Noise in analog circuits

Anything that obscures a signal (whether voltage or current)

\[v(t) \]

<table>
<thead>
<tr>
<th>Time series</th>
<th>Frequency spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

White noise \(v(t) \) is flat

- Johnson noise

Pink noise \(v(t) = 1/f \)

("Slicker noise", "White noise", often associated with exponential decay, or half of white noise, generated within transistors

Shot noise \(v(t) \) is random spike

Interference - 60Hz pickup, RF emissions from motors, transmitters etc.

\[
\text{The average} = \overline{V} \quad \text{or} \quad \overline{I}
\]

\[
\text{RMS} = \text{root mean square} \quad \frac{(v-\overline{V})^2}{(v-\overline{V})^2}^{1/2}
\]
Johnson noise or "thermal noise"

- a resistor (or any dissipative system that dissipates energy into heat)
- has random fluctuations in the motion without considering a resistor just sitting around
- resistor has fluctuations in electron motion inside
 - random thermal current inside resistor
 - random voltage appears across leads.

\[V_{\text{noise (rms)}} = \sqrt{4kTRB} \]

- \(k_B \): Boltzmann's constant
- \(T \): temperature (K)
- \(R \): resistance (\(\Omega \))
- \(B \): bandwidth (Hz)

At room temperature, \(k_B = 25 \text{ eV} \)

- \(k_B = 1 \text{ meV}, B = 1 \text{ MHz}, \) max. \(V_{\text{rms}} = 0.1 \text{ mV} \)

\(\Delta f \) is the input signal of \(f \) = white noise
Shot noise is generated in forward biased diodes. Electrons are finite.

Small currents ⇒ small no. of electrons per sec.

Electron is a "shot" of charge.

\[I_{\text{noise}} (\text{rms}) = \left[2qI_{\text{dc}}B \right]^{1/2} \]

\(q \) = electron charge \(1.6\times10^{-19} \text{C} \)

\(I_{\text{dc}} = \) steady state current (DC)

\(B = \) Bandwidth (Hz)

(Story about IR detector)

Note: That:

\[I_{\text{noise}} \propto \sqrt{f} = \text{"white noise"} \]

\[\frac{\text{Signal}}{\text{Noise}} = \frac{I_{\text{dc}}}{I_{\text{noise}}} \Rightarrow \text{signal-to-noise ratio} \]

\[\text{SNR} = \frac{I_{\text{dc}}}{I_{\text{noise}}} \propto I_{\text{dc}}^{1/2} \]

Shot noise is a bigger problem for small signal.
"1/f noise" - phenomenological - lots of different systems exhibit it

Noise reduction methods

- reduce noise source
- reduce bandwidth
- increase signal to get higher SNR

\[\text{SNR} \]

If \(\text{SNR} < 1 \), you really need noise reduction methods to see & use signal