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The effects of ion collisionality on the plasma sheath are revealed by a two-fluid model. In 
contrast to previous work, the ion-neutral collision cross section is modeled using a power law 
dependence on ion energy. Exact numerical solutions of the model are used to determine the 
collisional dependence of the sheath width and the ion impact energy at the wall. Approximate 
analytical solutions appropriate for the collisionless and collisionally dominated regimes are 
derived. These approximate solutions are used to find the amount of collisionality at the center 
of the transition regime separating the collisionless and collisional regimes. For the constant 
ion mean-free-path case, the center of the transition regime for the sheath width is at a sheath 
width of five mean-free paths. The center of the transition regime for the ion impact energy is 
at a sheath width of about one-half of a mean-free path. 

I. INTRODUCTION 
When a plasma is in contact with a negatively biased 

surface, such as an electrode or wall, a strong, localized elec­
tric field appears between the plasma and that surface. This 
ion rich boundary layer, called the sheath, 1 confines elec­
trons in, and expels ions from, the plasma. The energy that 
ions gain as they fall through the sheath regulates both the 
physical and chemical processes that occur at surfaces con­
tacting the plasma. Such plasma-surface interactions are 
important, for example, in plasma processing. Ion collisions 
in the sheath can significantly reduce the ion impact energy 
on the surface, and so it is worthwhile to include them in a 
sheath model. 

When collisional effects are considered, three regimes of 
sheath behavior are evident. There is a collisionally dominat­
ed (i.e., mobility limited) regime, a collisionless regime, and 
a transition regime that separates them. For the collisionally 
dominated regime, expressions that describe the sheath are 
available for both the cases of constant ion mean-free path, 2 

and constant ion mobility. 3 In the opposite limit, when ion 
collisionality is negligible, Child's law4

•
5 gives a simple de­

scription of the sheath. Separating these two regimes is a 
transition regime that defies simple analytic treatment. 

Several authors have recently considered the effects of 
ion collisionality on the sheath. Jurgensen and Shaqfeh6 de­
veloped a kinetic model for ions suffering charge exchange 
collisions. Godyak and Sternberg7 presented a fluid model 
where the ions experience a collisional drag. However, to the 
best of our knowledge, the amount of collisionality needed to 
cause the transition from the collisionless to the collisionally 
dominated regime has not been treated explicitly. The use­
fulness of all collisional sheath models has been hampered by 
the lack of this important information. In this paper we de­
rive simple criteria for the amount of ion collisionality need­
ed for the valid use of the limiting expressions. 

We consider a planar, cathodic, source-free, unmagne­
tized sheath, which is described using a two-fluid model. 
This model is similar to that used by God yak and Sternberg, 7 

although we allow the ion collision cross section to have a 
more general (power law) dependence on ion energy. Both 
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the case of constant ion mean-free path and constant ion 
mobility are contained in this collision model. We solve this 
model two ways: numerically to yield exact solutions valid 
over the entire range of collisionality and analytically to give 
approximate results valid in the collisionless and collisional 
regimes. We then use these expressions to determine the de­
gree of collisionality at the center of the transition regime. 

In the Sec. II we present the fluid equations that are used 
to describe the sheath. In Sec. III numerical calculations of 
the sheath thickness and ion energy at wall impact are pre­
sented. These useful results reveal that collisions reduce the 
ion impact energy before decreasing the sheath width. The 
numerical results motivate the rest of the paper. In Sec. IV 
we derive solutions of the model in the collisionless and colli­
sional regimes. Using these solutions, analytic expressions 
for the amount of collisionality at the center of the transition 
regime based on sheath width and ion impact energy are 
derived in Sec. V. These are useful for determining whether a 
given sheath is in the collisionless, collisional, or transition 
regimes. The main results are summarized in Sec. VI. In the 
Appendix, we derive an analytic expression for the ion ener­
gy lost in the sheath due to collisions when collisionality is 
8mall but non-negligible. 

