right of their dimcmtonal coun­
terpans. Note that the sign of the dimensionless potential. 'I = - e</> j kT, .. 
is opposite that of</> . 

The potential must satisfy Poisson's equation. 

d 2cp e 
dx

2 = -- (ni - n,) 
eo 

= - eno [(t - 2e~)-l /2 - exp (eel>)] (3) 
eo Mu 0 kT, 

where e0 is the permittivity constant. This nonlinear sec­
ond-order ordinary differential equation is autonomous; 
i.e., d 2cpjdx2 does not depend explicitly on x. To com­
pletely specify the problem we need a value of u0 and 
boundary conditions for cp. Appropriate boundary condi­
tions are ¢(0) = cl>w• and cp(x ~ oo) = 0, as shown in 
Fig. 1. 

Poisson's equation can be nondimensionalized by the 
following transformations: 

ecp 
'I=-­

kT, 

x (noe2 )112 
~---x --

)\0 EokT, 

mt="o= Uo 
Cs (kT,j M}112. 

(4a) 

(4b) 

(4c) 

Here 'I is the dimensionless potential (note that the sign 
of f1 is opposite that of cJ> ), ~ is the distance normalized 
by the Debye length, and mt is the Mach number. The 
dimensionless Poisson's equation for the potential varia­
tion in the sheath is 

. ( 2 )-1/2 
'1" = l + ;_2 - e -~ (5) 

where fl" is the second derivative of '1 with respect to ~. 
The first term on the right-hand side (RHS) is the dimen­
sionless ion density, and the second term is the dimen­
sionless electron density. The boundary conditions are 
'I ( 0) = 71w• and 71 ( ~ ~ oo) = 0. The Mach number must 
be specified. For this model the Bohm criterion requires 
that mr > l. 

After multiplying by 71', (5) can be integrated once to 

give 

71, = - 2 • / 2 [ mr 2 ( I + __!]_ - mr 2 + e - ~ -2 ) I / 2 Ill / 2 

mt 2 

(6) 

where 71', the dimensionless electric field , is negative, 
since 71 is positive at the wall and falls to zero in the 
plasma. We have incorporated the conditions that 71 ( ~ -> 

oo) = 0 and 71 ' ( ~ -> oo) = 0. Because we must be g iven 
71"· and mr in order to completely specify a solution . both 
71' and 71". which arc given by (6) and (5). can be evalu­
ated at the wall. In fact, all derivatives of 71 can be eval­
uated at the wall. However, derivatives higher than first 
order all go to zero at the wall as T/w becomes large. 

When might we expect this model to be a good descrip­
tion of the sheath? First, we have assumed that the sheath 
is collisionless. This is a good assumption when the mean 
free path for ion collisions is much larger than the sheath 
thickness. Secondly, we have ignored the presheath. We 
know from solutions to the plasma equation [2] that the 
maximum potential drop across the ·pres heath is Tf = 
0.8539. This suggests that the presheath can be treated in 
a simplified manner for 71 >> 1. The potential in the 
plasma region is constant (there is no pre-sheath) when 
there is no source near the sheath [5], and no error is in­
curred by neglecting the presheath. Thirdly, it was as­
sumed that the ion distribution entering the sheath is 
monoenergetic. The distribution of ion energies for ions 
born with zero energy is known to be very sharply peaked 
as the ions enter the sheath [6]. Fourthly, we have as­
sumed that the electron density obeys the Boltzmann re­
lation. Self [7] has argued that this assumption has a neg­
ligible effect on the results. Fifthly, we have assumed that 
there is no impediment (e.g., a magnetic field parallel to 
the wall) to the free ftow of electrons and ions to the wall. 
Finally, we have assumed that the wall potential is time 
independent. The model will still hold for time-varying 
wall potentials provided that the oscillation frequency of 
the wall potential is less than the ion-plasma frequency 
[8]. 

The remainder of this paper considers approximate so­
lutions to the sheath model presented above. 