II. SHEATH MODEL 

A. Governing equations 
We consider an unmagnetized, charge-neutral plasma 

in contact with a planar wall, as sketched in Fig. 1. In the 
plasma both the density of electrons ne and the density of 
(positive) ions n; are equal to the plasma density n0 • The 
potential in the sheath is <fl, and the wall is held at a negative 
potential <Pw· (Throughout this paper, the subscript wwill be 
used to refer to values at this wall.) Consequently, a sheath 
forms to separate the plasma from the wall. Ions enter the 
sheath as a cold beam with a velocity v0 and strike the wall 
with a velocity vw, and a kinetic energy !Mv~. Ions experi­
ence a collisional drag inside the sheath. The boundary 
between the plasma and the sheath is at x = 0, and the sheath 
thickness is D. That is, the wall is at x = D. The sheath is 
assumed to be source-free. (All the symbols used in this pa­
per are tabulated in Table I.) Given these assumptions, our 
goal is to frame a self-consistent formulation of the colli-
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FIG. I. Model system for the sheath. The potential¢ is sketched as a func­
tion of the distance x from the wall. Dimensionless quantities are shown to 
the right of their dimensional counterparts for most variables. Ions enter the 
sheath from the left as a cold beam with a velocity v0 and strike the wall with 
a dimensionless impact energy Ew· Ions lose energy in the sheath via ion­
neutral collisions. 

sional sheath problem and solve it. 
We consider governing equations based on a two-fluid 

model. The electrons are thermalized so their density obeys 
the Boltzmann relation, 

n. = n0 exp(e</J/k8 T. ), (1) 

where e is the elementary charge, k 8 is Boltzmann's con­
stant, and T. is the electron temperature. The cold ions obey 
the source-free, steady-state equation of continuity, 

V·(n;V;) = 0, 

and motion, 

(2) 

(3) 

where the velocity and mass of the ions are v; and M, respec­
tively. As the ion fluid travels through the sheath it experi­
ences a drag force 

(4) 

where nn is the neutral gas density and u is the momentum 

TABLE I. Symbols used in this paper. The dimensionless sheath theory depends on four parameters: the ion speed at sheath entry u0 , the collision parameter 
a, the collision exponent y, and the wall potential T/w. Here y = 0 gives the case of constant ion mean-free path, and y = - I gives the case of constant ion 
mobility. The subscript w is used to refer to sheath variables at the wall. 
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Dimensional 

Basic constants 
e 

ke 
€0 

Plasma parameters 
cs 
M 

Sheath variables 
V; 

V; 

x 

Collision parameters 
Fe 
n,, 

u, 

At the wall 
D 

</Jw 
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Nondimensional 

u 

5 
€ 

1J 

a 
r 

d 

Definition 

elementary charge 
Boltzmann's constant 
permittivity constant 

ion acoustic velocity [ ~ (kTJM) ] 
ion mass 
plasma density 
electron temperature 
ion speed at sheath entry ( u0 =~v,~/~C5~)--~­
Debye length in the plasma{~ [ E0k8 T,/(n0e2

)]} 

ion speed [Eq. (Sc)] 
ion velocity 
distance into the sheath [ Eq. (Sb)] 
ion energy [ Eq. ( Sd)] 
electric potential [Eq. (Sa)] 
electron density 
ion density 

collisional drag force [Eq. (4)] 
neutral gas density 
collision parameter [Eq. (9)] 
collision component [ Eq. ( 6)] 
mean-free path for ions [ l!(nnus )] 
ion-neutral collision cross section [ Eq. ( 6)] 
cross section at the ion acoustic speed [Eq. ( 6)] 

sheath width (d =DIA. 0 ) 

ion speed at the wall [ u., = vwlc, ] 
maximum ion energy at wall impact [ Eq. ( 13)] 
ion energy at wall impact [Eq. (Se)] 
electric potential 
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transfer cross section for collisions between ions and neu­
trals. Elastic and charge-exchange collisions contribute to 
this cross section, which depends on the ion speed V; . Final­
ly, Poisson's equation relates the electron and ion densities to 
the self-consistent potential: 

(5) 

where€ 0 is the permittivity constant. 
To complete the model we must specify the dependence 

of the cross section on ion energy. We assume that it has a 
power law dependence on the ion speed of the form 

u(v;) = us(v/cs )Y, (6) 

where cs =~ (kB T. IM) is the ion acoustic speed, us is the 
cross section measured at that speed, and r is a dimension­
less parameter ranging from 0 to - 1. This power law scal­
ing contains the two special cases treated in the existing liter­
ature: constant ion mean-free path (constant cross section), 
r = 0, and constant ion mobility, r = - 1. Real cross sec­
tions for the ions streaming through the sheath are more 
closely approximated by the constant mean-free path case. 

Combining Eqs. ( 1 )-(6) , we find two coupled, differen­
tial equations describing the planar plasma sheath: 

du; e d</> v~ +r 
V; dx = - M dx - nnus 4' (7a) 

d
2

¢> en0 [v0 ( e<f> )] 
dx2 = - ---;; --;;; - exp kB T. · (7b) 

Equation ( 7a) is the equation of motion for the ion fluid, and 
Eq. ( 7b) is Poisson's equation for the electrical potential. 
The ion density can be calculated from the ion velocity using 
the equation of continuity [Eq. (2)], and the electron den­
sity can be found from the potential using the Boltzmann 
relation [ Eq. (1)]. With the addition of source terms, these 
equations would describe the entire discharge. 8 

8. Nondimensional variables 

The governing equations can be made dimensionless by 
an appropriate choice of variables. 1 The electric potential </> 
is scaled by the electron temperature, 

TJ= - e<f>/kB T. , (Sa) 

the distance x is scaled by the Debye length 

Ao = ~ [ EokB T. l(n0e2
)], 

(Sb) 

and the ion velocity V; is Scaled by the ion acoustic Speed, 

(Sc) 

Additionally, the ion kinetic energy is made dimensionless 
by the electron thermal energy, 

E= !(Mv~/kB T. ) 

(Sd) 

so that the dimensionless ion impact energy at the wall is 

(Se) 

where uw is the dimensionless ion velocity at the wall. The 
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dimensionless sheath width is d = DI A 0 , and the dimen­
sionless entry velocity (i.e., the Mach number) is u0 =voles. 

The degree of collisionality in the sheath is parameter­
ized by a, which is given by the number of collisions in a 
Debye length: 

a=.A.0 /Amrp = A0 nnus, (9) 

whereAmrp = l!(nnus ) is the mean free path for ions travel­
ing with the ion acoustic speed. Note that a is proportional 
to the neutral gas density nn . The collisionless case, a= 0, is 
the limit of zero gas density. If the gas density is high enough, 
or the Debye length short enough, so that the ion mean-free 
path is one Debye length, then a = 1. The average number of 
collisions in the sheath, which will prove to be a useful quan­
tity, is given by DI Amrp =ad. 

After the dimensionless variables in Eqs. (Sa)-( Sc) and 
Eq. (9) are substituted into the governing equations [Eqs. 
( 7) ] , those equations become 

uu' = 'T/' - au2 + r ( lOa) 

and 

'T/" = uofu - exp( - 'TJ), (lOb) 

where the prime denotes differentiation with respect to the 
spatial coordinate s. so that 'T/' is the dimensionless electric 
field. As before, Eq. ( lOa) represents the conservation of ion 
momentum, and Eq. ( lOb) is Poisson's equation. These two 
equations, together with appropriate boundary conditions, 
provide the description of the collisional sheath that is the 
main concern of this paper. 

To solve these equations boundary conditions must be 
specified. At the wall Cs= d) the boundary condition is 
'TJ(d) = 'T/w. At the sheath-plasma boundary Cs= 0) the 
boundary conditions are 'TJ(O) = 0, 'T/'(0) = 0, and 
u(O) = u0 • Note that these conditions are only an approxi­
mation to the conditions that actually hold at the sheath­
plasma interface. (In fact, the location of the sheath-plasma 
boundary is not well defined.) To find the correct boundary 
conditions it would be necessary to include source terms and 
solve the entire discharge problem self-consistently. 

Before considering solutions to the governing equations, 
we define several more quantities. In the absence of colli­
sions (a= 0), the equation of motion [Eq. ( lOa)] can be 
integrated once to yield a statement of the conservation of 
ion energy: 

(11) 

The collisionless ions strike the wall with an impact energy 

(12) 

Since collisions can only reduce the impact energy, this rep­
resents the maximum energy an ion can have at impact on 
the wall, which we define as 

(13) 

The fractional energy loss for ions at wall impact due to 
collisions can then be defined as 

(14) 

With these definitions in mind, we proceed to the numerical 
solutions. 
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Ill. NUMERICAL SOLUTIONS 

The governing equations [Eqs. ( 10)] were solved ex­
actly (i.e., without any approximations) for the electric po­
tential 17(5) and ion velocity u (s) by integrating them nu­
merically with a Runge-Kutta9 routine. We have compared 
these results to those found using a fully implicit method 10 

and find no difference. In the collisionally dominated re­
gime, there is a transient in the solution (the ion speed ini­
tially decreases due to the large collisional drag) as it adjusts 
self-consistently to satisfy the real boundary conditions. We 
discard this transient behavior so that it has a negligible ef­
fect on the calculated sheath solutions. 