III. APPROXIMATE ANALYTIC SOLUTION 

We consider the solutions to Poisson's equation (5) in 
the limits of small potential, 71 << 1, and large potential 
'I >> 1. When 71 << l, the dependence of 'I on ~ is 
exponential. When Tf >> 1 we find a power-law depen­
dence for 71 ( ~ )1

• 

When 71 << 1 the leading terms in Poisson's equation 
give 

(7) 

'In the limit of~ 2 >> 11 >> 1. Poisson ' s equatio n reduces to 11" "' I. 
This is the ion· matrix model, which has a quadratic solution. For this model 
the sheath width scales as 11!.f2. 
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The asymptotic dependence of the potential on position 
for TJ << I is 

exp ( -~ ../1 - 1 l mt 2 
). (8) 

In the opposite limit TJ >> I, Poisson's equation re­
duces to 

TJ " = m1:(21J) - I ~. (9) 

Child r3J found that the solution to (9). subject to the 
boundary conditions at the wall 17 ( 0 ) = T/ .. and at the 
plasma- sheath interface TJ (d) = 0 , is 

TJ(O = (~ ~y
13 

(d- ~t13• ~ $ d 

= 0, ~ > d. ( 10) 

The sheath thickness d is given by 

d = ~ T/~/4 
3 23!4mz 112 

( II ) 

and is the thickness of the region where the electron den­
sity is negligible. Equations (10) and (II) taken together 
are called Child 's law. 

Child's law relates three quantities: The wall potential 
"'w• the sheath thickness d, and the Mach number ml. The 
Mach number is related to the current density for ions 
entering the sheath. Hence, Child's law is often used to 
determine the current density flowing into a sheath, l; oc 
en0 u0 = en0 cs ml:, for given values of "'wand d [9], where 
d must be determined without using (11) . We, however, 
are interested in the spatial variation of the potential in 
the plasma sheath. 

Fig. 2 compares the spatial variation in the potential 
predicted by Child's law with an exact numerical solution 
of Poisson's equation for T/w $ 800 and m1: = 1.05. The 
exact solution is found by integrating 71', given by (6), 
from the wall towards the plasma using a Runge-Kutta 
method [10]. The exact solution's power-law nature for 11 
>> 1 and exponential nature for 71 << 1 are clearly vis­
ible. The exponential solution is dominant for 71 < 0.1. 
The agreement between Child' s law and the exact solu­
tion is increasingly poor as the transition from the sheath 
to the plasma is approached. 

We want a more accurate analytic expression for 71 ( 0 
than Child's law. Instead of looking for an exact solution 
to an approximate equation, we look for an approximate 
solution to the exact equation. The power-law form of 
Child's law suggests that we try 

b 
71(0 = a(d- ~) , ~ $ d 

= 0, ~>d. (12) 

Note that 71' (d) = 0. To find values for the coefficients 
a, b , and d, we require that 71 ( 0) = 71.,., 17' ( 0) = 17 ~-. and 
17 " ( 0) = 11 :~. Solving the resulting equations, we find that 
b, d, and a are given by 

b = I 
t , I ,2 - 71w17w 71w 

(l3a) 
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Fig. 2. Semi-log plot for the dimensionless potential '1 in the sheath as a 
function of the dimensionless distance from the wa ll ~ for an exact nu­
merical solution and Child's law with ~ = 1.05 . Note that '1 is a pos­
itive quantity. in contra~ I to the actual potential q, which i'> negative. as 
exhibited in Fig . I. Agreement be tween C hild's law and the exact so­
lullon is good in the power law regime '1 >> I . Agreement is poor in 
the exponential regime '1 << I . 

71 .. · 
a= db· 

( 13b) 

(13c) 

Equations (12) and (13a)-(13c) together with (5) and (6) 
for the derivatives make up what we will call the im­
proved Child' s law, because of its superior agreement with 
the exact numerical solutions for 71.,. < 104

. 

When the asymptotic values for 11:.. and 71:;, 

71:0..""' -23/ 4mzl /217!f4 (14) 

71::.0 ""' m1:(271wf
112 

(15) 

are substituted into (12) and (13), Child's law is re­
covered. Hence, in the asymptotic limit the improved 
Child's law approaches Child's law. 

Fig. 3 shows the difference between the exponent b 
(equation (lla)) and the asymptotic value of 413, which 
is used in Child's law. We see that the difference is sig­
nificant even at 71 = 100, and that b goes to its asymp­
totic value as 11;•/2. This indicates that Child ' s law is only 
accurate for 71:.e >> 1. 