In Figs. 2 and 3 we plot the sheath thickness d and the 
ion impact energy €w as functions of the collision parameter 
a and wall potential 17 w. These plots show three regimes of 
sheath collisionality. For small a, collisions are negligible, 
and both d and €w are nearly independent of a. For large a 
the ion motion is collisionally dominated; both d and €w 

decrease and approach power law asymptotes. Between the 
collisionless and collisional regimes there is a transition re­
gime. For the collisionless and collisionally dominated re-
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(a) constant mean free path, y = O 
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(b) constant mobility, y= -1 
1 

0.0001 0.001 0.01 0.1 10 

collision parameter a 

FIG. 2. Exact numerical solutions of the governing equations [ Eq. ( 10)] 
for the dimensionless sheath thickness d as a function of the collision param­
eter a for various wall potentials Yf.,,. Here, a = A. 0 I A.,,,,.r is the number of 
collisions per Debye length A 0 , where A,,,rr is the mean-free path for ion 
momentum transfer. In (a) we show results for constant mean-free path 
and in (b) the results for constant mobility. Three regimes are evident: a 
collisionless regime (a small) where dis nearly independent of a, a colli­
sionally dominated regime (a large) where d approaches a limiting asymp­
tote, and a transition regime that separates the collisionless and collisional 
regimes. We have taken d to be the distance from the wall to the point where 
rt = In 2, and assumed u\I = I. 
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FIG. 3. Exact numerical solution for the average ion energy at impact on the 
wall€,., as a function of the collision parameter a for various wall potentials 
Yf,,,. In (a) we show results for the constant mean-free path case, and in ( b) 
for the constant ion mobility case. As in Fig. 2, three regimes are evident. In 
contrast to the results for sheath width in Fig. 2, the center of the transition 
regime for ion energy is at smaller values of a (i.e., smaller amounts of 
collisionality). We have assumed u0 = I. 

gimes, approximate analytic expressions ford and €w can be 
derived. The transition regime is much more difficult to treat 
analytically. Consequently, the numerical results in Figs. 2 
and 3 are most valuable for their accuracy in the transition 
regime. 

When the mean-free path is independent of the ion ve­
locity ( r = 0) the energy loss is directly proportional to the 
number of collisions in the sheath, ad. Solutions for the ion 
impact energy can be made to lie on a universal curve by 
normalizing the impact energy by the maximum impact en­
ergy €max [Eq. ( 13)] and plotting versus the number of 
collisions in the sheath, ad. In Fig. 4 we plot the normalized 
curves. That they all lie on a single curve demonstrates that 
the energy loss depends only on ad. In Sec. IV C we present 
an empirical expression for this universal curve. 

These exact solutions of our model also provide infor­
mation about the location of the transition regime and moti­
vate the method we later use to find the center of the transi­
tion regime. From Figs. 2 and 3, we see that this regime is 
centered at a value that is different depending on whether 
one examines the sheath thickness or the ion impact energy. 
Accordingly, we use the notation ad and aE to describe the 
center of the transition regime based on the sheath thickness 
d and ion impact energy €w, respectively. 
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FIG. 4. Normalized impact energy plotted against the number of collisions 
in the sheath ad for constant mean-free path. [The impact energy data are 
from Fig. 3(a).] The impact energy has been normalized by the maximum 
( collisionless) impact energy •m•" and the collision parameter has been 
multiplied by the exact sheath width d [shown in Fig. 2(a)], to give the 
number of collisions in the sheath. In this special case of constant mean-free 
path, the impact energy depends only on the number of collisions in the 
sheath. 

IV. APPROXIMATE SOLUTIONS 

In this section we derive expressions that give the poten­
tial profile, the sheath thickness, and the ion impact energy 
for collisionless and collisionally dominated sheaths. These 
results are used in Sec. V to find the center of the transition 
regime. We give most of our results three ways: for an arbi­
trary value of y, for constant mean-free path ( r = 0) , and for 
constant ion mobility ( r = - 1) . 

A. Collisionless regime 

In the collisionless limit, a = 0, we recover Child's law.4 

Inside the sheath, 0<.5<.d, we seek a power law scaling for 
the spatial dependence of the electric potential: 

17 = a5b. (15) 

Here b > 1 is required, so that the electric field 17' will be 
continuous across the sheath-plasma boundary. When the 
potential drop across the sheath is large, 
17w = - e</Jwlka T. > l , we make two approximations. 11 

First, the electron term [exp ( - 17)] in Poisson's equation 
[Eq. ( lOb)] is neglected. Second, recall that in the absence 
of collisions energy is conserved [ Eq. ( 11 ) ] . In Eq. ( 11 ) the 
!u~ term is neglected in comparison to 17. To see why this is 
justified, recall that the Bohm criterion 1 

Uo )' l (16) 

must be satisfied for the collisionless sheath. Typically u0 is 
only slightly larger than 1, so that !u~ ~17w · 

With these two simplifications, the solution of the gov­
erning equations is Child's law: 

(17) 

By evaluating Eq. ( 17) at the wall, where 17 = 17 w and 5 = d, 
we obtain the sheath thickness 
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(18) 

Together, Eqs. (17) and (18) are the familiar Child's law 
results. It is known that Child's law is not especially accu­
rate, 5 but in this paper we use it for simplicity. 

For the collisionless sheath the fractional energy loss is 
zero, i.e., /:J..c/c = 0. When there is a small amount of colli­
sionality, we show in the Appendix that the fractional energy 
loss for constant mean-free path is 

l:J..dc =~ad, (19) 

which depends only on the number of collisions in the 
sheath, ad. Equation ( 19) is compared to the exact numeri­
cal solution in Fig. 5. For small values of ad agreement is 
good. 

B. Collisional regime 

In the limit of strong ion-neutral collisions (i.e., the 
case of mobility-limited ion motion) the collision parameter 
a is large. The equation of motion [Eq. ( lOb)] is simplified 
under these circumstances by neglecting the convective term 
on the left-hand side. The resulting equation 

u2 + r = 17'/a (20) 

relates the ion velocity to the electric field. 12 This assump­
tion neglects ion inertia and is therefore called a local mobil­
ity model. 6 

By inserting Eq. (20) into the Poisson's equation [Eq. 
(1 Ob) ], and neglecting the electron term exp ( - 17) we 
again arrive at a power law solution: 

17 
= 3 + Y (3 + Y Uo)<

2
+r>l<J +r>al1(3 + r>5cs + 2y)! (3+rl. 

5 + 2r 2 + r 
(21) 

The collision parameter a appears explicitly in the leading 

x 

"' E 
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>. 
~ 

0.1 Q) 
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FIG. 5. Comparison between the exact, constant mean-free-path solution 
for the ion impact energy (shown in Fig. 4) and expressions valid for small 
and large energy losses due to collisionality in the sheath [Eqs. (19) and 
(30), respectively] . Both approximations break down in the transition re­
gime. The calculated center of the transition regime (a, d = 0.53) is also 
shown. 
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coefficient, but not in the exponent of S. This exponent 
ranges from j for y = 0 to ~ for y = - 1. Both are greater 
than the value oq found in the collisionless regime, giving a 
narrower sheath. For r < - 2, this exponent becomes less 
than l, so that the electric field r/ becomes infinite at s = 0, 
and the solution becomes unphysical. This breakdown oc­
curs because the collisional drag decreases as the ion velocity 
increases. 

The sheath thickness, found by invoking the boundary 
condition 77(d) = 17w• is 

d=((5+2y)3+Y(2+y)2+y 77~+y)l/(5+2y» (22) 
(3 + y)5+ 2r au6+r 

Note that d decreases with increasing collisionality a. This 
can be understood by considering the governing equations. 
The viscous drag force reduces the ion velocity in the colli­
sional sheath. To satisfy the conservation of ion flux [Eq. 
( 2) ] , this smaller ion velocity requires an increase in the ion 
density. Through Poisson's equation [ Eq. ( 6)], this in­
crease in the ion density leads to a stronger gradient in the 
electric field, V2</J. Having a larger gradient means having a 
smaller scale length, i.e., a smaller sheath thickness d. The 
decrease ind for increasing collisionality is evident in Fig. 2. 