The sheath thickness for Child's law, the improved law, 
and the exact solution are shown plotted against 17w in Fig. 
4. As the wall potential becomes large the improved law 
exhibits the same 3 I 4 power scaling of d with 7Jw that 
Child's law shows. There is a minimum in the sheath 
thickness at 7Jw ""' 6 for the improved law. (The exact 
position depends on mr.) This occurs as the character of 
the exact solution changes from power law to exponential, 
and is due to the attempt of the improved law to better fit 
the exponential by increasing b (see Fig. 3). However, if 
we ignore this unphysical increase in d for small values 
of 71w• the improved Child's law fits the exact numerical 
solution well even for 7Jw on the order of 10. 

Fig . 5(a)-(e) compares the spatial variations in the 
electric potential found by using Child's Ia w, the im­
proved Child' s law, and the exact solution for values of 
"'w = 10, 30, and 100 and mr = 1.05. We see that even 
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Fig. 3. Difference between the exponent in the improved Child's law band 
the asymptotic value of 4 / 3 used in Child's law plotted against the wall 
potential 11 ... with mt = 1.05. Note that this difference goes to zero only 
as 'l;; ' / 2. 
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Fig. 4. Dimensionless sheath thickness d for Child's law, the improved 
Child's law, and the exact numerical solution plotted against the wall 
potential 11 ... with mt = 1.05. For the exact solution the sheath thickness 
is chosen to be the distance from the wall to the point where 'I = I . 

at '11w = 100 (Fig. 5(c)), the improved expression is still 
noticeably different from Child's law and in much better 
agreement with the exact solution. Because of the expo­
nential nature of the exact solution for '11 < 1, power-law 
solutions, such as Child's law and the improved Child's 
law, fail for small '17· However, by allowing the exponent 
b to vary with '11w• the improved law gives much better 
agreement with the exact solution than does Child's law. 
This improved agreement is most apparent for smaller 
values of the wall potential (i .e . , '11w = 10 in Fig. 5(a) ). 

Finally, by expanding both the exponent b and the 
sheath thickness d for '11w >> 1, we can determine how 
large '11w must be for the Child's law and the improved law 
to be in good agreement. We find that 

b::=- 1+ ~+-4[ 1 ( 1 )] 
3 3(2'17..,)1 /2 ~ 

(16) 

4 '11 ~
4 

[ 5 I ( I ) ] 
d""" 3 23/4~1 /2 1 + 23/23 '17~,12 ~ + ~ . (17) 

The values of b and d predicted by (16) and (17) asymp­
totically approach those of Child's solution for '11w >> 1, 
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Fig. 5. Here the exact numerical solution for 'I (~),the spatial dependence 
of the potential in the plasma sheath, is compared to the predictions of 
the improved Child's law and the Child's law . These curves were com­
puted with mt = 1.05, and (a) 11 .. = 10, (b) 11 .. = 30, and (c) 11 •. = 100. 
Note that the improved law is in much better agreement with the exact 
solution than is Child 's law, particularly for 11 ... = 10. 

as they should. However, as seen previously, they only 
go to the asymptotic limit as '11: 1/

2
• The value of b found 

by using ( I6) is within 1 percent of the asymptotic value 
for 11 ... = 2200 (assuming that~ + 1 /~ = 2). The 
sheath thickness predicted from Child's law is within I 
percent of (17) for '11 w = I2 000. We can also expand the 
electric field for 71 >> 1 to give 

'11 ' """ -23 /4~1 /2'171 /4[I- 1 (~ + __!_)] (I8) 
23/2'171 /2 ~ . 
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At the wall this expression also shows the same 11.~ 1/
2 

convergence as (16) and (17). For 11:V to be within 1 per­
cent of its asymptotic value, we need 71w = 5000. We 
conclude that Child's law only provides a good approxi­
mation (within 1 percent) for the potential variation within 
the sheath when the potential drop across the sheath 71w is 
greater than 104

. 

IV. SUMMARY 

We have presented an improved Child's law (equations 
(12) and (13)), together with (5) and (6), for the time­
independent spatial variation of the electric potential for 
the source-free, collisionless, cathodic plasma sheath. It 
provides a significant improvement over Child's law when 
I e 4> / kTe I at the wall is less than 104

• The two expres­
sions agree in the asymptotic limit, and the improved 
expression is no more difficult to evaluate once the coef­
ficients a, b, and d (equations (13a)-(13c)) have been cal­
culated. 
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