The electric potential 77 varies not only withs and a, but 
also with the energy dependence of the cross section, charac­
terized by y. For the special case of constant mean-free path 
( r = 0) the results given above for the electric potential and 
the sheath thickness simplify to2

•
13 

(23) 

and 

(24) 

For constant ion mobility ( r = - l) they simplify to 

(25) 

and 

(26) 

We next wish to find the ion impact energy, which can 
be written using Eq. (20) as 

€ = i u2 = l(ri' /a)21<2+ri 
W 2 W 2 °/W 

0 (27) 

Evaluating 77~ using Eq. (21) we find 

Ew =__!_(5+2y 77wUo)2/(5+2rl. (28) 
2 2 + r a 2 

Note that the impact energy increases with the sheath poten­
tial 77 w, but not linearly as it does for the collisionless sheath 
[Eq. ( 12)]. For the collisional sheath the fractional ion en­
ergy loss defined by Eq. ( 14) is 

l:l.c = l - __!_(5 + 2y Uo )2/(5 + 2r>_ (29) 
€ 2 2 + r a277~2 + y 

For the case of constant mean-free path ( r = 0), and for 
17w > l, we again find that the impact energy depends on the 
number of collisions in the sheath ad: 

(30) 

where 17w gives the approximate maximum impact energy 
and dis the collisional sheath width. This approximate solu-
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tion for the impact energy [Eq. (30)] is compared to the 
exact solution in Fig. 5. The fractional energy loss is 

l:l.€/c::::::l -tad, (31) 

which should be compared to the energy loss in the almost 
collisionless sheath [Eq. (19) ]. 

C. Approximate impact energy valid for all a 

Because of the importance of the ion impact energy is 
plasma-surface interactions, we now provide a simple ap­
proximate expression for E w for the case of constant ion 
mean-free path. As was shown in Sec. III, in this case a single 
curve describes the collisional dependence of the ion impact 
energy. Consequently, we can provide a single empirical 
expression that is valid over the entire range of collisionality. 
This expression is the ratio of polynomials (i.e., a Pade ap­
proximant) 

Cw l +ad 
(32) 

Emax :::::: l + J.fad + ~(ad) 2 
• 

Here the coefficients were chosen to recover the almost colli­
sionless expression [ Eq. ( 19)] for ad~ l and the mobility­
limited expression [Eq. (30)] for ad> 1. Agreement with 
the exact numerical solution is within 2.5% over the entire 
range of a, with the largest errors in the transition regime. 

V. TRANSITION BETWEEN REGIMES 

In Sec. IV we developed expressions for the sheath 
thickness and the ion impact energy appropriate for the 
collisionless and collisional regimes. However, to correctly 
use these analytic expressions, one must confirm that the 
collision parameter a falls in either the collisionless or colli­
sional regime. The exact numerical solutions of the govern­
ing equations showed that the transition between the re­
gimes takes place at different values of the collision 
parameter, ad and a 0 for the sheath thickness and the aver­
age ion impact energy, respectively. Further the location of 
the transition regime will in general depend on the wall po­
tential and the collision model. In this section we present 
analytic expressions for ad and aE. These expressions are a 
main result of this paper. 

A. Sheath thickness 

As seen in Fig. 2, the sheath thickness d approaches a 
constant limiting value in the collisionless regime, and an 
asymptote in the collisional regime. We have sketched this 
situation in Fig. 6. In the collisionless regime, the sheath 
thickness dis given by Eq. ( 18). Because this expression is 
independent of a, this is a constant limiting value, as shown 
in Fig. 6. In the mobility-limited regime, where the amount 
of collisionality a is large, d is given by Eq. ( 22). This as­
ymptote slopes downward. 

By definition, the transition regime separates the colli­
sionless and collisional regimes. The asymptote from the 
collisional regime intersects the collisionless, constant thick­
ness in the transition regime. We take the center of the tran­
sition regime ad to be this intersection point. Accordingly, 
ad can be found by equating Eqs. ( 18) and (22) and solving 
for a. For an arbitrary value of y, this procedure yields 

T. E. Sheridan and J. Goree 2801 



I 
J 

""O 
..c 

collisional 

-'i5 100 
-~ 

..c 
(ii 
Q) 
..c 
(/) 

center of 
transition regime 

ad 

I 

I 
40 '---~~'"'--~~uil.._~~il.UL~~~'--'~~ 
0.0001 0.001 0.01 0.1 10 

collision parameter a 

FIG. 6. Sheath width d versus the collision parameter a, illustrating the 
method we use to find the center of the transition regime. For a~ I the 
sheath width is nearly constant, and is approximated by Child's law. For 
a> I the ion motion is mobility limited, and the sheath width approaches an 
asymptote. We use the point where these two approximate expressions in­
tersect to define the center of the transition regime based on sheath width, 
ad. The transition value for ion impact energy a, is similarly defined. 

a = [ (5 + 2y)3+ rc2 + y)2 + r(_3_)5 + 2y] u~/2 
d (3 + y)5+2r 2514 T/;:4+r12 

(33) 

For the constant mean-free-path case this simplifies to 

(34) 

so that ad- 1 has the same scaling on T/w and u0 as the colli­
sionless sheath thickness [Eq. (18)]. For the case of con­
stant ion mobility the transition regime is centered about 

(35) 

In Fig. 7(a) we have plotted ad [Eq. (33)] as a function 
of 7J w, and for values of r ranging from the constant mobility 
case to the constant mean-free-path case. We see that ad;:::; 1, 
with the exact value depending on the wall potential T/w and 
on the cross section exponent y. This means that about one 
collision per Debye length is required for the sheath thick­
ness to decrease appreciably. The decrease in ad with in­
creasing wall potential is due to the increase in the sheath 
width; there are more collisions in a wider sheath. 

B. Ion impact energy 

Here we perform the same procedure as above, except 
that we find the center of the transition regime based on the 
ion impact energy €w. Examining Fig. 3, the ion energy at 
impact on the wall €w approaches a constant value for small 
a and an asymptotic expression for large a . We take the 
center of the transition regime based on energy, a 0 to be the 
point where these limiting expressions cross. 

The collisionless value of €w is given by Eq. ( 12), while 
the asymptote for the mobility-limited ion regime is founo in 
Eq. (28). Equating the right-hand sides of these two results 
to find where they intersect gives 
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(
5 + 2 )1/2 

aE = 2 +: ( 'TJwUo) 112(27Jw + u6) - (5 + 2y)/4• (36) 

Since we have assumed 7J w > 1, we can simplify Eq. ( 36) 
by neglecting u6 compared to 27Jw, which gives 

a = 2 - <5 + 2rJ/4 _±_I Uo . (5 2 )112 112 

E 2 + r ' 7/;:4 + y/2 
(37) 

For the constant mean-free-path case, r = 0, this simplifies 
to 

aE = 51122 - 114u~12T/;; 314, 

and for constant mobility we find 

aE = 31122 - 3;4u~127/;; 114. 

(38) 

(39) 

In Fig. 7 (b) we exhibit aE versus wall potential for var­
ious values of y. We see similar behavior to that of ad except 
that for the same wall potential ad> aE. From Fig. 5 we 
estimate that the transition regime based on impact energy 
extends from its center in both directions for roughly an 
order of magnitude. 

These results for the center of the transition regime 
based on ion impact energy [Eq. (37)] and sheath width 
[Eq. (33)] have the same scaling with T/w and u0 : only the 
leading coefficients are different. The ratio of the two transi­
tion values is given by a constant that depends only on y: 
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FIG. 7. Values of the collision parameter a about which the transit,ion from 
the collisionless to collisional regimes is centered. In (a) we plot the center 
of the transition regime based on impact energy a, [Eq. (37) ], and in (b) 
the centerof the transition regime based on sheath thickness ad [ Eq. ( 33)]. 
Dependence of these transition values on the wall potential 'T/w and the colli­
sion cross-section exponent rare shown. Curves are for u0 = I. 
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!!.:!__ = (1- (5 + 2y)l/2(2 + y)l/2)5+2y. (40) 

aE 2 3 + r 
For constant mobility ( y = - 1), this ratio has a value of 
2.19, which increases to 9.88 for a constant mean-free path 
( y = 0). Consequently, the amount of collisionality needed 
to reduce the ion impact energy is smaller than that needed 
to decrease the sheath width. 

C. Number of collisions in the sheath at transition 

For the constant mean-free-path case, the number of 
mean-free paths in the sheath, ad, provides a simple crite­
rion for determining whether a sheath is approximately 
collisionless or collisionally dominated. (For these calcula­
tions, we approximate d using the collisionless sheath 
width.) 

The number of mean-free paths in the sheath at the cen­
ter of the transition regime based on impact energy is 

aEd=!~=0.53. (41) 

That is, we expect a significant decrease in impact energy at 
the wall when the sheath is only ::::one-half of a mean-free 
path wide. For sheath widths much less than one half of a 
mean-free path, the impact energy is well predicted by the 
expression for the almost collisionless sheath, as shown in 
Fig. 5. For widths much greater than one-half of a mean-free 
path, the mobility limited expression [Eq. (30)] should be 
used. For sheaths with widths comparable to the transition 
width, one must use either the exact numerical solutions or 
the empirical expression given by Eq. (32). 

For the transition in width we find that the transition 
regime is centered on 

add= Hn 3 
= 5.2i. (42) 

If the sheath width is significantly less than five mean-free 
paths then Child's law [Eq. ( 18)] should be used, and ifthe 
width is much greater than five mean-free paths, the mobil­
ity limited expression [ Eq. ( 24)] is appropriate. In the tran­
sition regime the numerical solutions must be used. 

VI.SUMMARY 

We have presented a fluid model for the collisional plas­
ma sheath that includes a power law dependence of the ion 
collision cross section on energy. Special cases of this de­
pendence include both constant ion mean-free path (con­
stant cross section) and constant ion mobility. Approximate 
solutions of this model appropriate for the collisionally 
dominated sheath were derived. In particular, we derived 
expressions for the potential profile, sheath width, and ion 
impact energy at the wall (see Sec. IV). In addition, an 
expression for the ion impact energy appropriate in the al­
most collisionless sheath was presented (see the Appendix), 
as was an empirical expression for the ion impact energy 
valid over the entire range of collisionalit~· (Sec. IV C). 

By equating the expressions for the collisional sheath 
width and impact energy to corresponding on<!s in the colli­
sionless case, we have calculated the location of the center of 
the transition regime that separates the collisionless and 
collisional regimes (Sec. V). In the special case of constant 
ion mean-free path, we find that the sheath width is reduced 
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by collisions when it is about five mean-free paths wide. 
However, the ion impact energy on the wall is significantly 
decreased when the sheath width is only approximately one­
half of a mean-free path. 
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APPENDIX: ENERGY LOSS IN THE ALMOST 
COLLISIONLESS SHEATH 

While the ion energy lost in the sheath can be found 
from a numerical solution of the governing equations, it is 
sometimes more convenient to have a ready analytic expres­
sion. In Sec. IV, we presented a result for 6.€/ €in the highly 
collisional regime, a~ a< [ Eq. ( 30)]. When collisions are 
neglected entirely, the ions do not lose any energy and 
6.€/ € = 0. In this appendix we improve on the collisionless 
result by deriving an analytic expression [Eq. (A8)] that is 
valid for the almost collisionless sheath, i.e., for 6.€/ c ~ 1. 
We treat the case of constant ion mean-free path, y = 0. 

Our approach here exploits the fact that a< <ad; there­
fore, the ion impact energy is reduced by collisions before 
either the sheath thickness d or the electric potential profile 
7J(s) is appreciably altered. This means that we can find the 
ion energy lost by integrating the equation of motion [Eq. 
( lOa)] while using the electric potential and width predict­
ed by the collisionless Child's law [ Eqs. ( 17) and ( 18) ] . 

Our objective here is to find Ew so that we can find the 
fractional energy lost 6.€/ € [ Eq. ( 14)]. To evaluate the ion 
velocity at wall impact u w, we integrate the equation of mo­
tion [Eq. ( lOa)] from the edge of the sheath (s = 0) to the 
wall (s = d): 

id uu' d5 =id ( 7J' - au2)d5, (Al) 

so that 

1 2 2 id 2df:" -(Uw - U0 ) = 7Jw - a U ~· 
2 0 

(A2) 

The ion impact energy on the wall is 

1 2 id2df:" = - U0 + 7/w - a U ~· 
2 0 

(A3) 

We now make the crucial approximation that the ion veloc­
ity u (s) in the integrand of Eq. (A3) is given by the colli­
sionless velocity, which satisfies 

(A4) 

where 7J is given by Child's law [Eq. (17)]. This approxima­
tion limits the validity of the following results to the case 
where the fractional energy loss is small. Doing this, we ob­
tain 

1 2 id 2 €w=-uo+7Jw-a (u0 +27J)ds 
2 0 

= _!__ u6 (1 - 2ad) + 7/w - 2a( 9uo )213 fd5413 d5. 
2 4Ji Jo 

(A5) 
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Performing the integral in Eq. (AS) , and making use ofEq. 
( 18) for the collisionless sheath thickness d, we find 

(A6) 

The first term on the right gives the collisionless impact ener­
gy, and the second term is the energy loss due to collisional 
drag. The energy loss is proportional to the number of colli­
sions in the sheath, ad. In the limit 17 w ~ u0 , for which Child's 
law is valid, the impact energy is 

(A7) 

so that fractional energy Joss [defined by Eq. ( 14)] in the 
almost collisionless sheath is 

(A8) 

This is the principal result of this appendix. We require 
ti€/€~ 1 for this expression to be accurate, or alternatively 
ad~ 1 (i.e., a~a. ). In the mobility-limited regime, where 
a~a., one should use instead Eq. (30). 
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